Properties

Label 2-9065-1.1-c1-0-185
Degree $2$
Conductor $9065$
Sign $1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.84·2-s + 1.65·3-s + 1.40·4-s − 5-s − 3.05·6-s + 1.09·8-s − 0.261·9-s + 1.84·10-s + 3.96·11-s + 2.32·12-s + 0.869·13-s − 1.65·15-s − 4.83·16-s + 6.02·17-s + 0.483·18-s − 2.90·19-s − 1.40·20-s − 7.32·22-s + 7.31·23-s + 1.81·24-s + 25-s − 1.60·26-s − 5.39·27-s − 1.33·29-s + 3.05·30-s + 4.18·31-s + 6.73·32-s + ⋯
L(s)  = 1  − 1.30·2-s + 0.955·3-s + 0.703·4-s − 0.447·5-s − 1.24·6-s + 0.387·8-s − 0.0873·9-s + 0.583·10-s + 1.19·11-s + 0.671·12-s + 0.241·13-s − 0.427·15-s − 1.20·16-s + 1.46·17-s + 0.113·18-s − 0.666·19-s − 0.314·20-s − 1.56·22-s + 1.52·23-s + 0.370·24-s + 0.200·25-s − 0.314·26-s − 1.03·27-s − 0.248·29-s + 0.557·30-s + 0.750·31-s + 1.18·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.512393989\)
\(L(\frac12)\) \(\approx\) \(1.512393989\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 - T \)
good2 \( 1 + 1.84T + 2T^{2} \)
3 \( 1 - 1.65T + 3T^{2} \)
11 \( 1 - 3.96T + 11T^{2} \)
13 \( 1 - 0.869T + 13T^{2} \)
17 \( 1 - 6.02T + 17T^{2} \)
19 \( 1 + 2.90T + 19T^{2} \)
23 \( 1 - 7.31T + 23T^{2} \)
29 \( 1 + 1.33T + 29T^{2} \)
31 \( 1 - 4.18T + 31T^{2} \)
41 \( 1 - 11.7T + 41T^{2} \)
43 \( 1 - 0.185T + 43T^{2} \)
47 \( 1 + 6.01T + 47T^{2} \)
53 \( 1 + 0.214T + 53T^{2} \)
59 \( 1 - 6.27T + 59T^{2} \)
61 \( 1 + 5.58T + 61T^{2} \)
67 \( 1 + 5.58T + 67T^{2} \)
71 \( 1 - 7.81T + 71T^{2} \)
73 \( 1 - 1.24T + 73T^{2} \)
79 \( 1 - 2.15T + 79T^{2} \)
83 \( 1 + 9.50T + 83T^{2} \)
89 \( 1 - 13.7T + 89T^{2} \)
97 \( 1 - 0.951T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.945336764799869020617845593715, −7.39775320089255066637877691258, −6.69816293659830098924196077256, −5.89688784490826574773902763909, −4.82529699600005142559461389137, −4.01158590258236799489443290982, −3.32660817534984463449002650383, −2.51975798110859568632111262859, −1.46831180894662447302982699584, −0.75899931128455576979300654191, 0.75899931128455576979300654191, 1.46831180894662447302982699584, 2.51975798110859568632111262859, 3.32660817534984463449002650383, 4.01158590258236799489443290982, 4.82529699600005142559461389137, 5.89688784490826574773902763909, 6.69816293659830098924196077256, 7.39775320089255066637877691258, 7.945336764799869020617845593715

Graph of the $Z$-function along the critical line