Properties

Label 6475.2.a.u.1.13
Level $6475$
Weight $2$
Character 6475.1
Self dual yes
Analytic conductor $51.703$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6475,2,Mod(1,6475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6475.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6475 = 5^{2} \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6475.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7031353088\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 26 x^{13} + 24 x^{12} + 266 x^{11} - 222 x^{10} - 1368 x^{9} + 998 x^{8} + 3770 x^{7} + \cdots - 158 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(2.26763\) of defining polynomial
Character \(\chi\) \(=\) 6475.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.26763 q^{2} +2.33889 q^{3} +3.14213 q^{4} +5.30373 q^{6} +1.00000 q^{7} +2.58991 q^{8} +2.47041 q^{9} +2.79940 q^{11} +7.34909 q^{12} -6.33892 q^{13} +2.26763 q^{14} -0.411300 q^{16} +5.73746 q^{17} +5.60196 q^{18} +5.46034 q^{19} +2.33889 q^{21} +6.34799 q^{22} +6.62426 q^{23} +6.05752 q^{24} -14.3743 q^{26} -1.23866 q^{27} +3.14213 q^{28} +7.31892 q^{29} -5.72336 q^{31} -6.11250 q^{32} +6.54749 q^{33} +13.0104 q^{34} +7.76233 q^{36} -1.00000 q^{37} +12.3820 q^{38} -14.8260 q^{39} -7.32058 q^{41} +5.30373 q^{42} +8.56324 q^{43} +8.79606 q^{44} +15.0213 q^{46} +1.83555 q^{47} -0.961985 q^{48} +1.00000 q^{49} +13.4193 q^{51} -19.9177 q^{52} -2.39441 q^{53} -2.80882 q^{54} +2.58991 q^{56} +12.7711 q^{57} +16.5966 q^{58} -5.54706 q^{59} +6.78124 q^{61} -12.9784 q^{62} +2.47041 q^{63} -13.0383 q^{64} +14.8472 q^{66} -1.71727 q^{67} +18.0278 q^{68} +15.4934 q^{69} +5.11520 q^{71} +6.39814 q^{72} +5.64803 q^{73} -2.26763 q^{74} +17.1571 q^{76} +2.79940 q^{77} -33.6199 q^{78} +2.53359 q^{79} -10.3083 q^{81} -16.6003 q^{82} +1.76178 q^{83} +7.34909 q^{84} +19.4182 q^{86} +17.1182 q^{87} +7.25020 q^{88} -13.0580 q^{89} -6.33892 q^{91} +20.8143 q^{92} -13.3863 q^{93} +4.16235 q^{94} -14.2965 q^{96} -13.1335 q^{97} +2.26763 q^{98} +6.91566 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + q^{2} + q^{3} + 23 q^{4} + 6 q^{6} + 15 q^{7} + 3 q^{8} + 30 q^{9} + 17 q^{11} - 8 q^{12} + 5 q^{13} + q^{14} + 39 q^{16} + 7 q^{17} - 12 q^{18} + 6 q^{19} + q^{21} - 18 q^{22} + 2 q^{23} + 4 q^{24}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.26763 1.60345 0.801727 0.597691i \(-0.203915\pi\)
0.801727 + 0.597691i \(0.203915\pi\)
\(3\) 2.33889 1.35036 0.675179 0.737654i \(-0.264066\pi\)
0.675179 + 0.737654i \(0.264066\pi\)
\(4\) 3.14213 1.57106
\(5\) 0 0
\(6\) 5.30373 2.16524
\(7\) 1.00000 0.377964
\(8\) 2.58991 0.915672
\(9\) 2.47041 0.823469
\(10\) 0 0
\(11\) 2.79940 0.844051 0.422025 0.906584i \(-0.361319\pi\)
0.422025 + 0.906584i \(0.361319\pi\)
\(12\) 7.34909 2.12150
\(13\) −6.33892 −1.75810 −0.879050 0.476730i \(-0.841822\pi\)
−0.879050 + 0.476730i \(0.841822\pi\)
\(14\) 2.26763 0.606048
\(15\) 0 0
\(16\) −0.411300 −0.102825
\(17\) 5.73746 1.39154 0.695769 0.718266i \(-0.255064\pi\)
0.695769 + 0.718266i \(0.255064\pi\)
\(18\) 5.60196 1.32039
\(19\) 5.46034 1.25269 0.626344 0.779547i \(-0.284551\pi\)
0.626344 + 0.779547i \(0.284551\pi\)
\(20\) 0 0
\(21\) 2.33889 0.510388
\(22\) 6.34799 1.35340
\(23\) 6.62426 1.38125 0.690627 0.723211i \(-0.257335\pi\)
0.690627 + 0.723211i \(0.257335\pi\)
\(24\) 6.05752 1.23649
\(25\) 0 0
\(26\) −14.3743 −2.81903
\(27\) −1.23866 −0.238380
\(28\) 3.14213 0.593806
\(29\) 7.31892 1.35909 0.679545 0.733634i \(-0.262177\pi\)
0.679545 + 0.733634i \(0.262177\pi\)
\(30\) 0 0
\(31\) −5.72336 −1.02795 −0.513973 0.857806i \(-0.671827\pi\)
−0.513973 + 0.857806i \(0.671827\pi\)
\(32\) −6.11250 −1.08055
\(33\) 6.54749 1.13977
\(34\) 13.0104 2.23127
\(35\) 0 0
\(36\) 7.76233 1.29372
\(37\) −1.00000 −0.164399
\(38\) 12.3820 2.00863
\(39\) −14.8260 −2.37407
\(40\) 0 0
\(41\) −7.32058 −1.14328 −0.571641 0.820504i \(-0.693693\pi\)
−0.571641 + 0.820504i \(0.693693\pi\)
\(42\) 5.30373 0.818383
\(43\) 8.56324 1.30588 0.652941 0.757409i \(-0.273535\pi\)
0.652941 + 0.757409i \(0.273535\pi\)
\(44\) 8.79606 1.32606
\(45\) 0 0
\(46\) 15.0213 2.21478
\(47\) 1.83555 0.267743 0.133871 0.990999i \(-0.457259\pi\)
0.133871 + 0.990999i \(0.457259\pi\)
\(48\) −0.961985 −0.138851
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 13.4193 1.87908
\(52\) −19.9177 −2.76208
\(53\) −2.39441 −0.328898 −0.164449 0.986386i \(-0.552585\pi\)
−0.164449 + 0.986386i \(0.552585\pi\)
\(54\) −2.80882 −0.382231
\(55\) 0 0
\(56\) 2.58991 0.346092
\(57\) 12.7711 1.69158
\(58\) 16.5966 2.17924
\(59\) −5.54706 −0.722165 −0.361083 0.932534i \(-0.617593\pi\)
−0.361083 + 0.932534i \(0.617593\pi\)
\(60\) 0 0
\(61\) 6.78124 0.868249 0.434125 0.900853i \(-0.357058\pi\)
0.434125 + 0.900853i \(0.357058\pi\)
