Properties

Label 9065.2.a.bc.1.9
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34,-2,10,30,-34,8,0,-6,28,2,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84557 q^{2} +1.65469 q^{3} +1.40612 q^{4} -1.00000 q^{5} -3.05385 q^{6} +1.09605 q^{8} -0.261986 q^{9} +1.84557 q^{10} +3.96820 q^{11} +2.32670 q^{12} +0.869614 q^{13} -1.65469 q^{15} -4.83507 q^{16} +6.02109 q^{17} +0.483512 q^{18} -2.90554 q^{19} -1.40612 q^{20} -7.32357 q^{22} +7.31882 q^{23} +1.81362 q^{24} +1.00000 q^{25} -1.60493 q^{26} -5.39759 q^{27} -1.33715 q^{29} +3.05385 q^{30} +4.18047 q^{31} +6.73135 q^{32} +6.56615 q^{33} -11.1123 q^{34} -0.368383 q^{36} +1.00000 q^{37} +5.36237 q^{38} +1.43895 q^{39} -1.09605 q^{40} +11.7386 q^{41} +0.185085 q^{43} +5.57976 q^{44} +0.261986 q^{45} -13.5074 q^{46} -6.01749 q^{47} -8.00056 q^{48} -1.84557 q^{50} +9.96306 q^{51} +1.22278 q^{52} -0.214255 q^{53} +9.96162 q^{54} -3.96820 q^{55} -4.80778 q^{57} +2.46781 q^{58} +6.27126 q^{59} -2.32670 q^{60} -5.58316 q^{61} -7.71533 q^{62} -2.75303 q^{64} -0.869614 q^{65} -12.1183 q^{66} -5.58798 q^{67} +8.46637 q^{68} +12.1104 q^{69} +7.81923 q^{71} -0.287148 q^{72} +1.24040 q^{73} -1.84557 q^{74} +1.65469 q^{75} -4.08554 q^{76} -2.65567 q^{78} +2.15195 q^{79} +4.83507 q^{80} -8.14541 q^{81} -21.6644 q^{82} -9.50582 q^{83} -6.02109 q^{85} -0.341587 q^{86} -2.21258 q^{87} +4.34932 q^{88} +13.7542 q^{89} -0.483512 q^{90} +10.2911 q^{92} +6.91740 q^{93} +11.1057 q^{94} +2.90554 q^{95} +11.1383 q^{96} +0.951656 q^{97} -1.03961 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q - 2 q^{2} + 10 q^{3} + 30 q^{4} - 34 q^{5} + 8 q^{6} - 6 q^{8} + 28 q^{9} + 2 q^{10} - 30 q^{11} + 20 q^{12} + 18 q^{13} - 10 q^{15} + 18 q^{16} + 10 q^{17} + 40 q^{19} - 30 q^{20} - 4 q^{22} - 16 q^{23}+ \cdots - 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84557 −1.30501 −0.652507 0.757783i \(-0.726283\pi\)
−0.652507 + 0.757783i \(0.726283\pi\)
\(3\) 1.65469 0.955338 0.477669 0.878540i \(-0.341482\pi\)
0.477669 + 0.878540i \(0.341482\pi\)
\(4\) 1.40612 0.703060
\(5\) −1.00000 −0.447214
\(6\) −3.05385 −1.24673
\(7\) 0 0
\(8\) 1.09605 0.387511
\(9\) −0.261986 −0.0873285
\(10\) 1.84557 0.583620
\(11\) 3.96820 1.19646 0.598228 0.801326i \(-0.295872\pi\)
0.598228 + 0.801326i \(0.295872\pi\)
\(12\) 2.32670 0.671660
\(13\) 0.869614 0.241188 0.120594 0.992702i \(-0.461520\pi\)
0.120594 + 0.992702i \(0.461520\pi\)
\(14\) 0 0
\(15\) −1.65469 −0.427240
\(16\) −4.83507 −1.20877
\(17\) 6.02109 1.46033 0.730164 0.683272i \(-0.239444\pi\)
0.730164 + 0.683272i \(0.239444\pi\)
\(18\) 0.483512 0.113965
\(19\) −2.90554 −0.666576 −0.333288 0.942825i \(-0.608158\pi\)
−0.333288 + 0.942825i \(0.608158\pi\)
\(20\) −1.40612 −0.314418
\(21\) 0 0
\(22\) −7.32357 −1.56139
\(23\) 7.31882 1.52608 0.763040 0.646352i \(-0.223706\pi\)
0.763040 + 0.646352i \(0.223706\pi\)
\(24\) 1.81362 0.370204
\(25\) 1.00000 0.200000
\(26\) −1.60493 −0.314753
\(27\) −5.39759 −1.03877
\(28\) 0 0
\(29\) −1.33715 −0.248303 −0.124152 0.992263i \(-0.539621\pi\)
−0.124152 + 0.992263i \(0.539621\pi\)
\(30\) 3.05385 0.557554
\(31\) 4.18047 0.750834 0.375417 0.926856i \(-0.377499\pi\)
0.375417 + 0.926856i \(0.377499\pi\)
\(32\) 6.73135 1.18995
\(33\) 6.56615 1.14302
\(34\) −11.1123 −1.90575
\(35\) 0 0
\(36\) −0.368383 −0.0613972
\(37\) 1.00000 0.164399
\(38\) 5.36237 0.869891
\(39\) 1.43895 0.230416
\(40\) −1.09605 −0.173300
\(41\) 11.7386 1.83327 0.916633 0.399731i \(-0.130896\pi\)
0.916633 + 0.399731i \(0.130896\pi\)
\(42\) 0 0
\(43\) 0.185085 0.0282252 0.0141126 0.999900i \(-0.495508\pi\)
0.0141126 + 0.999900i \(0.495508\pi\)
\(44\) 5.57976 0.841180
\(45\) 0.261986 0.0390545
\(46\) −13.5074 −1.99155
\(47\) −6.01749 −0.877742 −0.438871 0.898550i \(-0.644621\pi\)
−0.438871 + 0.898550i \(0.644621\pi\)
\(48\) −8.00056 −1.15478
\(49\) 0 0
\(50\) −1.84557 −0.261003
\(51\) 9.96306 1.39511
\(52\) 1.22278 0.169569
\(53\) −0.214255 −0.0294302 −0.0147151 0.999892i \(-0.504684\pi\)
−0.0147151 + 0.999892i \(0.504684\pi\)
\(54\) 9.96162 1.35560
\(55\) −3.96820 −0.535071
\(56\) 0 0
\(57\) −4.80778 −0.636806
\(58\) 2.46781 0.324039
\(59\) 6.27126 0.816448 0.408224 0.912882i \(-0.366148\pi\)
0.408224 + 0.912882i \(0.366148\pi\)
\(60\) −2.32670 −0.300376
\(61\) −5.58316 −0.714850 −0.357425 0.933942i \(-0.616345\pi\)
−0.357425 + 0.933942i \(0.616345\pi\)
\(62\) −7.71533 −0.979849
\(63\) 0 0
\(64\) −2.75303 −0.344129
\(65\) −0.869614 −0.107862
\(66\) −12.1183 −1.49166
\(67\) −5.58798 −0.682681 −0.341340 0.939940i \(-0.610881\pi\)
−0.341340 + 0.939940i \(0.610881\pi\)
\(68\) 8.46637 1.02670
\(69\) 12.1104 1.45792
\(70\) 0 0
\(71\) 7.81923 0.927972 0.463986 0.885843i \(-0.346419\pi\)
0.463986 + 0.885843i \(0.346419\pi\)
\(72\) −0.287148 −0.0338407
\(73\) 1.24040 0.145177 0.0725886 0.997362i \(-0.476874\pi\)
