Properties

Label 9025.2.a.cu.1.18
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,18,0,-12,0,0,12,0,12,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 9025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.47917 q^{2} -2.48321 q^{3} +0.187941 q^{4} -3.67308 q^{6} +3.24988 q^{7} -2.68034 q^{8} +3.16631 q^{9} -4.18399 q^{11} -0.466696 q^{12} -1.78413 q^{13} +4.80712 q^{14} -4.34056 q^{16} -6.33226 q^{17} +4.68351 q^{18} -8.07011 q^{21} -6.18883 q^{22} -1.43368 q^{23} +6.65584 q^{24} -2.63904 q^{26} -0.412988 q^{27} +0.610785 q^{28} -0.339390 q^{29} -2.77865 q^{31} -1.05974 q^{32} +10.3897 q^{33} -9.36648 q^{34} +0.595080 q^{36} +2.70482 q^{37} +4.43037 q^{39} -7.13821 q^{41} -11.9371 q^{42} -9.89425 q^{43} -0.786344 q^{44} -2.12065 q^{46} +0.445441 q^{47} +10.7785 q^{48} +3.56169 q^{49} +15.7243 q^{51} -0.335312 q^{52} +7.23734 q^{53} -0.610879 q^{54} -8.71078 q^{56} -0.502015 q^{58} +3.14263 q^{59} -3.06562 q^{61} -4.11009 q^{62} +10.2901 q^{63} +7.11359 q^{64} +15.3681 q^{66} -8.55254 q^{67} -1.19009 q^{68} +3.56011 q^{69} +12.8928 q^{71} -8.48680 q^{72} +1.82227 q^{73} +4.00089 q^{74} -13.5974 q^{77} +6.55327 q^{78} +0.698700 q^{79} -8.47340 q^{81} -10.5586 q^{82} +0.552985 q^{83} -1.51671 q^{84} -14.6353 q^{86} +0.842775 q^{87} +11.2145 q^{88} +6.82870 q^{89} -5.79822 q^{91} -0.269446 q^{92} +6.89995 q^{93} +0.658883 q^{94} +2.63155 q^{96} +13.2006 q^{97} +5.26835 q^{98} -13.2478 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 18 q^{4} - 12 q^{6} + 12 q^{9} + 12 q^{11} + 24 q^{14} + 6 q^{16} + 6 q^{21} - 42 q^{24} - 12 q^{26} + 36 q^{29} + 42 q^{31} + 6 q^{34} - 6 q^{36} + 24 q^{39} + 60 q^{41} - 30 q^{44} + 6 q^{46} + 12 q^{49}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.47917 1.04593 0.522965 0.852354i \(-0.324826\pi\)
0.522965 + 0.852354i \(0.324826\pi\)
\(3\) −2.48321 −1.43368 −0.716840 0.697238i \(-0.754412\pi\)
−0.716840 + 0.697238i \(0.754412\pi\)
\(4\) 0.187941 0.0939705
\(5\) 0 0
\(6\) −3.67308 −1.49953
\(7\) 3.24988 1.22834 0.614169 0.789175i \(-0.289491\pi\)
0.614169 + 0.789175i \(0.289491\pi\)
\(8\) −2.68034 −0.947644
\(9\) 3.16631 1.05544
\(10\) 0 0
\(11\) −4.18399 −1.26152 −0.630760 0.775978i \(-0.717257\pi\)
−0.630760 + 0.775978i \(0.717257\pi\)
\(12\) −0.466696 −0.134724
\(13\) −1.78413 −0.494830 −0.247415 0.968910i \(-0.579581\pi\)
−0.247415 + 0.968910i \(0.579581\pi\)
\(14\) 4.80712 1.28476
\(15\) 0 0
\(16\) −4.34056 −1.08514
\(17\) −6.33226 −1.53580 −0.767899 0.640571i \(-0.778698\pi\)
−0.767899 + 0.640571i \(0.778698\pi\)
\(18\) 4.68351 1.10391
\(19\) 0 0
\(20\) 0 0
\(21\) −8.07011 −1.76104
\(22\) −6.18883 −1.31946
\(23\) −1.43368 −0.298942 −0.149471 0.988766i \(-0.547757\pi\)
−0.149471 + 0.988766i \(0.547757\pi\)