\(62\) −12.9784 −1.64826
\(63\) 2.47041 0.311242
\(64\) −13.0383 −1.62978
\(65\) 0 0
\(66\) 14.8472 1.82757
\(67\) −1.71727 −0.209798 −0.104899 0.994483i \(-0.533452\pi\)
−0.104899 + 0.994483i \(0.533452\pi\)
\(68\) 18.0278 2.18619
\(69\) 15.4934 1.86519
\(70\) 0 0
\(71\) 5.11520 0.607063 0.303531 0.952821i \(-0.401834\pi\)
0.303531 + 0.952821i \(0.401834\pi\)
\(72\) 6.39814 0.754028
\(73\) 5.64803 0.661052 0.330526 0.943797i \(-0.392774\pi\)
0.330526 + 0.943797i \(0.392774\pi\)
\(74\) −2.26763 −0.263606
\(75\) 0 0
\(76\) 17.1571 1.96805
\(77\) 2.79940 0.319021
\(78\) −33.6199 −3.80670
\(79\) 2.53359 0.285052 0.142526 0.989791i \(-0.454478\pi\)
0.142526 + 0.989791i \(0.454478\pi\)
\(80\) 0 0
\(81\) −10.3083 −1.14537
\(82\) −16.6003 −1.83320
\(83\) 1.76178 0.193381 0.0966903 0.995315i \(-0.469174\pi\)
0.0966903 + 0.995315i \(0.469174\pi\)
\(84\) 7.34909 0.801851
\(85\) 0 0
\(86\) 19.4182 2.09392
\(87\) 17.1182 1.83526
\(88\) 7.25020 0.772874
\(89\) −13.0580 −1.38415 −0.692075 0.721826i \(-0.743303\pi\)
−0.692075 + 0.721826i \(0.743303\pi\)
\(90\) 0 0
\(91\) −6.33892 −0.664499
\(92\) 20.8143 2.17004
\(93\) −13.3863 −1.38810
\(94\) 4.16235 0.429313
\(95\) 0 0
\(96\) −14.2965 −1.45913
\(97\) −13.1335 −1.33351 −0.666753 0.745279i \(-0.732316\pi\)
−0.666753 + 0.745279i \(0.732316\pi\)
\(98\) 2.26763 0.229065
\(99\) 6.91566 0.695050
\(100\) 0 0
\(101\) 1.86164 0.185240 0.0926202 0.995702i \(-0.470476\pi\)
0.0926202 + 0.995702i \(0.470476\pi\)
\(102\) 30.4299 3.01301
\(103\) 0.996582 0.0981961 0.0490981 0.998794i \(-0.484365\pi\)
0.0490981 + 0.998794i \(0.484365\pi\)
\(104\) −16.4172 −1.60984
\(105\) 0 0
\(106\) −5.42964 −0.527373
\(107\) −12.2285 −1.18218 −0.591088 0.806607i \(-0.701301\pi\)
−0.591088 + 0.806607i \(0.701301\pi\)
\(108\) −3.89202 −0.374510
\(109\) 17.7562 1.70074 0.850369 0.526186i \(-0.176379\pi\)
0.850369 + 0.526186i \(0.176379\pi\)
\(110\) 0 0
\(111\) −2.33889 −0.221998
\(112\) −0.411300 −0.0388642
\(113\) −12.1725 −1.14509 −0.572547 0.819872i \(-0.694044\pi\)
−0.572547 + 0.819872i \(0.694044\pi\)
\(114\) 28.9601 2.71237
\(115\) 0 0
\(116\) 22.9970 2.13522
\(117\) −15.6597 −1.44774
\(118\) −12.5786 −1.15796
\(119\) 5.73746 0.525952
\(120\) 0 0
\(121\) −3.16336 −0.287579
\(122\) 15.3773 1.39220
\(123\) −17.1220 −1.54384
\(124\) −17.9835 −1.61497
\(125\) 0 0
\(126\) 5.60196 0.499062
\(127\) −18.8092 −1.66905 −0.834524 0.550972i \(-0.814257\pi\)
−0.834524 + 0.550972i \(0.814257\pi\)
\(128\) −17.3409 −1.53273
\(129\) 20.0285 1.76341
\(130\) 0 0
\(131\) 12.3299 1.07727 0.538635 0.842539i \(-0.318940\pi\)
0.538635 + 0.842539i \(0.318940\pi\)
\(132\) 20.5730 1.79065
\(133\) 5.46034 0.473471
\(134\) −3.89413 −0.336402
\(135\) 0 0
\(136\) 14.8595 1.27419
\(137\) −0.877770 −0.0749929 −0.0374965 0.999297i \(-0.511938\pi\)
−0.0374965 + 0.999297i \(0.511938\pi\)
\(138\) 35.1333 2.99074
\(139\) −0.549892 −0.0466412 −0.0233206 0.999728i \(-0.507424\pi\)
−0.0233206 + 0.999728i \(0.507424\pi\)
\(140\) 0 0
\(141\) 4.29316 0.361549
\(142\) 11.5994 0.973397
\(143\) −17.7452 −1.48393
\(144\) −1.01608 −0.0846731
\(145\) 0 0
\(146\) 12.8076 1.05997
\(147\) 2.33889 0.192908
\(148\) −3.14213 −0.258281
\(149\) 3.38365 0.277200 0.138600 0.990348i \(-0.455740\pi\)
0.138600 + 0.990348i \(0.455740\pi\)
\(150\) 0 0
\(151\) 10.2026 0.830277 0.415138 0.909758i \(-0.363733\pi\)
0.415138 + 0.909758i \(0.363733\pi\)
\(152\) 14.1418 1.14705
\(153\) 14.1739 1.14589
\(154\) 6.34799 0.511536
\(155\) 0 0
\(156\) −46.5853 −3.72981
\(157\) −22.7953 −1.81926 −0.909632 0.415415i \(-0.863637\pi\)
−0.909632 + 0.415415i \(0.863637\pi\)
\(158\) 5.74524 0.457067
\(159\) −5.60027 −0.444131
\(160\) 0 0
\(161\) 6.62426 0.522065
\(162\) −23.3754 −1.83654
\(163\) 6.32276 0.495237 0.247618 0.968858i \(-0.420352\pi\)
0.247618 + 0.968858i \(0.420352\pi\)
\(164\) −23.0022 −1.79617
\(165\) 0 0
\(166\) 3.99506 0.310077
\(167\) 6.36601 0.492617 0.246308 0.969192i \(-0.420782\pi\)
0.246308 + 0.969192i \(0.420782\pi\)
\(168\) 6.05752 0.467348
\(169\) 27.1819 2.09091
\(170\) 0 0
\(171\) 13.4893 1.03155
\(172\) 26.9068 2.05162
\(173\) 12.8684 0.978370 0.489185 0.872180i \(-0.337294\pi\)
0.489185 + 0.872180i \(0.337294\pi\)
\(174\) 38.8176 2.94275
\(175\) 0 0
\(176\) −1.15139 −0.0867894
\(177\) −12.9740 −0.975182
\(178\) −29.6107 −2.21942
\(179\) −23.1405 −1.72960 −0.864800 0.502117i \(-0.832555\pi\)
−0.864800 + 0.502117i \(0.832555\pi\)
\(180\) 0 0
\(181\) −6.33145 −0.470613 −0.235306 0.971921i \(-0.575609\pi\)
−0.235306 + 0.971921i \(0.575609\pi\)
\(182\) −14.3743 −1.06549
\(183\) 15.8606 1.17245
\(184\) 17.1563 1.26478
\(185\) 0 0
\(186\) −30.3551 −2.22575
\(187\) 16.0614 1.17453
\(188\) 5.76754 0.420641
\(189\) −1.23866 −0.0900992