0.0725886 + 0.997362i \(0.476874\pi\)
\(74\) −1.84557 −0.214543
\(75\) 1.65469 0.191068
\(76\) −4.08554 −0.468643
\(77\) 0 0
\(78\) −2.65567 −0.300696
\(79\) 2.15195 0.242113 0.121057 0.992646i \(-0.461372\pi\)
0.121057 + 0.992646i \(0.461372\pi\)
\(80\) 4.83507 0.540577
\(81\) −8.14541 −0.905045
\(82\) −21.6644 −2.39244
\(83\) −9.50582 −1.04340 −0.521700 0.853129i \(-0.674702\pi\)
−0.521700 + 0.853129i \(0.674702\pi\)
\(84\) 0 0
\(85\) −6.02109 −0.653079
\(86\) −0.341587 −0.0368342
\(87\) −2.21258 −0.237213
\(88\) 4.34932 0.463640
\(89\) 13.7542 1.45795 0.728973 0.684542i \(-0.239998\pi\)
0.728973 + 0.684542i \(0.239998\pi\)
\(90\) −0.483512 −0.0509667
\(91\) 0 0
\(92\) 10.2911 1.07293
\(93\) 6.91740 0.717301
\(94\) 11.1057 1.14546
\(95\) 2.90554 0.298102
\(96\) 11.1383 1.13680
\(97\) 0.951656 0.0966261 0.0483130 0.998832i \(-0.484615\pi\)
0.0483130 + 0.998832i \(0.484615\pi\)
\(98\) 0 0
\(99\) −1.03961 −0.104485
\(100\) 1.40612 0.140612
\(101\) 12.7081 1.26450 0.632251 0.774764i \(-0.282131\pi\)
0.632251 + 0.774764i \(0.282131\pi\)
\(102\) −18.3875 −1.82063
\(103\) −4.62275 −0.455493 −0.227747 0.973720i \(-0.573136\pi\)
−0.227747 + 0.973720i \(0.573136\pi\)
\(104\) 0.953137 0.0934628
\(105\) 0 0
\(106\) 0.395422 0.0384068
\(107\) 1.54914 0.149761 0.0748803 0.997193i \(-0.476143\pi\)
0.0748803 + 0.997193i \(0.476143\pi\)
\(108\) −7.58966 −0.730315
\(109\) −9.87238 −0.945602 −0.472801 0.881169i \(-0.656757\pi\)
−0.472801 + 0.881169i \(0.656757\pi\)
\(110\) 7.32357 0.698275
\(111\) 1.65469 0.157057
\(112\) 0 0
\(113\) −5.56999 −0.523980 −0.261990 0.965071i \(-0.584379\pi\)
−0.261990 + 0.965071i \(0.584379\pi\)
\(114\) 8.87308 0.831040
\(115\) −7.31882 −0.682483
\(116\) −1.88020 −0.174572
\(117\) −0.227826 −0.0210626
\(118\) −11.5740 −1.06548
\(119\) 0 0
\(120\) −1.81362 −0.165560
\(121\) 4.74658 0.431507
\(122\) 10.3041 0.932889
\(123\) 19.4238 1.75139
\(124\) 5.87824 0.527881
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 9.90985 0.879357 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(128\) −8.38180 −0.740853
\(129\) 0.306259 0.0269646
\(130\) 1.60493 0.140762
\(131\) 11.9205 1.04149 0.520747 0.853711i \(-0.325653\pi\)
0.520747 + 0.853711i \(0.325653\pi\)
\(132\) 9.23280 0.803612
\(133\) 0 0
\(134\) 10.3130 0.890908
\(135\) 5.39759 0.464551
\(136\) 6.59939 0.565893
\(137\) −21.5628 −1.84223 −0.921117 0.389286i \(-0.872722\pi\)
−0.921117 + 0.389286i \(0.872722\pi\)
\(138\) −22.3506 −1.90261
\(139\) −4.87429 −0.413432 −0.206716 0.978401i \(-0.566278\pi\)
−0.206716 + 0.978401i \(0.566278\pi\)
\(140\) 0 0
\(141\) −9.95711 −0.838540
\(142\) −14.4309 −1.21102
\(143\) 3.45080 0.288570
\(144\) 1.26672 0.105560
\(145\) 1.33715 0.111045
\(146\) −2.28923 −0.189458
\(147\) 0 0
\(148\) 1.40612 0.115582
\(149\) −11.4059 −0.934410 −0.467205 0.884149i \(-0.654739\pi\)
−0.467205 + 0.884149i \(0.654739\pi\)
\(150\) −3.05385 −0.249346
\(151\) 11.2279 0.913715 0.456857 0.889540i \(-0.348975\pi\)
0.456857 + 0.889540i \(0.348975\pi\)
\(152\) −3.18460 −0.258305
\(153\) −1.57744 −0.127528
\(154\) 0 0
\(155\) −4.18047 −0.335783
\(156\) 2.02333 0.161996
\(157\) 21.6331 1.72651 0.863253 0.504771i \(-0.168423\pi\)
0.863253 + 0.504771i \(0.168423\pi\)
\(158\) −3.97157 −0.315961
\(159\) −0.354526 −0.0281158
\(160\) −6.73135 −0.532160
\(161\) 0 0
\(162\) 15.0329 1.18110
\(163\) 15.6800 1.22816 0.614078 0.789246i \(-0.289528\pi\)
0.614078 + 0.789246i \(0.289528\pi\)
\(164\) 16.5059 1.28890
\(165\) −6.56615 −0.511174
\(166\) 17.5436 1.36165
\(167\) −9.05381 −0.700605 −0.350303 0.936637i \(-0.613921\pi\)
−0.350303 + 0.936637i \(0.613921\pi\)
\(168\) 0 0
\(169\) −12.2438 −0.941829
\(170\) 11.1123 0.852277
\(171\) 0.761209 0.0582111
\(172\) 0.260251 0.0198440
\(173\) −7.16901 −0.545049 −0.272525 0.962149i \(-0.587859\pi\)
−0.272525 + 0.962149i \(0.587859\pi\)
\(174\) 4.08347 0.309567
\(175\) 0 0
\(176\) −19.1865 −1.44624
\(177\) 10.3770 0.779984
\(178\) −25.3844 −1.90264
\(179\) 5.57734 0.416870 0.208435 0.978036i \(-0.433163\pi\)
0.208435 + 0.978036i \(0.433163\pi\)
\(180\) 0.368383 0.0274577
\(181\) 3.18262 0.236563 0.118281 0.992980i \(-0.462262\pi\)
0.118281 + 0.992980i \(0.462262\pi\)
\(182\) 0 0
\(183\) −9.23842 −0.682924
\(184\) 8.02176 0.591372
\(185\) −1.00000 −0.0735215
\(186\) −12.7665 −0.936087
\(187\) 23.8929 1.74722
\(188\) −8.46132 −0.617105
\(189\) 0 0
\(190\) −5.36237 −0.389027
\(191\) −11.2168 −0.811622 −0.405811 0.913957i \(-0.633011\pi\)
−0.405811 + 0.913957i \(0.633011\pi\)
\(192\) −4.55542 −0.328759
\(193\) −1.61325 −0.116124 −0.0580622 0.998313i \(-0.518492\pi\)
−0.0580622 + 0.998313i \(0.518492\pi\)
\(194\) −1.75635 −0.126098
\(195\) −1.43895 −0.103045
\(196\) 0 0
\(197\) 10.6372 0.757869 0.378935 0.925423i \(-0.376291\pi\)
0.378935 + 0.925423i \(0.376291\pi\)