\(24\) 6.65584 1.35862
\(25\) 0 0
\(26\) −2.63904 −0.517558
\(27\) −0.412988 −0.0794796
\(28\) 0.610785 0.115428
\(29\) −0.339390 −0.0630231 −0.0315116 0.999503i \(-0.510032\pi\)
−0.0315116 + 0.999503i \(0.510032\pi\)
\(30\) 0 0
\(31\) −2.77865 −0.499060 −0.249530 0.968367i \(-0.580276\pi\)
−0.249530 + 0.968367i \(0.580276\pi\)
\(32\) −1.05974 −0.187337
\(33\) 10.3897 1.80862
\(34\) −9.36648 −1.60634
\(35\) 0 0
\(36\) 0.595080 0.0991800
\(37\) 2.70482 0.444670 0.222335 0.974970i \(-0.428632\pi\)
0.222335 + 0.974970i \(0.428632\pi\)
\(38\) 0 0
\(39\) 4.43037 0.709427
\(40\) 0 0
\(41\) −7.13821 −1.11480 −0.557401 0.830244i \(-0.688201\pi\)
−0.557401 + 0.830244i \(0.688201\pi\)
\(42\) −11.9371 −1.84193
\(43\) −9.89425 −1.50886 −0.754429 0.656381i \(-0.772086\pi\)
−0.754429 + 0.656381i \(0.772086\pi\)
\(44\) −0.786344 −0.118546
\(45\) 0 0
\(46\) −2.12065 −0.312673
\(47\) 0.445441 0.0649743 0.0324871 0.999472i \(-0.489657\pi\)
0.0324871 + 0.999472i \(0.489657\pi\)
\(48\) 10.7785 1.55574
\(49\) 3.56169 0.508813
\(50\) 0 0
\(51\) 15.7243 2.20184
\(52\) −0.335312 −0.0464994
\(53\) 7.23734 0.994125 0.497062 0.867715i \(-0.334412\pi\)
0.497062 + 0.867715i \(0.334412\pi\)
\(54\) −0.610879 −0.0831301
\(55\) 0 0
\(56\) −8.71078 −1.16403
\(57\) 0 0
\(58\) −0.502015 −0.0659178
\(59\) 3.14263 0.409136 0.204568 0.978852i \(-0.434421\pi\)
0.204568 + 0.978852i \(0.434421\pi\)
\(60\) 0 0
\(61\) −3.06562 −0.392512 −0.196256 0.980553i \(-0.562878\pi\)
−0.196256 + 0.980553i \(0.562878\pi\)
\(62\) −4.11009 −0.521982
\(63\) 10.2901 1.29643
\(64\) 7.11359 0.889198
\(65\) 0 0
\(66\) 15.3681 1.89169
\(67\) −8.55254 −1.04486 −0.522430 0.852682i \(-0.674974\pi\)
−0.522430 + 0.852682i \(0.674974\pi\)
\(68\) −1.19009 −0.144320
\(69\) 3.56011 0.428587
\(70\) 0 0
\(71\) 12.8928 1.53009 0.765046 0.643975i \(-0.222716\pi\)
0.765046 + 0.643975i \(0.222716\pi\)
\(72\) −8.48680 −1.00018
\(73\) 1.82227 0.213281 0.106640 0.994298i \(-0.465991\pi\)
0.106640 + 0.994298i \(0.465991\pi\)
\(74\) 4.00089 0.465094
\(75\) 0 0
\(76\) 0 0
\(77\) −13.5974 −1.54957
\(78\) 6.55327 0.742012
\(79\) 0.698700 0.0786099 0.0393050 0.999227i \(-0.487486\pi\)
0.0393050 + 0.999227i \(0.487486\pi\)
\(80\) 0 0
\(81\) −8.47340 −0.941489
\(82\) −10.5586 −1.16600
\(83\) 0.552985 0.0606980 0.0303490 0.999539i \(-0.490338\pi\)
0.0303490 + 0.999539i \(0.490338\pi\)
\(84\) −1.51671 −0.165486
\(85\) 0 0
\(86\) −14.6353 −1.57816
\(87\) 0.842775 0.0903550
\(88\) 11.2145 1.19547
\(89\) 6.82870 0.723841 0.361920 0.932209i \(-0.382121\pi\)
0.361920 + 0.932209i \(0.382121\pi\)
\(90\) 0 0
\(91\) −5.79822 −0.607818
\(92\) −0.269446 −0.0280917
\(93\) 6.89995 0.715492
\(94\) 0.658883 0.0679586
\(95\) 0 0
\(96\) 2.63155 0.268582