\(190\) 0 0
\(191\) 0.0775449 0.00561095 0.00280547 0.999996i \(-0.499107\pi\)
0.00280547 + 0.999996i \(0.499107\pi\)
\(192\) −30.4950 −2.20079
\(193\) −22.6338 −1.62922 −0.814610 0.580010i \(-0.803049\pi\)
−0.814610 + 0.580010i \(0.803049\pi\)
\(194\) −29.7819 −2.13822
\(195\) 0 0
\(196\) 3.14213 0.224438
\(197\) −0.320922 −0.0228647 −0.0114324 0.999935i \(-0.503639\pi\)
−0.0114324 + 0.999935i \(0.503639\pi\)
\(198\) 15.6821 1.11448
\(199\) −12.2904 −0.871243 −0.435622 0.900130i \(-0.643471\pi\)
−0.435622 + 0.900130i \(0.643471\pi\)
\(200\) 0 0
\(201\) −4.01651 −0.283303
\(202\) 4.22151 0.297024
\(203\) 7.31892 0.513688
\(204\) 42.1651 2.95215
\(205\) 0 0
\(206\) 2.25987 0.157453
\(207\) 16.3646 1.13742
\(208\) 2.60720 0.180776
\(209\) 15.2857 1.05733
\(210\) 0 0
\(211\) 17.3974 1.19769 0.598844 0.800865i \(-0.295627\pi\)
0.598844 + 0.800865i \(0.295627\pi\)
\(212\) −7.52355 −0.516720
\(213\) 11.9639 0.819753
\(214\) −27.7297 −1.89556
\(215\) 0 0
\(216\) −3.20802 −0.218278
\(217\) −5.72336 −0.388527
\(218\) 40.2645 2.72705
\(219\) 13.2101 0.892658
\(220\) 0 0
\(221\) −36.3693 −2.44646
\(222\) −5.30373 −0.355963
\(223\) 24.1348 1.61618 0.808092 0.589056i \(-0.200500\pi\)
0.808092 + 0.589056i \(0.200500\pi\)
\(224\) −6.11250 −0.408408
\(225\) 0 0
\(226\) −27.6027 −1.83610
\(227\) −0.703144 −0.0466693 −0.0233346 0.999728i \(-0.507428\pi\)
−0.0233346 + 0.999728i \(0.507428\pi\)
\(228\) 40.1285 2.65757
\(229\) −5.35876 −0.354117 −0.177058 0.984200i \(-0.556658\pi\)
−0.177058 + 0.984200i \(0.556658\pi\)
\(230\) 0 0
\(231\) 6.54749 0.430793
\(232\) 18.9554 1.24448
\(233\) 6.51843 0.427036 0.213518 0.976939i \(-0.431508\pi\)
0.213518 + 0.976939i \(0.431508\pi\)
\(234\) −35.5104 −2.32138
\(235\) 0 0
\(236\) −17.4295 −1.13457
\(237\) 5.92580 0.384922
\(238\) 13.0104 0.843339
\(239\) 26.8208 1.73489 0.867447 0.497530i \(-0.165759\pi\)
0.867447 + 0.497530i \(0.165759\pi\)
\(240\) 0 0
\(241\) 15.1452 0.975587 0.487794 0.872959i \(-0.337802\pi\)
0.487794 + 0.872959i \(0.337802\pi\)
\(242\) −7.17333 −0.461119
\(243\) −20.3940 −1.30828
\(244\) 21.3075 1.36407
\(245\) 0 0
\(246\) −38.8264 −2.47548
\(247\) −34.6126 −2.20235
\(248\) −14.8230 −0.941261
\(249\) 4.12061 0.261133
\(250\) 0 0
\(251\) −27.1608 −1.71437 −0.857186 0.515007i \(-0.827789\pi\)
−0.857186 + 0.515007i \(0.827789\pi\)
\(252\) 7.76233 0.488981
\(253\) 18.5440 1.16585
\(254\) −42.6522 −2.67624
\(255\) 0 0
\(256\) −13.2461 −0.827883
\(257\) −17.0377 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(258\) 45.4171 2.82754
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 18.0807 1.11917
\(262\) 27.9597 1.72735
\(263\) 10.2405 0.631457 0.315728 0.948850i \(-0.397751\pi\)
0.315728 + 0.948850i \(0.397751\pi\)
\(264\) 16.9574 1.04366
\(265\) 0 0
\(266\) 12.3820 0.759189
\(267\) −30.5413 −1.86910
\(268\) −5.39588 −0.329606
\(269\) −0.495295 −0.0301987 −0.0150993 0.999886i \(-0.504806\pi\)
−0.0150993 + 0.999886i \(0.504806\pi\)
\(270\) 0 0
\(271\) −8.96689 −0.544700 −0.272350 0.962198i \(-0.587801\pi\)
−0.272350 + 0.962198i \(0.587801\pi\)
\(272\) −2.35981 −0.143085
\(273\) −14.8260 −0.897312
\(274\) −1.99045 −0.120248
\(275\) 0 0
\(276\) 48.6823 2.93033
\(277\) 5.66110 0.340143 0.170071 0.985432i \(-0.445600\pi\)
0.170071 + 0.985432i \(0.445600\pi\)
\(278\) −1.24695 −0.0747870
\(279\) −14.1390 −0.846481
\(280\) 0 0
\(281\) 5.72083 0.341276 0.170638 0.985334i \(-0.445417\pi\)
0.170638 + 0.985334i \(0.445417\pi\)
\(282\) 9.73527 0.579727
\(283\) −25.0451 −1.48878 −0.744388 0.667748i \(-0.767258\pi\)
−0.744388 + 0.667748i \(0.767258\pi\)
\(284\) 16.0726 0.953734
\(285\) 0 0
\(286\) −40.2394 −2.37940
\(287\) −7.32058 −0.432120
\(288\) −15.1004 −0.889797
\(289\) 15.9184 0.936378
\(290\) 0 0
\(291\) −30.7178 −1.80071
\(292\) 17.7468 1.03855
\(293\) −21.0069 −1.22724 −0.613619 0.789602i \(-0.710287\pi\)
−0.613619 + 0.789602i \(0.710287\pi\)
\(294\) 5.30373 0.309320
\(295\) 0 0
\(296\) −2.58991 −0.150536
\(297\) −3.46750 −0.201205
\(298\) 7.67286 0.444477
\(299\) −41.9907 −2.42838
\(300\) 0 0
\(301\) 8.56324 0.493577
\(302\) 23.1357 1.33131
\(303\) 4.35418 0.250141
\(304\) −2.24584 −0.128808
\(305\) 0 0
\(306\) 32.1410 1.83738
\(307\) 19.2470 1.09848 0.549241 0.835664i \(-0.314917\pi\)
0.549241 + 0.835664i \(0.314917\pi\)
\(308\) 8.79606 0.501202
\(309\) 2.33090 0.132600
\(310\) 0 0
\(311\) −27.5686 −1.56327 −0.781635 0.623737i \(-0.785614\pi\)
−0.781635 + 0.623737i \(0.785614\pi\)
\(312\) −38.3981 −2.17387
\(313\) 4.99170 0.282148 0.141074 0.989999i \(-0.454944\pi\)
0.141074 + 0.989999i \(0.454944\pi\)
\(314\) −51.6912 −2.91711
\(315\) 0 0
\(316\) 7.96087 0.447834
\(317\) −32.9576 −1.85108 −0.925542 0.378646i \(-0.876390\pi\)
−0.925542 + 0.378646i \(0.876390\pi\)