\(198\) 1.91867 0.136354
\(199\) −17.4516 −1.23711 −0.618555 0.785741i \(-0.712282\pi\)
−0.618555 + 0.785741i \(0.712282\pi\)
\(200\) 1.09605 0.0775021
\(201\) −9.24641 −0.652191
\(202\) −23.4536 −1.65019
\(203\) 0 0
\(204\) 14.0093 0.980844
\(205\) −11.7386 −0.819861
\(206\) 8.53160 0.594425
\(207\) −1.91742 −0.133270
\(208\) −4.20464 −0.291540
\(209\) −11.5297 −0.797529
\(210\) 0 0
\(211\) −27.2673 −1.87716 −0.938578 0.345067i \(-0.887856\pi\)
−0.938578 + 0.345067i \(0.887856\pi\)
\(212\) −0.301268 −0.0206912
\(213\) 12.9384 0.886527
\(214\) −2.85904 −0.195440
\(215\) −0.185085 −0.0126227
\(216\) −5.91601 −0.402533
\(217\) 0 0
\(218\) 18.2201 1.23402
\(219\) 2.05248 0.138693
\(220\) −5.57976 −0.376187
\(221\) 5.23603 0.352213
\(222\) −3.05385 −0.204961
\(223\) 17.7442 1.18824 0.594120 0.804376i \(-0.297500\pi\)
0.594120 + 0.804376i \(0.297500\pi\)
\(224\) 0 0
\(225\) −0.261986 −0.0174657
\(226\) 10.2798 0.683801
\(227\) 6.08629 0.403962 0.201981 0.979389i \(-0.435262\pi\)
0.201981 + 0.979389i \(0.435262\pi\)
\(228\) −6.76031 −0.447713
\(229\) −17.6354 −1.16538 −0.582689 0.812695i \(-0.697999\pi\)
−0.582689 + 0.812695i \(0.697999\pi\)
\(230\) 13.5074 0.890650
\(231\) 0 0
\(232\) −1.46558 −0.0962201
\(233\) 20.9227 1.37069 0.685346 0.728218i \(-0.259651\pi\)
0.685346 + 0.728218i \(0.259651\pi\)
\(234\) 0.420469 0.0274869
\(235\) 6.01749 0.392538
\(236\) 8.81814 0.574012
\(237\) 3.56082 0.231300
\(238\) 0 0
\(239\) 5.74203 0.371421 0.185711 0.982604i \(-0.440541\pi\)
0.185711 + 0.982604i \(0.440541\pi\)
\(240\) 8.00056 0.516434
\(241\) −15.9695 −1.02868 −0.514342 0.857585i \(-0.671964\pi\)
−0.514342 + 0.857585i \(0.671964\pi\)
\(242\) −8.76013 −0.563123
\(243\) 2.71461 0.174142
\(244\) −7.85059 −0.502582
\(245\) 0 0
\(246\) −35.8480 −2.28559
\(247\) −2.52670 −0.160770
\(248\) 4.58198 0.290956
\(249\) −15.7292 −0.996799
\(250\) 1.84557 0.116724
\(251\) 4.11001 0.259421 0.129711 0.991552i \(-0.458595\pi\)
0.129711 + 0.991552i \(0.458595\pi\)
\(252\) 0 0
\(253\) 29.0425 1.82589
\(254\) −18.2893 −1.14757
\(255\) −9.96306 −0.623911
\(256\) 20.9752 1.31095
\(257\) −17.7339 −1.10621 −0.553106 0.833111i \(-0.686557\pi\)
−0.553106 + 0.833111i \(0.686557\pi\)
\(258\) −0.565222 −0.0351892
\(259\) 0 0
\(260\) −1.22278 −0.0758337
\(261\) 0.350315 0.0216839
\(262\) −22.0000 −1.35916
\(263\) 4.16495 0.256822 0.128411 0.991721i \(-0.459012\pi\)
0.128411 + 0.991721i \(0.459012\pi\)
\(264\) 7.19680 0.442933
\(265\) 0.214255 0.0131616
\(266\) 0 0
\(267\) 22.7591 1.39283
\(268\) −7.85737 −0.479966
\(269\) −26.5332 −1.61776 −0.808878 0.587977i \(-0.799925\pi\)
−0.808878 + 0.587977i \(0.799925\pi\)
\(270\) −9.96162 −0.606245
\(271\) 11.7732 0.715171 0.357586 0.933880i \(-0.383600\pi\)
0.357586 + 0.933880i \(0.383600\pi\)
\(272\) −29.1124 −1.76520
\(273\) 0 0
\(274\) 39.7956 2.40414
\(275\) 3.96820 0.239291
\(276\) 17.0287 1.02501
\(277\) −9.07298 −0.545142 −0.272571 0.962136i \(-0.587874\pi\)
−0.272571 + 0.962136i \(0.587874\pi\)
\(278\) 8.99584 0.539534
\(279\) −1.09522 −0.0655692
\(280\) 0 0
\(281\) 6.48980 0.387149 0.193574 0.981086i \(-0.437992\pi\)
0.193574 + 0.981086i \(0.437992\pi\)
\(282\) 18.3765 1.09431
\(283\) −1.48142 −0.0880612 −0.0440306 0.999030i \(-0.514020\pi\)
−0.0440306 + 0.999030i \(0.514020\pi\)
\(284\) 10.9948 0.652420
\(285\) 4.80778 0.284788
\(286\) −6.36869 −0.376588
\(287\) 0 0
\(288\) −1.76352 −0.103916
\(289\) 19.2535 1.13256
\(290\) −2.46781 −0.144915
\(291\) 1.57470 0.0923106
\(292\) 1.74414 0.102068
\(293\) 2.81077 0.164207 0.0821034 0.996624i \(-0.473836\pi\)
0.0821034 + 0.996624i \(0.473836\pi\)
\(294\) 0 0
\(295\) −6.27126 −0.365127
\(296\) 1.09605 0.0637064
\(297\) −21.4187 −1.24284
\(298\) 21.0504 1.21942
\(299\) 6.36455 0.368071
\(300\) 2.32670 0.134332
\(301\) 0 0
\(302\) −20.7219 −1.19241
\(303\) 21.0280 1.20803
\(304\) 14.0485 0.805735
\(305\) 5.58316 0.319691
\(306\) 2.91127 0.166426
\(307\) −17.5728 −1.00294 −0.501468 0.865176i \(-0.667206\pi\)
−0.501468 + 0.865176i \(0.667206\pi\)
\(308\) 0 0
\(309\) −7.64924 −0.435150
\(310\) 7.71533 0.438202
\(311\) 18.8487 1.06881 0.534405 0.845228i \(-0.320536\pi\)
0.534405 + 0.845228i \(0.320536\pi\)
\(312\) 1.57715 0.0892886
\(313\) 23.3544 1.32007 0.660034 0.751236i \(-0.270542\pi\)
0.660034 + 0.751236i \(0.270542\pi\)
\(314\) −39.9253 −2.25311
\(315\) 0 0
\(316\) 3.02590 0.170220
\(317\) 30.6296 1.72033 0.860165 0.510016i \(-0.170360\pi\)
0.860165 + 0.510016i \(0.170360\pi\)
\(318\) 0.654302 0.0366914
\(319\) −5.30608 −0.297084
\(320\) 2.75303 0.153899
\(321\) 2.56335 0.143072
\(322\) 0 0
\(323\) −17.4945 −0.973420
\(324\) −11.4534 −0.636301
\(325\) 0.869614 0.0482375
\(326\) −28.9386 −1.60276
\(327\) −16.3358 −0.903370
\(328\) 12.8661 0.710410
\(329\) 0 0
\(330\) 12.1183 0.667089
\(331\) 17.6814 0.971856 0.485928 0.873999i \(-0.338482\pi\)