\(97\) 13.2006 1.34032 0.670160 0.742217i \(-0.266226\pi\)
0.670160 + 0.742217i \(0.266226\pi\)
\(98\) 5.26835 0.532183
\(99\) −13.2478 −1.33146
\(100\) 0 0
\(101\) 17.2757 1.71899 0.859496 0.511142i \(-0.170777\pi\)
0.859496 + 0.511142i \(0.170777\pi\)
\(102\) 23.2589 2.30297
\(103\) −13.8286 −1.36257 −0.681286 0.732017i \(-0.738579\pi\)
−0.681286 + 0.732017i \(0.738579\pi\)
\(104\) 4.78209 0.468922
\(105\) 0 0
\(106\) 10.7052 1.03979
\(107\) 3.26460 0.315600 0.157800 0.987471i \(-0.449560\pi\)
0.157800 + 0.987471i \(0.449560\pi\)
\(108\) −0.0776174 −0.00746874
\(109\) −3.22094 −0.308510 −0.154255 0.988031i \(-0.549298\pi\)
−0.154255 + 0.988031i \(0.549298\pi\)
\(110\) 0 0
\(111\) −6.71663 −0.637514
\(112\) −14.1063 −1.33292
\(113\) −4.71007 −0.443086 −0.221543 0.975151i \(-0.571109\pi\)
−0.221543 + 0.975151i \(0.571109\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.0637853 −0.00592232
\(117\) −5.64913 −0.522262
\(118\) 4.64849 0.427928
\(119\) −20.5791 −1.88648
\(120\) 0 0
\(121\) 6.50577 0.591434
\(122\) −4.53457 −0.410541
\(123\) 17.7257 1.59827
\(124\) −0.522222 −0.0468969
\(125\) 0 0
\(126\) 15.2208 1.35598
\(127\) −0.592012 −0.0525325 −0.0262663 0.999655i \(-0.508362\pi\)
−0.0262663 + 0.999655i \(0.508362\pi\)
\(128\) 12.6417 1.11738
\(129\) 24.5695 2.16322
\(130\) 0 0
\(131\) −20.5490 −1.79538 −0.897689 0.440629i \(-0.854755\pi\)
−0.897689 + 0.440629i \(0.854755\pi\)
\(132\) 1.95265 0.169957
\(133\) 0 0
\(134\) −12.6507 −1.09285
\(135\) 0 0
\(136\) 16.9726 1.45539
\(137\) −8.75406 −0.747910 −0.373955 0.927447i \(-0.621999\pi\)
−0.373955 + 0.927447i \(0.621999\pi\)
\(138\) 5.26601 0.448272
\(139\) 7.68939 0.652205 0.326103 0.945334i \(-0.394264\pi\)
0.326103 + 0.945334i \(0.394264\pi\)
\(140\) 0 0
\(141\) −1.10612 −0.0931523
\(142\) 19.0706 1.60037
\(143\) 7.46480 0.624238
\(144\) −13.7436 −1.14530
\(145\) 0 0
\(146\) 2.69545 0.223077
\(147\) −8.84442 −0.729475
\(148\) 0.508347 0.0417859
\(149\) −14.9414 −1.22404 −0.612022 0.790841i \(-0.709644\pi\)
−0.612022 + 0.790841i \(0.709644\pi\)
\(150\) 0 0
\(151\) 13.1424 1.06951 0.534757 0.845006i \(-0.320403\pi\)
0.534757 + 0.845006i \(0.320403\pi\)
\(152\) 0 0
\(153\) −20.0499 −1.62094
\(154\) −20.1129 −1.62075
\(155\) 0 0
\(156\) 0.832649 0.0666653
\(157\) −10.8372 −0.864902 −0.432451 0.901657i \(-0.642351\pi\)
−0.432451 + 0.901657i \(0.642351\pi\)
\(158\) 1.03350 0.0822205
\(159\) −17.9718 −1.42526
\(160\) 0 0
\(161\) −4.65927 −0.367202
\(162\) −12.5336 −0.984732
\(163\) −8.44554 −0.661506 −0.330753 0.943717i \(-0.607303\pi\)
−0.330753 + 0.943717i \(0.607303\pi\)
\(164\) −1.34156 −0.104758
\(165\) 0 0
\(166\) 0.817959 0.0634859
\(167\) 19.9012 1.54000 0.770002 0.638041i \(-0.220255\pi\)
0.770002 + 0.638041i \(0.220255\pi\)