\(318\) −12.6993 −0.712143
\(319\) 20.4886 1.14714
\(320\) 0 0
\(321\) −28.6012 −1.59636
\(322\) 15.0213 0.837107
\(323\) 31.3285 1.74316
\(324\) −32.3900 −1.79944
\(325\) 0 0
\(326\) 14.3376 0.794089
\(327\) 41.5299 2.29661
\(328\) −18.9597 −1.04687
\(329\) 1.83555 0.101197
\(330\) 0 0
\(331\) −31.3772 −1.72465 −0.862324 0.506357i \(-0.830992\pi\)
−0.862324 + 0.506357i \(0.830992\pi\)
\(332\) 5.53574 0.303813
\(333\) −2.47041 −0.135377
\(334\) 14.4357 0.789888
\(335\) 0 0
\(336\) −0.961985 −0.0524806
\(337\) −24.9408 −1.35861 −0.679306 0.733856i \(-0.737719\pi\)
−0.679306 + 0.733856i \(0.737719\pi\)
\(338\) 61.6383 3.35268
\(339\) −28.4702 −1.54629
\(340\) 0 0
\(341\) −16.0220 −0.867638
\(342\) 30.5886 1.65404
\(343\) 1.00000 0.0539949
\(344\) 22.1780 1.19576
\(345\) 0 0
\(346\) 29.1808 1.56877
\(347\) −24.3317 −1.30619 −0.653096 0.757275i \(-0.726530\pi\)
−0.653096 + 0.757275i \(0.726530\pi\)
\(348\) 53.7874 2.88331
\(349\) 17.9676 0.961783 0.480892 0.876780i \(-0.340313\pi\)
0.480892 + 0.876780i \(0.340313\pi\)
\(350\) 0 0
\(351\) 7.85176 0.419096
\(352\) −17.1113 −0.912037
\(353\) −25.6470 −1.36505 −0.682526 0.730861i \(-0.739119\pi\)
−0.682526 + 0.730861i \(0.739119\pi\)
\(354\) −29.4201 −1.56366
\(355\) 0 0
\(356\) −41.0300 −2.17459
\(357\) 13.4193 0.710224
\(358\) −52.4739 −2.77333
\(359\) 12.7052 0.670556 0.335278 0.942119i \(-0.391170\pi\)
0.335278 + 0.942119i \(0.391170\pi\)
\(360\) 0 0
\(361\) 10.8153 0.569226
\(362\) −14.3573 −0.754605
\(363\) −7.39876 −0.388334
\(364\) −19.9177 −1.04397
\(365\) 0 0
\(366\) 35.9659 1.87997
\(367\) 13.6395 0.711976 0.355988 0.934491i \(-0.384144\pi\)
0.355988 + 0.934491i \(0.384144\pi\)
\(368\) −2.72456 −0.142027
\(369\) −18.0848 −0.941458
\(370\) 0 0
\(371\) −2.39441 −0.124312
\(372\) −42.0615 −2.18078
\(373\) −31.5785 −1.63507 −0.817537 0.575876i \(-0.804661\pi\)
−0.817537 + 0.575876i \(0.804661\pi\)
\(374\) 36.4213 1.88330
\(375\) 0 0
\(376\) 4.75392 0.245165
\(377\) −46.3941 −2.38942
\(378\) −2.80882 −0.144470
\(379\) 3.33671 0.171395 0.0856977 0.996321i \(-0.472688\pi\)
0.0856977 + 0.996321i \(0.472688\pi\)
\(380\) 0 0
\(381\) −43.9927 −2.25381
\(382\) 0.175843 0.00899690
\(383\) 19.7865 1.01104 0.505521 0.862815i \(-0.331300\pi\)
0.505521 + 0.862815i \(0.331300\pi\)
\(384\) −40.5584 −2.06974
\(385\) 0 0
\(386\) −51.3251 −2.61238
\(387\) 21.1547 1.07535
\(388\) −41.2671 −2.09502
\(389\) 37.7879 1.91592 0.957962 0.286894i \(-0.0926229\pi\)
0.957962 + 0.286894i \(0.0926229\pi\)
\(390\) 0 0
\(391\) 38.0064 1.92207
\(392\) 2.58991 0.130810
\(393\) 28.8383 1.45470
\(394\) −0.727730 −0.0366625
\(395\) 0 0
\(396\) 21.7299 1.09197
\(397\) −26.2198 −1.31594 −0.657968 0.753046i \(-0.728584\pi\)
−0.657968 + 0.753046i \(0.728584\pi\)
\(398\) −27.8700 −1.39700
\(399\) 12.7711 0.639356
\(400\) 0 0
\(401\) −26.1126 −1.30400 −0.652000 0.758219i \(-0.726070\pi\)
−0.652000 + 0.758219i \(0.726070\pi\)
\(402\) −9.10794 −0.454263
\(403\) 36.2799 1.80723
\(404\) 5.84952 0.291024
\(405\) 0 0
\(406\) 16.5966 0.823674
\(407\) −2.79940 −0.138761
\(408\) 34.7548 1.72062
\(409\) −6.79254 −0.335869 −0.167935 0.985798i \(-0.553710\pi\)
−0.167935 + 0.985798i \(0.553710\pi\)
\(410\) 0 0
\(411\) −2.05301 −0.101267
\(412\) 3.13138 0.154272
\(413\) −5.54706 −0.272953
\(414\) 37.1088 1.82380
\(415\) 0 0
\(416\) 38.7466 1.89971
\(417\) −1.28614 −0.0629824
\(418\) 34.6622 1.69538
\(419\) −2.49664 −0.121969 −0.0609844 0.998139i \(-0.519424\pi\)
−0.0609844 + 0.998139i \(0.519424\pi\)
\(420\) 0 0
\(421\) −30.5515 −1.48899 −0.744494 0.667629i \(-0.767309\pi\)
−0.744494 + 0.667629i \(0.767309\pi\)
\(422\) 39.4509 1.92044
\(423\) 4.53456 0.220478
\(424\) −6.20132 −0.301163
\(425\) 0 0
\(426\) 27.1296 1.31444
\(427\) 6.78124 0.328167
\(428\) −38.4236 −1.85727
\(429\) −41.5040 −2.00383
\(430\) 0 0
\(431\) −0.189462 −0.00912608 −0.00456304 0.999990i \(-0.501452\pi\)
−0.00456304 + 0.999990i \(0.501452\pi\)
\(432\) 0.509460 0.0245114
\(433\) −15.3070 −0.735610 −0.367805 0.929903i \(-0.619891\pi\)
−0.367805 + 0.929903i \(0.619891\pi\)
\(434\) −12.9784 −0.622985
\(435\) 0 0
\(436\) 55.7923 2.67197
\(437\) 36.1707 1.73028
\(438\) 29.9556 1.43134
\(439\) 35.1270 1.67652 0.838261 0.545270i \(-0.183573\pi\)
0.838261 + 0.545270i \(0.183573\pi\)
\(440\) 0 0
\(441\) 2.47041 0.117638
\(442\) −82.4719 −3.92279
\(443\) −40.2651 −1.91305 −0.956526 0.291647i \(-0.905797\pi\)
−0.956526 + 0.291647i \(0.905797\pi\)
\(444\) −7.34909 −0.348772
\(445\) 0 0
\(446\) 54.7286 2.59148
\(447\) 7.91399 0.374319
\(448\) −13.0383 −0.616000
\(449\) −9.30052 −0.438919 −0.219459 0.975622i \(-0.570429\pi\)
−0.219459 + 0.975622i \(0.570429\pi\)
\(450\) 0 0
\(451\) −20.4932 −0.964988
\(452\) −38.2475 −1.79901