0.485928 + 0.873999i \(0.338482\pi\)
\(332\) −13.3663 −0.733572
\(333\) −0.261986 −0.0143567
\(334\) 16.7094 0.914299
\(335\) 5.58798 0.305304
\(336\) 0 0
\(337\) 14.7730 0.804738 0.402369 0.915478i \(-0.368187\pi\)
0.402369 + 0.915478i \(0.368187\pi\)
\(338\) 22.5967 1.22910
\(339\) −9.21663 −0.500578
\(340\) −8.46637 −0.459154
\(341\) 16.5889 0.898340
\(342\) −1.40486 −0.0759663
\(343\) 0 0
\(344\) 0.202861 0.0109376
\(345\) −12.1104 −0.652003
\(346\) 13.2309 0.711297
\(347\) −13.7413 −0.737673 −0.368837 0.929494i \(-0.620244\pi\)
−0.368837 + 0.929494i \(0.620244\pi\)
\(348\) −3.11115 −0.166775
\(349\) 0.0246967 0.00132198 0.000660992 1.00000i \(-0.499790\pi\)
0.000660992 1.00000i \(0.499790\pi\)
\(350\) 0 0
\(351\) −4.69382 −0.250538
\(352\) 26.7113 1.42372
\(353\) −16.2966 −0.867381 −0.433691 0.901062i \(-0.642789\pi\)
−0.433691 + 0.901062i \(0.642789\pi\)
\(354\) −19.1515 −1.01789
\(355\) −7.81923 −0.415002
\(356\) 19.3401 1.02502
\(357\) 0 0
\(358\) −10.2934 −0.544021
\(359\) 17.1951 0.907524 0.453762 0.891123i \(-0.350082\pi\)
0.453762 + 0.891123i \(0.350082\pi\)
\(360\) 0.287148 0.0151340
\(361\) −10.5578 −0.555676
\(362\) −5.87375 −0.308717
\(363\) 7.85414 0.412235
\(364\) 0 0
\(365\) −1.24040 −0.0649252
\(366\) 17.0501 0.891224
\(367\) 26.7076 1.39412 0.697062 0.717011i \(-0.254490\pi\)
0.697062 + 0.717011i \(0.254490\pi\)
\(368\) −35.3870 −1.84467
\(369\) −3.07535 −0.160096
\(370\) 1.84557 0.0959465
\(371\) 0 0
\(372\) 9.72669 0.504305
\(373\) 32.7572 1.69610 0.848051 0.529914i \(-0.177776\pi\)
0.848051 + 0.529914i \(0.177776\pi\)
\(374\) −44.0959 −2.28014
\(375\) −1.65469 −0.0854481
\(376\) −6.59545 −0.340134
\(377\) −1.16281 −0.0598876
\(378\) 0 0
\(379\) −11.6241 −0.597089 −0.298545 0.954396i \(-0.596501\pi\)
−0.298545 + 0.954396i \(0.596501\pi\)
\(380\) 4.08554 0.209584
\(381\) 16.3978 0.840084
\(382\) 20.7014 1.05918
\(383\) −27.6815 −1.41446 −0.707229 0.706984i \(-0.750055\pi\)
−0.707229 + 0.706984i \(0.750055\pi\)
\(384\) −13.8693 −0.707766
\(385\) 0 0
\(386\) 2.97736 0.151544
\(387\) −0.0484896 −0.00246486
\(388\) 1.33814 0.0679339
\(389\) 23.4655 1.18975 0.594874 0.803819i \(-0.297202\pi\)
0.594874 + 0.803819i \(0.297202\pi\)
\(390\) 2.65567 0.134475
\(391\) 44.0673 2.22858
\(392\) 0 0
\(393\) 19.7247 0.994980
\(394\) −19.6317 −0.989029
\(395\) −2.15195 −0.108276
\(396\) −1.46182 −0.0734590
\(397\) 5.61581 0.281849 0.140925 0.990020i \(-0.454992\pi\)
0.140925 + 0.990020i \(0.454992\pi\)
\(398\) 32.2081 1.61445
\(399\) 0 0
\(400\) −4.83507 −0.241753
\(401\) −15.9477 −0.796391 −0.398195 0.917301i \(-0.630363\pi\)
−0.398195 + 0.917301i \(0.630363\pi\)
\(402\) 17.0649 0.851118
\(403\) 3.63539 0.181092
\(404\) 17.8691 0.889021
\(405\) 8.14541 0.404749
\(406\) 0 0
\(407\) 3.96820 0.196696
\(408\) 10.9200 0.540619
\(409\) 27.7487 1.37209 0.686043 0.727561i \(-0.259346\pi\)
0.686043 + 0.727561i \(0.259346\pi\)
\(410\) 21.6644 1.06993
\(411\) −35.6798 −1.75996
\(412\) −6.50014 −0.320239
\(413\) 0 0
\(414\) 3.53874 0.173919
\(415\) 9.50582 0.466622
\(416\) 5.85368 0.287000
\(417\) −8.06547 −0.394968
\(418\) 21.2789 1.04079
\(419\) 12.9229 0.631326 0.315663 0.948871i \(-0.397773\pi\)
0.315663 + 0.948871i \(0.397773\pi\)
\(420\) 0 0
\(421\) 18.3270 0.893204 0.446602 0.894733i \(-0.352634\pi\)
0.446602 + 0.894733i \(0.352634\pi\)
\(422\) 50.3236 2.44971
\(423\) 1.57650 0.0766519
\(424\) −0.234833 −0.0114045
\(425\) 6.02109 0.292066
\(426\) −23.8788 −1.15693
\(427\) 0 0
\(428\) 2.17827 0.105291
\(429\) 5.71002 0.275682
\(430\) 0.341587 0.0164728
\(431\) 2.99719 0.144370 0.0721849 0.997391i \(-0.477003\pi\)
0.0721849 + 0.997391i \(0.477003\pi\)
\(432\) 26.0977 1.25563
\(433\) 15.7953 0.759073 0.379536 0.925177i \(-0.376083\pi\)
0.379536 + 0.925177i \(0.376083\pi\)
\(434\) 0 0
\(435\) 2.21258 0.106085
\(436\) −13.8817 −0.664815
\(437\) −21.2651 −1.01725
\(438\) −3.78798 −0.180997
\(439\) −11.5418 −0.550861 −0.275430 0.961321i \(-0.588820\pi\)
−0.275430 + 0.961321i \(0.588820\pi\)
\(440\) −4.34932 −0.207346
\(441\) 0 0
\(442\) −9.66344 −0.459643
\(443\) −19.3930 −0.921389 −0.460694 0.887559i \(-0.652400\pi\)
−0.460694 + 0.887559i \(0.652400\pi\)
\(444\) 2.32670 0.110420
\(445\) −13.7542 −0.652013
\(446\) −32.7482 −1.55067
\(447\) −18.8733 −0.892677
\(448\) 0 0
\(449\) 4.34795 0.205192 0.102596 0.994723i \(-0.467285\pi\)
0.102596 + 0.994723i \(0.467285\pi\)
\(450\) 0.483512 0.0227930
\(451\) 46.5812 2.19342
\(452\) −7.83207 −0.368389
\(453\) 18.5788 0.872907
\(454\) −11.2327 −0.527175
\(455\) 0 0
\(456\) −5.26955 −0.246769
\(457\) −20.5120 −0.959513 −0.479756 0.877402i \(-0.659275\pi\)
−0.479756 + 0.877402i \(0.659275\pi\)
\(458\) 32.5472 1.52083
\(459\) −32.4994 −1.51694
\(460\) −10.2911 −0.479827
\(461\) 15.5418 0.723855 0.361928 0.932206i \(-0.382119\pi\)