\(168\) 21.6307 1.66884
\(169\) −9.81686 −0.755143
\(170\) 0 0
\(171\) 0 0
\(172\) −1.85954 −0.141788
\(173\) −11.7211 −0.891135 −0.445568 0.895248i \(-0.646998\pi\)
−0.445568 + 0.895248i \(0.646998\pi\)
\(174\) 1.24661 0.0945050
\(175\) 0 0
\(176\) 18.1609 1.36893
\(177\) −7.80380 −0.586570
\(178\) 10.1008 0.757087
\(179\) 7.08378 0.529467 0.264733 0.964322i \(-0.414716\pi\)
0.264733 + 0.964322i \(0.414716\pi\)
\(180\) 0 0
\(181\) 9.28177 0.689908 0.344954 0.938620i \(-0.387894\pi\)
0.344954 + 0.938620i \(0.387894\pi\)
\(182\) −8.57654 −0.635735
\(183\) 7.61257 0.562737
\(184\) 3.84274 0.283291
\(185\) 0 0
\(186\) 10.2062 0.748355
\(187\) 26.4941 1.93744
\(188\) 0.0837167 0.00610567
\(189\) −1.34216 −0.0976277
\(190\) 0 0
\(191\) 8.12426 0.587850 0.293925 0.955828i \(-0.405038\pi\)
0.293925 + 0.955828i \(0.405038\pi\)
\(192\) −17.6645 −1.27483
\(193\) −7.72342 −0.555944 −0.277972 0.960589i \(-0.589662\pi\)
−0.277972 + 0.960589i \(0.589662\pi\)
\(194\) 19.5259 1.40188
\(195\) 0 0
\(196\) 0.669388 0.0478135
\(197\) −3.56762 −0.254183 −0.127091 0.991891i \(-0.540564\pi\)
−0.127091 + 0.991891i \(0.540564\pi\)
\(198\) −19.5958 −1.39261
\(199\) −8.76938 −0.621645 −0.310822 0.950468i \(-0.600604\pi\)
−0.310822 + 0.950468i \(0.600604\pi\)
\(200\) 0 0
\(201\) 21.2377 1.49799
\(202\) 25.5536 1.79795
\(203\) −1.10298 −0.0774137
\(204\) 2.95524 0.206908
\(205\) 0 0
\(206\) −20.4548 −1.42516
\(207\) −4.53946 −0.315515
\(208\) 7.74414 0.536960
\(209\) 0 0
\(210\) 0 0
\(211\) 11.8171 0.813526 0.406763 0.913534i \(-0.366657\pi\)
0.406763 + 0.913534i \(0.366657\pi\)
\(212\) 1.36019 0.0934184
\(213\) −32.0155 −2.19366
\(214\) 4.82889 0.330096
\(215\) 0 0
\(216\) 1.10695 0.0753183
\(217\) −9.03026 −0.613014
\(218\) −4.76431 −0.322680
\(219\) −4.52507 −0.305776
\(220\) 0 0
\(221\) 11.2976 0.759959
\(222\) −9.93503 −0.666796
\(223\) −8.89760 −0.595827 −0.297914 0.954593i \(-0.596291\pi\)
−0.297914 + 0.954593i \(0.596291\pi\)
\(224\) −3.44402 −0.230113
\(225\) 0 0
\(226\) −6.96698 −0.463437
\(227\) 26.4080 1.75276 0.876380 0.481620i \(-0.159951\pi\)
0.876380 + 0.481620i \(0.159951\pi\)
\(228\) 0 0
\(229\) 21.7852 1.43961 0.719804 0.694177i \(-0.244232\pi\)
0.719804 + 0.694177i \(0.244232\pi\)
\(230\) 0 0
\(231\) 33.7653 2.22159
\(232\) 0.909681 0.0597235
\(233\) −10.0009 −0.655183 −0.327591 0.944820i \(-0.606237\pi\)
−0.327591 + 0.944820i \(0.606237\pi\)
\(234\) −8.35601 −0.546250
\(235\) 0 0
\(236\) 0.590630 0.0384467
\(237\) −1.73502 −0.112701
\(238\) −30.4399 −1.97313
\(239\) 17.8365 1.15374 0.576872 0.816834i \(-0.304273\pi\)
0.576872 + 0.816834i \(0.304273\pi\)
\(240\) 0 0
\(241\) −17.1442 −1.10435 −0.552177 0.833727i \(-0.686203\pi\)
−0.552177 + 0.833727i \(0.686203\pi\)
\(242\) 9.62314 0.618599