\(453\) 23.8628 1.12117
\(454\) −1.59447 −0.0748320
\(455\) 0 0
\(456\) 33.0761 1.54893
\(457\) 33.6074 1.57209 0.786045 0.618169i \(-0.212125\pi\)
0.786045 + 0.618169i \(0.212125\pi\)
\(458\) −12.1516 −0.567809
\(459\) −7.10676 −0.331715
\(460\) 0 0
\(461\) 15.2698 0.711187 0.355594 0.934641i \(-0.384279\pi\)
0.355594 + 0.934641i \(0.384279\pi\)
\(462\) 14.8472 0.690757
\(463\) 19.5853 0.910206 0.455103 0.890439i \(-0.349602\pi\)
0.455103 + 0.890439i \(0.349602\pi\)
\(464\) −3.01027 −0.139748
\(465\) 0 0
\(466\) 14.7814 0.684733
\(467\) −16.3744 −0.757717 −0.378859 0.925455i \(-0.623683\pi\)
−0.378859 + 0.925455i \(0.623683\pi\)
\(468\) −49.2048 −2.27449
\(469\) −1.71727 −0.0792963
\(470\) 0 0
\(471\) −53.3157 −2.45666
\(472\) −14.3664 −0.661267
\(473\) 23.9719 1.10223
\(474\) 13.4375 0.617205
\(475\) 0 0
\(476\) 18.0278 0.826303
\(477\) −5.91518 −0.270837
\(478\) 60.8195 2.78182
\(479\) 0.805367 0.0367982 0.0183991 0.999831i \(-0.494143\pi\)
0.0183991 + 0.999831i \(0.494143\pi\)
\(480\) 0 0
\(481\) 6.33892 0.289030
\(482\) 34.3436 1.56431
\(483\) 15.4934 0.704975
\(484\) −9.93969 −0.451804
\(485\) 0 0
\(486\) −46.2460 −2.09776
\(487\) 7.55283 0.342252 0.171126 0.985249i \(-0.445260\pi\)
0.171126 + 0.985249i \(0.445260\pi\)
\(488\) 17.5628 0.795032
\(489\) 14.7882 0.668747
\(490\) 0 0
\(491\) 30.6550 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(492\) −53.7996 −2.42547
\(493\) 41.9920 1.89123
\(494\) −78.4885 −3.53137
\(495\) 0 0
\(496\) 2.35402 0.105698
\(497\) 5.11520 0.229448
\(498\) 9.34400 0.418715
\(499\) 24.4146 1.09295 0.546475 0.837475i \(-0.315969\pi\)
0.546475 + 0.837475i \(0.315969\pi\)
\(500\) 0 0
\(501\) 14.8894 0.665209
\(502\) −61.5904 −2.74892
\(503\) 1.19590 0.0533227 0.0266613 0.999645i \(-0.491512\pi\)
0.0266613 + 0.999645i \(0.491512\pi\)
\(504\) 6.39814 0.284996
\(505\) 0 0
\(506\) 42.0507 1.86938
\(507\) 63.5755 2.82349
\(508\) −59.1009 −2.62218
\(509\) 10.6289 0.471117 0.235558 0.971860i \(-0.424308\pi\)
0.235558 + 0.971860i \(0.424308\pi\)
\(510\) 0 0
\(511\) 5.64803 0.249854
\(512\) 4.64453 0.205261
\(513\) −6.76350 −0.298616
\(514\) −38.6351 −1.70412
\(515\) 0 0
\(516\) 62.9320 2.77043
\(517\) 5.13844 0.225989
\(518\) −2.26763 −0.0996337
\(519\) 30.0979 1.32115
\(520\) 0 0
\(521\) 28.5436 1.25052 0.625258 0.780418i \(-0.284994\pi\)
0.625258 + 0.780418i \(0.284994\pi\)
\(522\) 41.0003 1.79453
\(523\) 16.5675 0.724447 0.362224 0.932091i \(-0.382018\pi\)
0.362224 + 0.932091i \(0.382018\pi\)
\(524\) 38.7422 1.69246
\(525\) 0 0
\(526\) 23.2216 1.01251
\(527\) −32.8375 −1.43043
\(528\) −2.69298 −0.117197
\(529\) 20.8808 0.907862
\(530\) 0 0
\(531\) −13.7035 −0.594681
\(532\) 17.1571 0.743853
\(533\) 46.4046 2.01000
\(534\) −69.2563 −2.99701
\(535\) 0 0
\(536\) −4.44758 −0.192106
\(537\) −54.1230 −2.33558
\(538\) −1.12314 −0.0484222
\(539\) 2.79940 0.120579
\(540\) 0 0
\(541\) 14.8297 0.637580 0.318790 0.947825i \(-0.396723\pi\)
0.318790 + 0.947825i \(0.396723\pi\)
\(542\) −20.3336 −0.873401
\(543\) −14.8086 −0.635496
\(544\) −35.0702 −1.50362
\(545\) 0 0
\(546\) −33.6199 −1.43880
\(547\) 28.3226 1.21099 0.605493 0.795851i \(-0.292976\pi\)
0.605493 + 0.795851i \(0.292976\pi\)
\(548\) −2.75806 −0.117819
\(549\) 16.7524 0.714976
\(550\) 0 0
\(551\) 39.9638 1.70252
\(552\) 40.1266 1.70790
\(553\) 2.53359 0.107739
\(554\) 12.8373 0.545403
\(555\) 0 0
\(556\) −1.72783 −0.0732763
\(557\) −21.2463 −0.900236 −0.450118 0.892969i \(-0.648618\pi\)
−0.450118 + 0.892969i \(0.648618\pi\)
\(558\) −32.0620 −1.35729
\(559\) −54.2817 −2.29587
\(560\) 0 0
\(561\) 37.5659 1.58603
\(562\) 12.9727 0.547221
\(563\) −19.3839 −0.816932 −0.408466 0.912774i \(-0.633936\pi\)
−0.408466 + 0.912774i \(0.633936\pi\)
\(564\) 13.4896 0.568016
\(565\) 0 0
\(566\) −56.7928 −2.38718
\(567\) −10.3083 −0.432908
\(568\) 13.2479 0.555871
\(569\) 0.848892 0.0355874 0.0177937 0.999842i \(-0.494336\pi\)
0.0177937 + 0.999842i \(0.494336\pi\)
\(570\) 0 0
\(571\) 27.8653 1.16613 0.583063 0.812427i \(-0.301854\pi\)
0.583063 + 0.812427i \(0.301854\pi\)
\(572\) −55.7575 −2.33134
\(573\) 0.181369 0.00757679
\(574\) −16.6003 −0.692884
\(575\) 0 0
\(576\) −32.2098 −1.34208
\(577\) −6.82820 −0.284262 −0.142131 0.989848i \(-0.545395\pi\)
−0.142131 + 0.989848i \(0.545395\pi\)
\(578\) 36.0970 1.50144
\(579\) −52.9381 −2.20003
\(580\) 0 0
\(581\) 1.76178 0.0730910
\(582\) −69.6566 −2.88736
\(583\) −6.70292 −0.277607
\(584\) 14.6279 0.605307
\(585\) 0 0
\(586\) −47.6359 −1.96782
\(587\) −19.8166 −0.817918 −0.408959 0.912553i \(-0.634108\pi\)
−0.408959 + 0.912553i \(0.634108\pi\)
\(588\) 7.34909 0.303071
\(589\) −31.2515 −1.28769
\(590\) 0 0
\(591\) −0.750600 −0.0308756
\(592\) 0.411300 0.0169043
\(593\) −43.2139 −1.77458 −0.887290 0.461212i \(-0.847415\pi\)