0.361928 + 0.932206i \(0.382119\pi\)
\(462\) 0 0
\(463\) 36.4628 1.69457 0.847284 0.531139i \(-0.178236\pi\)
0.847284 + 0.531139i \(0.178236\pi\)
\(464\) 6.46522 0.300140
\(465\) −6.91740 −0.320787
\(466\) −38.6143 −1.78877
\(467\) 0.843160 0.0390168 0.0195084 0.999810i \(-0.493790\pi\)
0.0195084 + 0.999810i \(0.493790\pi\)
\(468\) −0.320351 −0.0148082
\(469\) 0 0
\(470\) −11.1057 −0.512267
\(471\) 35.7961 1.64940
\(472\) 6.87359 0.316383
\(473\) 0.734453 0.0337702
\(474\) −6.57173 −0.301850
\(475\) −2.90554 −0.133315
\(476\) 0 0
\(477\) 0.0561317 0.00257009
\(478\) −10.5973 −0.484710
\(479\) 11.3567 0.518902 0.259451 0.965756i \(-0.416458\pi\)
0.259451 + 0.965756i \(0.416458\pi\)
\(480\) −11.1383 −0.508393
\(481\) 0.869614 0.0396510
\(482\) 29.4728 1.34245
\(483\) 0 0
\(484\) 6.67426 0.303375
\(485\) −0.951656 −0.0432125
\(486\) −5.01000 −0.227258
\(487\) −1.48578 −0.0673270 −0.0336635 0.999433i \(-0.510717\pi\)
−0.0336635 + 0.999433i \(0.510717\pi\)
\(488\) −6.11940 −0.277012
\(489\) 25.9457 1.17330
\(490\) 0 0
\(491\) −13.8261 −0.623965 −0.311982 0.950088i \(-0.600993\pi\)
−0.311982 + 0.950088i \(0.600993\pi\)
\(492\) 27.3123 1.23133
\(493\) −8.05112 −0.362604
\(494\) 4.66319 0.209807
\(495\) 1.03961 0.0467270
\(496\) −20.2128 −0.907583
\(497\) 0 0
\(498\) 29.0294 1.30084
\(499\) −35.5263 −1.59038 −0.795188 0.606363i \(-0.792628\pi\)
−0.795188 + 0.606363i \(0.792628\pi\)
\(500\) −1.40612 −0.0628836
\(501\) −14.9813 −0.669315
\(502\) −7.58529 −0.338548
\(503\) 7.80987 0.348225 0.174112 0.984726i \(-0.444294\pi\)
0.174112 + 0.984726i \(0.444294\pi\)
\(504\) 0 0
\(505\) −12.7081 −0.565503
\(506\) −53.5999 −2.38281
\(507\) −20.2597 −0.899765
\(508\) 13.9344 0.618241
\(509\) −2.54686 −0.112888 −0.0564439 0.998406i \(-0.517976\pi\)
−0.0564439 + 0.998406i \(0.517976\pi\)
\(510\) 18.3875 0.814212
\(511\) 0 0
\(512\) −21.9476 −0.969957
\(513\) 15.6829 0.692417
\(514\) 32.7291 1.44362
\(515\) 4.62275 0.203703
\(516\) 0.430637 0.0189577
\(517\) −23.8786 −1.05018
\(518\) 0 0
\(519\) −11.8625 −0.520707
\(520\) −0.953137 −0.0417978
\(521\) 41.5847 1.82186 0.910929 0.412562i \(-0.135366\pi\)
0.910929 + 0.412562i \(0.135366\pi\)
\(522\) −0.646530 −0.0282978
\(523\) 7.19471 0.314603 0.157301 0.987551i \(-0.449721\pi\)
0.157301 + 0.987551i \(0.449721\pi\)
\(524\) 16.7616 0.732233
\(525\) 0 0
\(526\) −7.68669 −0.335156
\(527\) 25.1710 1.09646
\(528\) −31.7478 −1.38165
\(529\) 30.5651 1.32892
\(530\) −0.395422 −0.0171760
\(531\) −1.64298 −0.0712992
\(532\) 0 0
\(533\) 10.2081 0.442161
\(534\) −42.0034 −1.81766
\(535\) −1.54914 −0.0669750
\(536\) −6.12469 −0.264546
\(537\) 9.22880 0.398252
\(538\) 48.9688 2.11119
\(539\) 0 0
\(540\) 7.58966 0.326607
\(541\) −44.6388 −1.91917 −0.959585 0.281418i \(-0.909195\pi\)
−0.959585 + 0.281418i \(0.909195\pi\)
\(542\) −21.7282 −0.933308
\(543\) 5.26627 0.225997
\(544\) 40.5301 1.73771
\(545\) 9.87238 0.422886
\(546\) 0 0
\(547\) −3.79670 −0.162335 −0.0811677 0.996700i \(-0.525865\pi\)
−0.0811677 + 0.996700i \(0.525865\pi\)
\(548\) −30.3199 −1.29520
\(549\) 1.46271 0.0624268
\(550\) −7.32357 −0.312278
\(551\) 3.88515 0.165513
\(552\) 13.2736 0.564960
\(553\) 0 0
\(554\) 16.7448 0.711418
\(555\) −1.65469 −0.0702379
\(556\) −6.85384 −0.290668
\(557\) 6.61553 0.280309 0.140154 0.990130i \(-0.455240\pi\)
0.140154 + 0.990130i \(0.455240\pi\)
\(558\) 2.02131 0.0855687
\(559\) 0.160952 0.00680756
\(560\) 0 0
\(561\) 39.5354 1.66919
\(562\) −11.9774 −0.505234
\(563\) −32.0822 −1.35210 −0.676051 0.736855i \(-0.736310\pi\)
−0.676051 + 0.736855i \(0.736310\pi\)
\(564\) −14.0009 −0.589544
\(565\) 5.56999 0.234331
\(566\) 2.73406 0.114921
\(567\) 0 0
\(568\) 8.57024 0.359599
\(569\) −45.1921 −1.89455 −0.947275 0.320422i \(-0.896175\pi\)
−0.947275 + 0.320422i \(0.896175\pi\)
\(570\) −8.87308 −0.371652
\(571\) −10.5553 −0.441724 −0.220862 0.975305i \(-0.570887\pi\)
−0.220862 + 0.975305i \(0.570887\pi\)
\(572\) 4.85224 0.202882
\(573\) −18.5604 −0.775374
\(574\) 0 0
\(575\) 7.31882 0.305216
\(576\) 0.721254 0.0300523
\(577\) 36.6297 1.52491 0.762457 0.647039i \(-0.223993\pi\)
0.762457 + 0.647039i \(0.223993\pi\)
\(578\) −35.5336 −1.47800
\(579\) −2.66944 −0.110938
\(580\) 1.88020 0.0780709
\(581\) 0 0
\(582\) −2.90622 −0.120467
\(583\) −0.850205 −0.0352119
\(584\) 1.35953 0.0562577
\(585\) 0.227826 0.00941946
\(586\) −5.18746 −0.214292
\(587\) 26.1481 1.07925 0.539624 0.841906i \(-0.318566\pi\)
0.539624 + 0.841906i \(0.318566\pi\)
\(588\) 0 0
\(589\) −12.1465 −0.500488
\(590\) 11.5740 0.476495
\(591\) 17.6013 0.724021
\(592\) −4.83507 −0.198720
\(593\) 29.7296 1.22085 0.610424 0.792075i \(-0.290999\pi\)
0.610424 + 0.792075i \(0.290999\pi\)
\(594\) 39.5297 1.62192
\(595\) 0 0
\(596\) −16.0381 −0.656946
\(597\) −28.8770 −1.18186
\(598\) −11.7462 −0.480338