\(243\) 22.2802 1.42927
\(244\) −0.576156 −0.0368846
\(245\) 0 0
\(246\) 26.2192 1.67168
\(247\) 0 0
\(248\) 7.44772 0.472931
\(249\) −1.37318 −0.0870215
\(250\) 0 0
\(251\) 9.69585 0.611997 0.305998 0.952032i \(-0.401010\pi\)
0.305998 + 0.952032i \(0.401010\pi\)
\(252\) 1.93394 0.121827
\(253\) 5.99848 0.377121
\(254\) −0.875685 −0.0549454
\(255\) 0 0
\(256\) 4.47200 0.279500
\(257\) 10.0506 0.626942 0.313471 0.949598i \(-0.398508\pi\)
0.313471 + 0.949598i \(0.398508\pi\)
\(258\) 36.3424 2.26258
\(259\) 8.79033 0.546205
\(260\) 0 0
\(261\) −1.07461 −0.0665170
\(262\) −30.3955 −1.87784
\(263\) 21.8306 1.34613 0.673065 0.739583i \(-0.264977\pi\)
0.673065 + 0.739583i \(0.264977\pi\)
\(264\) −27.8480 −1.71392
\(265\) 0 0
\(266\) 0 0
\(267\) −16.9571 −1.03776
\(268\) −1.60737 −0.0981860
\(269\) 15.4551 0.942312 0.471156 0.882050i \(-0.343837\pi\)
0.471156 + 0.882050i \(0.343837\pi\)
\(270\) 0 0
\(271\) 5.16319 0.313642 0.156821 0.987627i \(-0.449875\pi\)
0.156821 + 0.987627i \(0.449875\pi\)
\(272\) 27.4855 1.66656
\(273\) 14.3982 0.871416
\(274\) −12.9487 −0.782262
\(275\) 0 0
\(276\) 0.669091 0.0402746
\(277\) 5.57030 0.334687 0.167343 0.985899i \(-0.446481\pi\)
0.167343 + 0.985899i \(0.446481\pi\)
\(278\) 11.3739 0.682161
\(279\) −8.79807 −0.526726
\(280\) 0 0
\(281\) 27.2729 1.62697 0.813483 0.581589i \(-0.197569\pi\)
0.813483 + 0.581589i \(0.197569\pi\)
\(282\) −1.63614 −0.0974308
\(283\) −15.0458 −0.894379 −0.447190 0.894439i \(-0.647575\pi\)
−0.447190 + 0.894439i \(0.647575\pi\)
\(284\) 2.42308 0.143784
\(285\) 0 0
\(286\) 11.0417 0.652910
\(287\) −23.1983 −1.36935
\(288\) −3.35547 −0.197723
\(289\) 23.0975 1.35868
\(290\) 0 0
\(291\) −32.7799 −1.92159
\(292\) 0.342479 0.0200421
\(293\) −7.82882 −0.457364 −0.228682 0.973501i \(-0.573442\pi\)
−0.228682 + 0.973501i \(0.573442\pi\)
\(294\) −13.0824 −0.762981
\(295\) 0 0
\(296\) −7.24985 −0.421389
\(297\) 1.72794 0.100265
\(298\) −22.1008 −1.28026
\(299\) 2.55787 0.147925
\(300\) 0 0
\(301\) −32.1551 −1.85339
\(302\) 19.4398 1.11864
\(303\) −42.8990 −2.46449
\(304\) 0 0
\(305\) 0 0
\(306\) −29.6572 −1.69539
\(307\) −15.7146 −0.896879 −0.448439 0.893813i \(-0.648020\pi\)
−0.448439 + 0.893813i \(0.648020\pi\)
\(308\) −2.55552 −0.145614
\(309\) 34.3393 1.95349
\(310\) 0 0
\(311\) 17.9812 1.01962 0.509810 0.860287i \(-0.329716\pi\)
0.509810 + 0.860287i \(0.329716\pi\)
\(312\) −11.8749 −0.672285
\(313\) 21.2005 1.19832 0.599161 0.800628i \(-0.295501\pi\)
0.599161 + 0.800628i \(0.295501\pi\)
\(314\) −16.0300 −0.904627
\(315\) 0 0
\(316\) 0.131314 0.00738702
\(317\) 3.06442 0.172115 0.0860575 0.996290i \(-0.472573\pi\)
0.0860575 + 0.996290i \(0.472573\pi\)
\(318\) −26.5833 −1.49072
\(319\) 1.42000 0.0795050
\(320\) 0 0
