gp: [N,k,chi] = [9065,2,Mod(1,9065)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9065.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9065, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [34,-2,10,30,-34,8,0,-6,28,2,-30]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( +1 \)
\(7\)
\( +1 \)
\(37\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\):
\( T_{2}^{34} + 2 T_{2}^{33} - 47 T_{2}^{32} - 92 T_{2}^{31} + 995 T_{2}^{30} + 1898 T_{2}^{29} + \cdots - 322 \)
T2^34 + 2*T2^33 - 47*T2^32 - 92*T2^31 + 995*T2^30 + 1898*T2^29 - 12555*T2^28 - 23208*T2^27 + 105319*T2^26 + 187272*T2^25 - 620447*T2^24 - 1050878*T2^23 + 2644571*T2^22 + 4210688*T2^21 - 8284193*T2^20 - 12180138*T2^19 + 19191441*T2^18 + 25436812*T2^17 - 32845968*T2^16 - 38008184*T2^15 + 41200624*T2^14 + 39939192*T2^13 - 37257324*T2^12 - 28777776*T2^11 + 23600172*T2^10 + 13759080*T2^9 - 9991676*T2^8 - 4201352*T2^7 + 2629814*T2^6 + 789912*T2^5 - 384896*T2^4 - 87444*T2^3 + 25454*T2^2 + 4580*T2 - 322
\( T_{3}^{34} - 10 T_{3}^{33} - 15 T_{3}^{32} + 452 T_{3}^{31} - 621 T_{3}^{30} - 8702 T_{3}^{29} + \cdots + 12175 \)
T3^34 - 10*T3^33 - 15*T3^32 + 452*T3^31 - 621*T3^30 - 8702*T3^29 + 23427*T3^28 + 91480*T3^27 - 361585*T3^26 - 540422*T3^25 + 3306053*T3^24 + 1351052*T3^23 - 19841700*T3^22 + 4356472*T3^21 + 81275570*T3^20 - 52497516*T3^19 - 229247316*T3^18 + 225101104*T3^17 + 438719284*T3^16 - 571664960*T3^15 - 543774543*T3^14 + 931377990*T3^13 + 385648731*T3^12 - 979049260*T3^11 - 83807567*T3^10 + 644310410*T3^9 - 85642395*T3^8 - 247480536*T3^7 + 72936744*T3^6 + 47186144*T3^5 - 21461394*T3^4 - 2216208*T3^3 + 2201023*T3^2 - 307170*T3 + 12175
\( T_{11}^{34} + 30 T_{11}^{33} + 243 T_{11}^{32} - 1392 T_{11}^{31} - 30811 T_{11}^{30} + \cdots - 1048867859392 \)
T11^34 + 30*T11^33 + 243*T11^32 - 1392*T11^31 - 30811*T11^30 - 73870*T11^29 + 1264383*T11^28 + 7578008*T11^27 - 19872379*T11^26 - 263534062*T11^25 - 118887897*T11^24 + 4978105592*T11^23 + 10324150281*T11^22 - 55635679826*T11^21 - 195483297085*T11^20 + 355943542272*T11^19 + 2050080508703*T11^18 - 958839816590*T11^17 - 13572380800383*T11^16 - 2887160724032*T11^15 + 59217240256891*T11^14 + 34065250003886*T11^13 - 172937256719891*T11^12 - 126927658288568*T11^11 + 337974938616947*T11^10 + 246042385165566*T11^9 - 432816938124811*T11^8 - 253377530882792*T11^7 + 341144775311511*T11^6 + 124313329963282*T11^5 - 144428375573759*T11^4 - 21590136563264*T11^3 + 24813580393128*T11^2 + 738766795392*T11 - 1048867859392