−0.887290 + 0.461212i \(0.847415\pi\)
\(594\) −7.86300 −0.322623
\(595\) 0 0
\(596\) 10.6319 0.435498
\(597\) −28.7459 −1.17649
\(598\) −95.2191 −3.89380
\(599\) 22.1144 0.903570 0.451785 0.892127i \(-0.350787\pi\)
0.451785 + 0.892127i \(0.350787\pi\)
\(600\) 0 0
\(601\) 0.0269834 0.00110068 0.000550339 1.00000i \(-0.499825\pi\)
0.000550339 1.00000i \(0.499825\pi\)
\(602\) 19.4182 0.791428
\(603\) −4.24236 −0.172762
\(604\) 32.0579 1.30442
\(605\) 0 0
\(606\) 9.87365 0.401090
\(607\) 31.2344 1.26777 0.633883 0.773429i \(-0.281460\pi\)
0.633883 + 0.773429i \(0.281460\pi\)
\(608\) −33.3763 −1.35359
\(609\) 17.1182 0.693663
\(610\) 0 0
\(611\) −11.6354 −0.470719
\(612\) 44.5360 1.80026
\(613\) 33.1657 1.33955 0.669774 0.742565i \(-0.266391\pi\)
0.669774 + 0.742565i \(0.266391\pi\)
\(614\) 43.6449 1.76136
\(615\) 0 0
\(616\) 7.25020 0.292119
\(617\) 16.9802 0.683599 0.341799 0.939773i \(-0.388964\pi\)
0.341799 + 0.939773i \(0.388964\pi\)
\(618\) 5.28560 0.212618
\(619\) 35.6539 1.43305 0.716525 0.697561i \(-0.245731\pi\)
0.716525 + 0.697561i \(0.245731\pi\)
\(620\) 0 0
\(621\) −8.20520 −0.329264
\(622\) −62.5151 −2.50663
\(623\) −13.0580 −0.523159
\(624\) 6.09794 0.244113
\(625\) 0 0
\(626\) 11.3193 0.452411
\(627\) 35.7515 1.42778
\(628\) −71.6257 −2.85818
\(629\) −5.73746 −0.228767
\(630\) 0 0
\(631\) −0.441024 −0.0175569 −0.00877844 0.999961i \(-0.502794\pi\)
−0.00877844 + 0.999961i \(0.502794\pi\)
\(632\) 6.56179 0.261014
\(633\) 40.6907 1.61731
\(634\) −74.7355 −2.96813
\(635\) 0 0
\(636\) −17.5968 −0.697757
\(637\) −6.33892 −0.251157
\(638\) 46.4604 1.83939
\(639\) 12.6366 0.499897
\(640\) 0 0
\(641\) −13.2345 −0.522733 −0.261367 0.965240i \(-0.584173\pi\)
−0.261367 + 0.965240i \(0.584173\pi\)
\(642\) −64.8567 −2.55969
\(643\) −17.1263 −0.675396 −0.337698 0.941254i \(-0.609648\pi\)
−0.337698 + 0.941254i \(0.609648\pi\)
\(644\) 20.8143 0.820197
\(645\) 0 0
\(646\) 71.0412 2.79508
\(647\) 1.53143 0.0602067 0.0301033 0.999547i \(-0.490416\pi\)
0.0301033 + 0.999547i \(0.490416\pi\)
\(648\) −26.6976 −1.04878
\(649\) −15.5284 −0.609544
\(650\) 0 0
\(651\) −13.3863 −0.524651
\(652\) 19.8669 0.778048
\(653\) −17.3691 −0.679704 −0.339852 0.940479i \(-0.610377\pi\)
−0.339852 + 0.940479i \(0.610377\pi\)
\(654\) 94.1742 3.68250
\(655\) 0 0
\(656\) 3.01095 0.117558
\(657\) 13.9529 0.544356
\(658\) 4.16235 0.162265
\(659\) 40.9466 1.59505 0.797526 0.603284i \(-0.206142\pi\)
0.797526 + 0.603284i \(0.206142\pi\)
\(660\) 0 0
\(661\) −17.6456 −0.686336 −0.343168 0.939274i \(-0.611500\pi\)
−0.343168 + 0.939274i \(0.611500\pi\)
\(662\) −71.1518 −2.76539
\(663\) −85.0638 −3.30360
\(664\) 4.56286 0.177073
\(665\) 0 0
\(666\) −5.60196 −0.217071
\(667\) 48.4825 1.87725
\(668\) 20.0028 0.773932
\(669\) 56.4486 2.18243
\(670\) 0 0
\(671\) 18.9834 0.732846
\(672\) −14.2965 −0.551498
\(673\) 1.69907 0.0654945 0.0327472 0.999464i \(-0.489574\pi\)
0.0327472 + 0.999464i \(0.489574\pi\)
\(674\) −56.5564 −2.17847
\(675\) 0 0
\(676\) 85.4089 3.28496
\(677\) −47.3233 −1.81878 −0.909390 0.415944i \(-0.863451\pi\)
−0.909390 + 0.415944i \(0.863451\pi\)
\(678\) −64.5597 −2.47940
\(679\) −13.1335 −0.504018
\(680\) 0 0
\(681\) −1.64458 −0.0630203
\(682\) −36.3318 −1.39122
\(683\) 11.1193 0.425468 0.212734 0.977110i \(-0.431763\pi\)
0.212734 + 0.977110i \(0.431763\pi\)
\(684\) 42.3849 1.62063
\(685\) 0 0
\(686\) 2.26763 0.0865783
\(687\) −12.5335 −0.478184
\(688\) −3.52206 −0.134277
\(689\) 15.1780 0.578236
\(690\) 0 0
\(691\) 6.09962 0.232041 0.116020 0.993247i \(-0.462986\pi\)
0.116020 + 0.993247i \(0.462986\pi\)
\(692\) 40.4343 1.53708
\(693\) 6.91566 0.262704
\(694\) −55.1751 −2.09442
\(695\) 0 0
\(696\) 44.3345 1.68050
\(697\) −42.0015 −1.59092
\(698\) 40.7438 1.54217
\(699\) 15.2459 0.576652
\(700\) 0 0
\(701\) −34.3205 −1.29627 −0.648134 0.761526i \(-0.724451\pi\)
−0.648134 + 0.761526i \(0.724451\pi\)
\(702\) 17.8049 0.672001
\(703\) −5.46034 −0.205941
\(704\) −36.4993 −1.37562
\(705\) 0 0
\(706\) −58.1578 −2.18880
\(707\) 1.86164 0.0700143
\(708\) −40.7658 −1.53207
\(709\) 21.9943 0.826013 0.413006 0.910728i \(-0.364479\pi\)
0.413006 + 0.910728i \(0.364479\pi\)
\(710\) 0 0
\(711\) 6.25901 0.234731
\(712\) −33.8192 −1.26743
\(713\) −37.9130 −1.41985
\(714\) 30.4299 1.13881
\(715\) 0 0
\(716\) −72.7102 −2.71731
\(717\) 62.7309 2.34273
\(718\) 28.8107 1.07520
\(719\) 33.1549 1.23647 0.618234 0.785994i \(-0.287848\pi\)
0.618234 + 0.785994i \(0.287848\pi\)
\(720\) 0 0
\(721\) 0.996582 0.0371146
\(722\) 24.5250 0.912728
\(723\) 35.4229 1.31739
\(724\) −19.8942 −0.739362
\(725\) 0 0
\(726\) −16.7776 −0.622676
\(727\) 18.2312 0.676158 0.338079 0.941118i \(-0.390223\pi\)
0.338079 + 0.941118i \(0.390223\pi\)