\(599\) 42.1008 1.72019 0.860096 0.510132i \(-0.170404\pi\)
0.860096 + 0.510132i \(0.170404\pi\)
\(600\) 1.81362 0.0740408
\(601\) −15.1347 −0.617356 −0.308678 0.951167i \(-0.599887\pi\)
−0.308678 + 0.951167i \(0.599887\pi\)
\(602\) 0 0
\(603\) 1.46397 0.0596175
\(604\) 15.7878 0.642396
\(605\) −4.74658 −0.192976
\(606\) −38.8086 −1.57649
\(607\) 32.5551 1.32137 0.660686 0.750662i \(-0.270265\pi\)
0.660686 + 0.750662i \(0.270265\pi\)
\(608\) −19.5582 −0.793190
\(609\) 0 0
\(610\) −10.3041 −0.417201
\(611\) −5.23290 −0.211700
\(612\) −2.21807 −0.0896601
\(613\) −18.4294 −0.744355 −0.372177 0.928162i \(-0.621389\pi\)
−0.372177 + 0.928162i \(0.621389\pi\)
\(614\) 32.4319 1.30884
\(615\) −19.4238 −0.783245
\(616\) 0 0
\(617\) 0.172985 0.00696412 0.00348206 0.999994i \(-0.498892\pi\)
0.00348206 + 0.999994i \(0.498892\pi\)
\(618\) 14.1172 0.567877
\(619\) −32.7554 −1.31655 −0.658274 0.752778i \(-0.728713\pi\)
−0.658274 + 0.752778i \(0.728713\pi\)
\(620\) −5.87824 −0.236076
\(621\) −39.5040 −1.58524
\(622\) −34.7865 −1.39481
\(623\) 0 0
\(624\) −6.95740 −0.278519
\(625\) 1.00000 0.0400000
\(626\) −43.1021 −1.72271
\(627\) −19.0782 −0.761910
\(628\) 30.4187 1.21384
\(629\) 6.02109 0.240077
\(630\) 0 0
\(631\) 36.8148 1.46557 0.732786 0.680459i \(-0.238219\pi\)
0.732786 + 0.680459i \(0.238219\pi\)
\(632\) 2.35863 0.0938215
\(633\) −45.1190 −1.79332
\(634\) −56.5290 −2.24505
\(635\) −9.90985 −0.393261
\(636\) −0.498506 −0.0197671
\(637\) 0 0
\(638\) 9.79274 0.387698
\(639\) −2.04853 −0.0810384
\(640\) 8.38180 0.331320
\(641\) 9.85676 0.389319 0.194659 0.980871i \(-0.437640\pi\)
0.194659 + 0.980871i \(0.437640\pi\)
\(642\) −4.73083 −0.186711
\(643\) 22.1002 0.871548 0.435774 0.900056i \(-0.356475\pi\)
0.435774 + 0.900056i \(0.356475\pi\)
\(644\) 0 0
\(645\) −0.306259 −0.0120589
\(646\) 32.2873 1.27033
\(647\) −15.0811 −0.592899 −0.296449 0.955049i \(-0.595803\pi\)
−0.296449 + 0.955049i \(0.595803\pi\)
\(648\) −8.92774 −0.350715
\(649\) 24.8856 0.976845
\(650\) −1.60493 −0.0629506
\(651\) 0 0
\(652\) 22.0480 0.863467
\(653\) −34.3588 −1.34457 −0.672283 0.740294i \(-0.734686\pi\)
−0.672283 + 0.740294i \(0.734686\pi\)
\(654\) 30.1488 1.17891
\(655\) −11.9205 −0.465771
\(656\) −56.7570 −2.21599
\(657\) −0.324966 −0.0126781
\(658\) 0 0
\(659\) −41.2526 −1.60697 −0.803487 0.595322i \(-0.797025\pi\)
−0.803487 + 0.595322i \(0.797025\pi\)
\(660\) −9.23280 −0.359386
\(661\) −21.4484 −0.834245 −0.417122 0.908850i \(-0.636961\pi\)
−0.417122 + 0.908850i \(0.636961\pi\)
\(662\) −32.6322 −1.26828
\(663\) 8.66402 0.336483
\(664\) −10.4188 −0.404328
\(665\) 0 0
\(666\) 0.483512 0.0187357
\(667\) −9.78638 −0.378930
\(668\) −12.7307 −0.492567
\(669\) 29.3613 1.13517
\(670\) −10.3130 −0.398426
\(671\) −22.1551 −0.855287
\(672\) 0 0
\(673\) 22.9067 0.882989 0.441495 0.897264i \(-0.354448\pi\)
0.441495 + 0.897264i \(0.354448\pi\)
\(674\) −27.2646 −1.05019
\(675\) −5.39759 −0.207753
\(676\) −17.2162 −0.662162
\(677\) 21.3096 0.818993 0.409497 0.912312i \(-0.365704\pi\)
0.409497 + 0.912312i \(0.365704\pi\)
\(678\) 17.0099 0.653261
\(679\) 0 0
\(680\) −6.59939 −0.253075
\(681\) 10.0710 0.385920
\(682\) −30.6160 −1.17235
\(683\) 34.9123 1.33588 0.667942 0.744214i \(-0.267176\pi\)
0.667942 + 0.744214i \(0.267176\pi\)
\(684\) 1.07035 0.0409259
\(685\) 21.5628 0.823872
\(686\) 0 0
\(687\) −29.1811 −1.11333
\(688\) −0.894898 −0.0341177
\(689\) −0.186319 −0.00709819
\(690\) 22.3506 0.850872
\(691\) −0.752275 −0.0286179 −0.0143090 0.999898i \(-0.504555\pi\)
−0.0143090 + 0.999898i \(0.504555\pi\)
\(692\) −10.0805 −0.383202
\(693\) 0 0
\(694\) 25.3606 0.962674
\(695\) 4.87429 0.184892
\(696\) −2.42509 −0.0919228
\(697\) 70.6793 2.67717
\(698\) −0.0455794 −0.00172521
\(699\) 34.6207 1.30947
\(700\) 0 0
\(701\) −25.0969 −0.947896 −0.473948 0.880553i \(-0.657172\pi\)
−0.473948 + 0.880553i \(0.657172\pi\)
\(702\) 8.66277 0.326955
\(703\) −2.90554 −0.109584
\(704\) −10.9246 −0.411735
\(705\) 9.95711 0.375007
\(706\) 30.0765 1.13194
\(707\) 0 0
\(708\) 14.5913 0.548376
\(709\) 23.4450 0.880497 0.440248 0.897876i \(-0.354890\pi\)
0.440248 + 0.897876i \(0.354890\pi\)
\(710\) 14.4309 0.541583
\(711\) −0.563780 −0.0211434
\(712\) 15.0753 0.564970
\(713\) 30.5961 1.14583
\(714\) 0 0
\(715\) −3.45080 −0.129053
\(716\) 7.84241 0.293085
\(717\) 9.50131 0.354833
\(718\) −31.7348 −1.18433
\(719\) 9.20788 0.343396 0.171698 0.985150i \(-0.445075\pi\)
0.171698 + 0.985150i \(0.445075\pi\)
\(720\) −1.26672 −0.0472078
\(721\) 0 0
\(722\) 19.4852 0.725165
\(723\) −26.4246 −0.982742
\(724\) 4.47515 0.166318
\(725\) −1.33715 −0.0496606
\(726\) −14.4953 −0.537973
\(727\) −21.3870 −0.793199 −0.396599 0.917992i \(-0.629810\pi\)
−0.396599 + 0.917992i \(0.629810\pi\)
\(728\) 0 0
\(729\) 28.9281 1.07141
\(730\) 2.28923 0.0847283
\(731\) 1.11441 0.0412180