\(728\) −16.4172 −0.608463
\(729\) −16.7745 −0.621276
\(730\) 0 0
\(731\) 49.1312 1.81718
\(732\) 49.8359 1.84199
\(733\) −6.20286 −0.229108 −0.114554 0.993417i \(-0.536544\pi\)
−0.114554 + 0.993417i \(0.536544\pi\)
\(734\) 30.9293 1.14162
\(735\) 0 0
\(736\) −40.4908 −1.49251
\(737\) −4.80733 −0.177080
\(738\) −41.0096 −1.50958
\(739\) −30.7511 −1.13120 −0.565598 0.824681i \(-0.691355\pi\)
−0.565598 + 0.824681i \(0.691355\pi\)
\(740\) 0 0
\(741\) −80.9552 −2.97396
\(742\) −5.42964 −0.199328
\(743\) 26.2672 0.963650 0.481825 0.876268i \(-0.339974\pi\)
0.481825 + 0.876268i \(0.339974\pi\)
\(744\) −34.6694 −1.27104
\(745\) 0 0
\(746\) −71.6083 −2.62177
\(747\) 4.35232 0.159243
\(748\) 50.4670 1.84526
\(749\) −12.2285 −0.446821
\(750\) 0 0
\(751\) 28.6757 1.04639 0.523195 0.852213i \(-0.324740\pi\)
0.523195 + 0.852213i \(0.324740\pi\)
\(752\) −0.754962 −0.0275306
\(753\) −63.5260 −2.31502
\(754\) −105.204 −3.83132
\(755\) 0 0
\(756\) −3.89202 −0.141552
\(757\) 30.1764 1.09678 0.548389 0.836223i \(-0.315241\pi\)
0.548389 + 0.836223i \(0.315241\pi\)
\(758\) 7.56642 0.274825
\(759\) 43.3723 1.57431
\(760\) 0 0
\(761\) −43.0936 −1.56214 −0.781071 0.624442i \(-0.785326\pi\)
−0.781071 + 0.624442i \(0.785326\pi\)
\(762\) −99.7589 −3.61388
\(763\) 17.7562 0.642819
\(764\) 0.243656 0.00881515
\(765\) 0 0
\(766\) 44.8683 1.62116
\(767\) 35.1623 1.26964
\(768\) −30.9812 −1.11794
\(769\) −16.8603 −0.607997 −0.303999 0.952672i \(-0.598322\pi\)
−0.303999 + 0.952672i \(0.598322\pi\)
\(770\) 0 0
\(771\) −39.8493 −1.43514
\(772\) −71.1184 −2.55961
\(773\) −34.4543 −1.23923 −0.619617 0.784904i \(-0.712712\pi\)
−0.619617 + 0.784904i \(0.712712\pi\)
\(774\) 47.9709 1.72428
\(775\) 0 0
\(776\) −34.0146 −1.22105
\(777\) −2.33889 −0.0839072
\(778\) 85.6889 3.07210
\(779\) −39.9728 −1.43218
\(780\) 0 0
\(781\) 14.3195 0.512392
\(782\) 86.1843 3.08195
\(783\) −9.06565 −0.323980
\(784\) −0.411300 −0.0146893
\(785\) 0 0
\(786\) 65.3946 2.33255
\(787\) −3.43686 −0.122511 −0.0612554 0.998122i \(-0.519510\pi\)
−0.0612554 + 0.998122i \(0.519510\pi\)
\(788\) −1.00838 −0.0359219
\(789\) 23.9514 0.852693
\(790\) 0 0
\(791\) −12.1725 −0.432805
\(792\) 17.9109 0.636438
\(793\) −42.9858 −1.52647
\(794\) −59.4567 −2.11004
\(795\) 0 0
\(796\) −38.6180 −1.36878
\(797\) 37.3130 1.32169 0.660847 0.750520i \(-0.270197\pi\)
0.660847 + 0.750520i \(0.270197\pi\)
\(798\) 28.9601 1.02518
\(799\) 10.5314 0.372574
\(800\) 0 0
\(801\) −32.2587 −1.13980
\(802\) −59.2135 −2.09090
\(803\) 15.8111 0.557962
\(804\) −12.6204 −0.445087
\(805\) 0 0
\(806\) 82.2692 2.89781
\(807\) −1.15844 −0.0407791
\(808\) 4.82149 0.169620
\(809\) 12.4049 0.436132 0.218066 0.975934i \(-0.430025\pi\)
0.218066 + 0.975934i \(0.430025\pi\)
\(810\) 0 0
\(811\) −44.1420 −1.55004 −0.775018 0.631939i \(-0.782259\pi\)
−0.775018 + 0.631939i \(0.782259\pi\)
\(812\) 22.9970 0.807036
\(813\) −20.9726 −0.735540
\(814\) −6.34799 −0.222497
\(815\) 0 0
\(816\) −5.51935 −0.193216
\(817\) 46.7582 1.63586
\(818\) −15.4029 −0.538551
\(819\) −15.6597 −0.547195
\(820\) 0 0
\(821\) −6.07487 −0.212014 −0.106007 0.994365i \(-0.533807\pi\)
−0.106007 + 0.994365i \(0.533807\pi\)
\(822\) −4.65545 −0.162377
\(823\) 35.5628 1.23964 0.619821 0.784743i \(-0.287205\pi\)
0.619821 + 0.784743i \(0.287205\pi\)
\(824\) 2.58106 0.0899155
\(825\) 0 0
\(826\) −12.5786 −0.437667
\(827\) −12.7340 −0.442805 −0.221403 0.975183i \(-0.571063\pi\)
−0.221403 + 0.975183i \(0.571063\pi\)
\(828\) 51.4197 1.78696
\(829\) −18.1704 −0.631084 −0.315542 0.948912i \(-0.602186\pi\)
−0.315542 + 0.948912i \(0.602186\pi\)
\(830\) 0 0
\(831\) 13.2407 0.459314
\(832\) 82.6484 2.86532
\(833\) 5.73746 0.198791
\(834\) −2.91648 −0.100989
\(835\) 0 0
\(836\) 48.0295 1.66113
\(837\) 7.08929 0.245042
\(838\) −5.66144 −0.195571
\(839\) 25.2744 0.872570 0.436285 0.899809i \(-0.356294\pi\)
0.436285 + 0.899809i \(0.356294\pi\)
\(840\) 0 0
\(841\) 24.5666 0.847125
\(842\) −69.2793 −2.38752
\(843\) 13.3804 0.460845
\(844\) 54.6649 1.88164
\(845\) 0 0
\(846\) 10.2827 0.353526
\(847\) −3.16336 −0.108694
\(848\) 0.984822 0.0338189
\(849\) −58.5777 −2.01038
\(850\) 0 0
\(851\) −6.62426 −0.227077
\(852\) 37.5921 1.28788
\(853\) −9.01117 −0.308537 −0.154268 0.988029i \(-0.549302\pi\)
−0.154268 + 0.988029i \(0.549302\pi\)
\(854\) 15.3773 0.526201
\(855\) 0 0
\(856\) −31.6708 −1.08249
\(857\) 5.12017 0.174902 0.0874509 0.996169i \(-0.472128\pi\)
0.0874509 + 0.996169i \(0.472128\pi\)
\(858\) −94.1155 −3.21305
\(859\) 23.7331 0.809765 0.404882 0.914369i \(-0.367313\pi\)
0.404882 + 0.914369i \(0.367313\pi\)
\(860\) 0 0
\(861\) −17.1220 −0.583517
\(862\) −0.429630 −0.0146332
\(863\) 30.7629 1.04718 0.523591 0.851970i \(-0.324592\pi\)
0.523591 + 0.851970i \(0.324592\pi\)