\(732\) −12.9903 −0.480136
\(733\) 27.7328 1.02433 0.512166 0.858886i \(-0.328843\pi\)
0.512166 + 0.858886i \(0.328843\pi\)
\(734\) −49.2906 −1.81935
\(735\) 0 0
\(736\) 49.2655 1.81595
\(737\) −22.1742 −0.816798
\(738\) 5.67577 0.208928
\(739\) −14.7858 −0.543904 −0.271952 0.962311i \(-0.587669\pi\)
−0.271952 + 0.962311i \(0.587669\pi\)
\(740\) −1.40612 −0.0516900
\(741\) −4.18091 −0.153590
\(742\) 0 0
\(743\) 4.73605 0.173749 0.0868745 0.996219i \(-0.472312\pi\)
0.0868745 + 0.996219i \(0.472312\pi\)
\(744\) 7.58178 0.277962
\(745\) 11.4059 0.417881
\(746\) −60.4556 −2.21344
\(747\) 2.49039 0.0911185
\(748\) 33.5962 1.22840
\(749\) 0 0
\(750\) 3.05385 0.111511
\(751\) 39.7179 1.44933 0.724663 0.689103i \(-0.241995\pi\)
0.724663 + 0.689103i \(0.241995\pi\)
\(752\) 29.0950 1.06098
\(753\) 6.80080 0.247835
\(754\) 2.14604 0.0781542
\(755\) −11.2279 −0.408626
\(756\) 0 0
\(757\) −31.0771 −1.12952 −0.564758 0.825256i \(-0.691031\pi\)
−0.564758 + 0.825256i \(0.691031\pi\)
\(758\) 21.4530 0.779209
\(759\) 48.0565 1.74434
\(760\) 3.18460 0.115518
\(761\) −11.9745 −0.434075 −0.217037 0.976163i \(-0.569639\pi\)
−0.217037 + 0.976163i \(0.569639\pi\)
\(762\) −30.2632 −1.09632
\(763\) 0 0
\(764\) −15.7722 −0.570619
\(765\) 1.57744 0.0570324
\(766\) 51.0881 1.84589
\(767\) 5.45358 0.196917
\(768\) 34.7076 1.25240
\(769\) 10.3532 0.373346 0.186673 0.982422i \(-0.440230\pi\)
0.186673 + 0.982422i \(0.440230\pi\)
\(770\) 0 0
\(771\) −29.3442 −1.05681
\(772\) −2.26842 −0.0816424
\(773\) 27.2250 0.979215 0.489607 0.871943i \(-0.337140\pi\)
0.489607 + 0.871943i \(0.337140\pi\)
\(774\) 0.0894908 0.00321668
\(775\) 4.18047 0.150167
\(776\) 1.04306 0.0374436
\(777\) 0 0
\(778\) −43.3072 −1.55264
\(779\) −34.1070 −1.22201
\(780\) −2.02333 −0.0724469
\(781\) 31.0282 1.11028
\(782\) −81.3291 −2.90832
\(783\) 7.21740 0.257929
\(784\) 0 0
\(785\) −21.6331 −0.772117
\(786\) −36.4033 −1.29846
\(787\) 46.7007 1.66470 0.832350 0.554250i \(-0.186995\pi\)
0.832350 + 0.554250i \(0.186995\pi\)
\(788\) 14.9572 0.532827
\(789\) 6.89171 0.245351
\(790\) 3.97157 0.141302
\(791\) 0 0
\(792\) −1.13946 −0.0404890
\(793\) −4.85519 −0.172413
\(794\) −10.3643 −0.367817
\(795\) 0.354526 0.0125738
\(796\) −24.5390 −0.869763
\(797\) −41.8395 −1.48203 −0.741016 0.671488i \(-0.765656\pi\)
−0.741016 + 0.671488i \(0.765656\pi\)
\(798\) 0 0
\(799\) −36.2319 −1.28179
\(800\) 6.73135 0.237989
\(801\) −3.60341 −0.127320
\(802\) 29.4326 1.03930
\(803\) 4.92213 0.173698
\(804\) −13.0016 −0.458530
\(805\) 0 0
\(806\) −6.70937 −0.236327
\(807\) −43.9043 −1.54550
\(808\) 13.9286 0.490008
\(809\) 20.3158 0.714264 0.357132 0.934054i \(-0.383755\pi\)
0.357132 + 0.934054i \(0.383755\pi\)
\(810\) −15.0329 −0.528202
\(811\) 19.5256 0.685638 0.342819 0.939402i \(-0.388618\pi\)
0.342819 + 0.939402i \(0.388618\pi\)
\(812\) 0 0
\(813\) 19.4811 0.683231
\(814\) −7.32357 −0.256691
\(815\) −15.6800 −0.549248
\(816\) −48.1721 −1.68636
\(817\) −0.537771 −0.0188142
\(818\) −51.2121 −1.79059
\(819\) 0 0
\(820\) −16.5059 −0.576412
\(821\) −52.7916 −1.84244 −0.921220 0.389041i \(-0.872806\pi\)
−0.921220 + 0.389041i \(0.872806\pi\)
\(822\) 65.8496 2.29677
\(823\) −3.11210 −0.108481 −0.0542406 0.998528i \(-0.517274\pi\)
−0.0542406 + 0.998528i \(0.517274\pi\)
\(824\) −5.06675 −0.176509
\(825\) 6.56615 0.228604
\(826\) 0 0
\(827\) 44.8394 1.55922 0.779609 0.626267i \(-0.215418\pi\)
0.779609 + 0.626267i \(0.215418\pi\)
\(828\) −2.69613 −0.0936970
\(829\) 12.4898 0.433788 0.216894 0.976195i \(-0.430407\pi\)
0.216894 + 0.976195i \(0.430407\pi\)
\(830\) −17.5436 −0.608948
\(831\) −15.0130 −0.520796
\(832\) −2.39407 −0.0829996
\(833\) 0 0
\(834\) 14.8854 0.515438
\(835\) 9.05381 0.313320
\(836\) −16.2122 −0.560711
\(837\) −22.5644 −0.779941
\(838\) −23.8501 −0.823889
\(839\) −25.7810 −0.890058 −0.445029 0.895516i \(-0.646807\pi\)
−0.445029 + 0.895516i \(0.646807\pi\)
\(840\) 0 0
\(841\) −27.2120 −0.938346
\(842\) −33.8237 −1.16564
\(843\) 10.7386 0.369858
\(844\) −38.3411 −1.31975
\(845\) 12.2438 0.421199
\(846\) −2.90953 −0.100032
\(847\) 0 0
\(848\) 1.03594 0.0355742
\(849\) −2.45130 −0.0841283
\(850\) −11.1123 −0.381150
\(851\) 7.31882 0.250886
\(852\) 18.1930 0.623282
\(853\) 36.7263 1.25748 0.628742 0.777614i \(-0.283570\pi\)
0.628742 + 0.777614i \(0.283570\pi\)
\(854\) 0 0
\(855\) −0.761209 −0.0260328
\(856\) 1.69792 0.0580339
\(857\) −45.1191 −1.54124 −0.770619 0.637296i \(-0.780053\pi\)
−0.770619 + 0.637296i \(0.780053\pi\)
\(858\) −10.5382 −0.359769
\(859\) 39.4779 1.34697 0.673485 0.739201i \(-0.264797\pi\)
0.673485 + 0.739201i \(0.264797\pi\)
\(860\) −0.260251 −0.00887450
\(861\) 0 0
\(862\) −5.53152 −0.188404
\(863\) 10.9988 0.374405 0.187202 0.982321i \(-0.440058\pi\)
0.187202 + 0.982321i \(0.440058\pi\)
\(864\) −36.3331 −1.23608
\(865\) 7.16901 0.243754
\(866\) −29.1513 −0.990600
\(867\) 31.8587 1.08198
\(868\) 0 0
\(869\) 8.53936 0.289678
\(870\) −4.08347 −0.138442
\(871\) −4.85939 −0.164654
\(872\) −10.8206 −0.366431
\(873\) −0.249320 −0.00843821
\(874\) 39.2462 1.32752
\(875\) 0 0
\(876\) 2.88603 0.0975098
\(877\) 15.5935 0.526555 0.263277 0.964720i \(-0.415197\pi\)
0.263277 + 0.964720i \(0.415197\pi\)
\(878\) 21.3012 0.718881
\(879\) 4.65096 0.156873
\(880\) 19.1865 0.646777
\(881\) 34.0718 1.14791 0.573955 0.818887i \(-0.305409\pi\)
0.573955 + 0.818887i \(0.305409\pi\)
\(882\) 0 0
\(883\) −35.1622 −1.18330 −0.591651 0.806194i \(-0.701524\pi\)
−0.591651 + 0.806194i \(0.701524\pi\)
\(884\) 7.36248 0.247627
\(885\) −10.3770 −0.348820
\(886\) 35.7911 1.20242
\(887\) −55.4484 −1.86177 −0.930887 0.365308i \(-0.880964\pi\)
−0.930887 + 0.365308i \(0.880964\pi\)
\(888\) 1.81362 0.0608611
\(889\) 0 0
\(890\) 25.3844 0.850886
\(891\) −32.3226 −1.08285
\(892\) 24.9505 0.835404
\(893\) 17.4841 0.585082
\(894\) 34.8320 1.16496
\(895\) −5.57734 −0.186430
\(896\) 0 0
\(897\) 10.5314 0.351633
\(898\) −8.02443 −0.267779
\(899\) −5.58992 −0.186434
\(900\) −0.368383 −0.0122794
\(901\) −1.29005 −0.0429777
\(902\) −85.9687 −2.86244
\(903\) 0 0
\(904\) −6.10496 −0.203048
\(905\) −3.18262 −0.105794
\(906\) −34.2884 −1.13916
\(907\) −31.1167 −1.03321 −0.516606 0.856223i \(-0.672805\pi\)
−0.516606 + 0.856223i \(0.672805\pi\)
\(908\) 8.55806 0.284009
\(909\) −3.32934 −0.110427
\(910\) 0 0
\(911\) −20.3199 −0.673230 −0.336615 0.941642i \(-0.609282\pi\)
−0.336615 + 0.941642i \(0.609282\pi\)
\(912\) 23.2459 0.769750
\(913\) −37.7209 −1.24838
\(914\) 37.8564 1.25218
\(915\) 9.23842 0.305413
\(916\) −24.7974 −0.819330
\(917\) 0 0
\(918\) 59.9798 1.97963
\(919\) 20.2527 0.668076 0.334038 0.942560i \(-0.391589\pi\)
0.334038 + 0.942560i \(0.391589\pi\)
\(920\) −8.02176 −0.264470
\(921\) −29.0777 −0.958143
\(922\) −28.6835 −0.944641
\(923\) 6.79972 0.223815
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) −67.2945 −2.21144
\(927\) 1.21109 0.0397776
\(928\) −9.00085 −0.295467
\(929\) −12.3676 −0.405768 −0.202884 0.979203i \(-0.565031\pi\)
−0.202884 + 0.979203i \(0.565031\pi\)
\(930\) 12.7665 0.418631
\(931\) 0 0
\(932\) 29.4198 0.963678
\(933\) 31.1888 1.02108
\(934\) −1.55611 −0.0509174
\(935\) −23.8929 −0.781380
\(936\) −0.249708 −0.00816197
\(937\) 32.6616 1.06701 0.533505 0.845797i \(-0.320875\pi\)
0.533505 + 0.845797i \(0.320875\pi\)
\(938\) 0 0
\(939\) 38.6444 1.26111
\(940\) 8.46132 0.275978
\(941\) 50.1886 1.63610 0.818051 0.575146i \(-0.195055\pi\)
0.818051 + 0.575146i \(0.195055\pi\)
\(942\) −66.0641 −2.15249
\(943\) 85.9129 2.79771
\(944\) −30.3220 −0.986896
\(945\) 0 0
\(946\) −1.35548 −0.0440705
\(947\) −43.9638 −1.42863 −0.714315 0.699824i \(-0.753262\pi\)
−0.714315 + 0.699824i \(0.753262\pi\)
\(948\) 5.00694 0.162618
\(949\) 1.07867 0.0350150
\(950\) 5.36237 0.173978
\(951\) 50.6826 1.64350
\(952\) 0 0
\(953\) −17.4827 −0.566319 −0.283159 0.959073i \(-0.591383\pi\)
−0.283159 + 0.959073i \(0.591383\pi\)
\(954\) −0.103595 −0.00335401
\(955\) 11.2168 0.362968
\(956\) 8.07399 0.261131
\(957\) −8.77995 −0.283815
\(958\) −20.9596 −0.677174
\(959\) 0 0
\(960\) 4.55542 0.147026
\(961\) −13.5237 −0.436248
\(962\) −1.60493 −0.0517451
\(963\) −0.405851 −0.0130784
\(964\) −22.4550 −0.723227
\(965\) 1.61325 0.0519324
\(966\) 0 0
\(967\) −59.9966 −1.92936 −0.964681 0.263422i \(-0.915149\pi\)
−0.964681 + 0.263422i \(0.915149\pi\)
\(968\) 5.20247 0.167214
\(969\) −28.9481 −0.929946
\(970\) 1.75635 0.0563929
\(971\) 55.1365 1.76941 0.884707 0.466147i \(-0.154358\pi\)
0.884707 + 0.466147i \(0.154358\pi\)
\(972\) 3.81707 0.122432
\(973\) 0 0
\(974\) 2.74210 0.0878627
\(975\) 1.43895 0.0460832
\(976\) 26.9949 0.864087
\(977\) 28.7274 0.919070 0.459535 0.888160i \(-0.348016\pi\)
0.459535 + 0.888160i \(0.348016\pi\)
\(978\) −47.8845 −1.53118
\(979\) 54.5795 1.74437
\(980\) 0 0
\(981\) 2.58642 0.0825781
\(982\) 25.5171 0.814282
\(983\) −24.3437 −0.776444 −0.388222 0.921566i \(-0.626911\pi\)
−0.388222 + 0.921566i \(0.626911\pi\)
\(984\) 21.2894 0.678682
\(985\) −10.6372 −0.338929
\(986\) 14.8589 0.473203
\(987\) 0 0
\(988\) −3.55284 −0.113031
\(989\) 1.35460 0.0430738
\(990\) −1.91867 −0.0609794
\(991\) −12.6966 −0.403322 −0.201661 0.979455i \(-0.564634\pi\)
−0.201661 + 0.979455i \(0.564634\pi\)
\(992\) 28.1402 0.893452
\(993\) 29.2573 0.928451
\(994\) 0 0
\(995\) 17.4516 0.553252
\(996\) −22.1172 −0.700810
\(997\) −20.0671 −0.635533 −0.317766 0.948169i \(-0.602933\pi\)
−0.317766 + 0.948169i \(0.602933\pi\)
\(998\) 65.5662 2.07546
\(999\) −5.39759 −0.170772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bc.1.9 yes 34
7.6 odd 2 9065.2.a.bb.1.9 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bb.1.9 34 7.6 odd 2
9065.2.a.bc.1.9 yes 34 1.1 even 1 trivial