\(864\) 7.57130 0.257581
\(865\) 0 0
\(866\) −34.7106 −1.17952
\(867\) 37.2314 1.26445
\(868\) −17.9835 −0.610400
\(869\) 7.09254 0.240598
\(870\) 0 0
\(871\) 10.8857 0.368846
\(872\) 45.9871 1.55732
\(873\) −32.4451 −1.09810
\(874\) 82.0216 2.77442
\(875\) 0 0
\(876\) 41.5079 1.40242
\(877\) −10.2878 −0.347393 −0.173696 0.984799i \(-0.555571\pi\)
−0.173696 + 0.984799i \(0.555571\pi\)
\(878\) 79.6549 2.68822
\(879\) −49.1329 −1.65721
\(880\) 0 0
\(881\) −10.5360 −0.354967 −0.177483 0.984124i \(-0.556796\pi\)
−0.177483 + 0.984124i \(0.556796\pi\)
\(882\) 5.60196 0.188628
\(883\) 19.3672 0.651759 0.325879 0.945411i \(-0.394340\pi\)
0.325879 + 0.945411i \(0.394340\pi\)
\(884\) −114.277 −3.84355
\(885\) 0 0
\(886\) −91.3061 −3.06749
\(887\) −8.62651 −0.289650 −0.144825 0.989457i \(-0.546262\pi\)
−0.144825 + 0.989457i \(0.546262\pi\)
\(888\) −6.05752 −0.203277
\(889\) −18.8092 −0.630841
\(890\) 0 0
\(891\) −28.8571 −0.966748
\(892\) 75.8345 2.53913
\(893\) 10.0227 0.335398
\(894\) 17.9460 0.600203
\(895\) 0 0
\(896\) −17.3409 −0.579318
\(897\) −98.2115 −3.27919
\(898\) −21.0901 −0.703786
\(899\) −41.8888 −1.39707
\(900\) 0 0
\(901\) −13.7379 −0.457674
\(902\) −46.4710 −1.54731
\(903\) 20.0285 0.666506
\(904\) −31.5257 −1.04853
\(905\) 0 0
\(906\) 54.1119 1.79775
\(907\) −14.2661 −0.473698 −0.236849 0.971546i \(-0.576115\pi\)
−0.236849 + 0.971546i \(0.576115\pi\)
\(908\) −2.20937 −0.0733204
\(909\) 4.59902 0.152540
\(910\) 0 0
\(911\) 13.4933 0.447054 0.223527 0.974698i \(-0.428243\pi\)
0.223527 + 0.974698i \(0.428243\pi\)
\(912\) −5.25276 −0.173936
\(913\) 4.93193 0.163223
\(914\) 76.2091 2.52077
\(915\) 0 0
\(916\) −16.8379 −0.556339
\(917\) 12.3299 0.407170
\(918\) −16.1155 −0.531890
\(919\) 4.46309 0.147224 0.0736118 0.997287i \(-0.476547\pi\)
0.0736118 + 0.997287i \(0.476547\pi\)
\(920\) 0 0
\(921\) 45.0165 1.48335
\(922\) 34.6263 1.14036
\(923\) −32.4249 −1.06728
\(924\) 20.5730 0.676803
\(925\) 0 0
\(926\) 44.4121 1.45947
\(927\) 2.46196 0.0808615
\(928\) −44.7369 −1.46856
\(929\) 38.9438 1.27771 0.638853 0.769329i \(-0.279409\pi\)
0.638853 + 0.769329i \(0.279409\pi\)
\(930\) 0 0
\(931\) 5.46034 0.178955
\(932\) 20.4817 0.670901
\(933\) −64.4798 −2.11097
\(934\) −37.1310 −1.21496
\(935\) 0 0
\(936\) −40.5573 −1.32566
\(937\) 50.8106 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(938\) −3.89413 −0.127148
\(939\) 11.6750 0.381001
\(940\) 0 0
\(941\) 48.0236 1.56553 0.782763 0.622320i \(-0.213810\pi\)
0.782763 + 0.622320i \(0.213810\pi\)
\(942\) −120.900 −3.93914
\(943\) −48.4934 −1.57916
\(944\) 2.28150 0.0742566
\(945\) 0 0
\(946\) 54.3594 1.76738
\(947\) 10.6956 0.347562 0.173781 0.984784i \(-0.444402\pi\)
0.173781 + 0.984784i \(0.444402\pi\)
\(948\) 18.6196 0.604737
\(949\) −35.8024 −1.16220
\(950\) 0 0
\(951\) −77.0842 −2.49963
\(952\) 14.8595 0.481600
\(953\) −5.38151 −0.174324 −0.0871621 0.996194i \(-0.527780\pi\)
−0.0871621 + 0.996194i \(0.527780\pi\)
\(954\) −13.4134 −0.434275
\(955\) 0 0
\(956\) 84.2743 2.72563
\(957\) 47.9206 1.54905
\(958\) 1.82627 0.0590042
\(959\) −0.877770 −0.0283447
\(960\) 0 0
\(961\) 1.75684 0.0566723
\(962\) 14.3743 0.463446
\(963\) −30.2094 −0.973485
\(964\) 47.5881 1.53271
\(965\) 0 0
\(966\) 35.1333 1.13039
\(967\) −16.5761 −0.533050 −0.266525 0.963828i \(-0.585876\pi\)
−0.266525 + 0.963828i \(0.585876\pi\)
\(968\) −8.19284 −0.263328
\(969\) 73.2738 2.35389
\(970\) 0 0
\(971\) 43.3305 1.39054 0.695270 0.718748i \(-0.255285\pi\)
0.695270 + 0.718748i \(0.255285\pi\)
\(972\) −64.0806 −2.05539
\(973\) −0.549892 −0.0176287
\(974\) 17.1270 0.548784
\(975\) 0 0
\(976\) −2.78912 −0.0892777
\(977\) −0.629398 −0.0201362 −0.0100681 0.999949i \(-0.503205\pi\)
−0.0100681 + 0.999949i \(0.503205\pi\)
\(978\) 33.5342 1.07230
\(979\) −36.5547 −1.16829
\(980\) 0 0
\(981\) 43.8651 1.40051
\(982\) 69.5140 2.21828
\(983\) 59.1378 1.88620 0.943101 0.332507i \(-0.107895\pi\)
0.943101 + 0.332507i \(0.107895\pi\)
\(984\) −44.3446 −1.41365
\(985\) 0 0
\(986\) 95.2222 3.03249
\(987\) 4.29316 0.136653
\(988\) −108.757 −3.46003
\(989\) 56.7251 1.80375
\(990\) 0 0
\(991\) 26.7223 0.848861 0.424431 0.905460i \(-0.360474\pi\)
0.424431 + 0.905460i \(0.360474\pi\)
\(992\) 34.9840 1.11074
\(993\) −73.3878 −2.32889
\(994\) 11.5994 0.367909
\(995\) 0 0
\(996\) 12.9475 0.410257
\(997\) 33.5537 1.06266 0.531329 0.847166i \(-0.321693\pi\)
0.531329 + 0.847166i \(0.321693\pi\)
\(998\) 55.3633 1.75249
\(999\) 1.23866 0.0391895
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6475.2.a.u.1.13 15
5.4 even 2 1295.2.a.j.1.3 15
35.34 odd 2 9065.2.a.o.1.3 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.j.1.3 15 5.4 even 2
6475.2.a.u.1.13 15 1.1 even 1 trivial
9065.2.a.o.1.3 15 35.34 odd 2