\(321\) −8.10666 −0.452470
\(322\) −6.89184 −0.384067
\(323\) 0 0
\(324\) −1.59250 −0.0884722
\(325\) 0 0
\(326\) −12.4924 −0.691889
\(327\) 7.99825 0.442304
\(328\) 19.1328 1.05643
\(329\) 1.44763 0.0798103
\(330\) 0 0
\(331\) −25.9509 −1.42639 −0.713195 0.700966i \(-0.752753\pi\)
−0.713195 + 0.700966i \(0.752753\pi\)
\(332\) 0.103929 0.00570383
\(333\) 8.56431 0.469321
\(334\) 29.4373 1.61074
\(335\) 0 0
\(336\) 35.0288 1.91098
\(337\) 10.0575 0.547865 0.273933 0.961749i \(-0.411676\pi\)
0.273933 + 0.961749i \(0.411676\pi\)
\(338\) −14.5208 −0.789828
\(339\) 11.6961 0.635243
\(340\) 0 0
\(341\) 11.6258 0.629574
\(342\) 0 0
\(343\) −11.1741 −0.603343
\(344\) 26.5200 1.42986
\(345\) 0 0
\(346\) −17.3374 −0.932065
\(347\) 6.81801 0.366010 0.183005 0.983112i \(-0.441418\pi\)
0.183005 + 0.983112i \(0.441418\pi\)
\(348\) 0.158392 0.00849071
\(349\) 31.5966 1.69133 0.845663 0.533718i \(-0.179205\pi\)
0.845663 + 0.533718i \(0.179205\pi\)
\(350\) 0 0
\(351\) 0.736826 0.0393289
\(352\) 4.43394 0.236330
\(353\) −6.30657 −0.335665 −0.167832 0.985816i \(-0.553677\pi\)
−0.167832 + 0.985816i \(0.553677\pi\)
\(354\) −11.5431 −0.613511
\(355\) 0 0
\(356\) 1.28339 0.0680197
\(357\) 51.1020 2.70461
\(358\) 10.4781 0.553785
\(359\) 4.17666 0.220436 0.110218 0.993907i \(-0.464845\pi\)
0.110218 + 0.993907i \(0.464845\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 13.7293 0.721596
\(363\) −16.1552 −0.847927
\(364\) −1.08972 −0.0571170
\(365\) 0 0
\(366\) 11.2603 0.588584
\(367\) −16.5710 −0.864998 −0.432499 0.901634i \(-0.642368\pi\)
−0.432499 + 0.901634i \(0.642368\pi\)
\(368\) 6.22295 0.324394
\(369\) −22.6018 −1.17660
\(370\) 0 0
\(371\) 23.5204 1.22112
\(372\) 1.29678 0.0672352
\(373\) −37.0004 −1.91581 −0.957905 0.287085i \(-0.907314\pi\)
−0.957905 + 0.287085i \(0.907314\pi\)
\(374\) 39.1893 2.02643
\(375\) 0 0
\(376\) −1.19393 −0.0615725
\(377\) 0.605517 0.0311857
\(378\) −1.98528 −0.102112
\(379\) 31.5147 1.61880 0.809400 0.587257i \(-0.199792\pi\)
0.809400 + 0.587257i \(0.199792\pi\)
\(380\) 0 0
\(381\) 1.47009 0.0753148
\(382\) 12.0171 0.614851
\(383\) −3.09813 −0.158307 −0.0791536 0.996862i \(-0.525222\pi\)
−0.0791536 + 0.996862i \(0.525222\pi\)
\(384\) −31.3919 −1.60196
\(385\) 0 0
\(386\) −11.4243 −0.581479
\(387\) −31.3283 −1.59251
\(388\) 2.48094 0.125951
\(389\) 26.0318 1.31986 0.659931 0.751326i \(-0.270585\pi\)
0.659931 + 0.751326i \(0.270585\pi\)
\(390\) 0 0
\(391\) 9.07840 0.459115
\(392\) −9.54655 −0.482174
\(393\) 51.0275 2.57400
\(394\) −5.27712 −0.265857
\(395\) 0 0
\(396\) −2.48981 −0.125118
\(397\) 12.6607 0.635423 0.317712 0.948187i \(-0.397086\pi\)
0.317712 + 0.948187i \(0.397086\pi\)
\(398\) −12.9714 −0.650197
\(399\) 0 0
\(400\) 0 0
\(401\) −9.22180 −0.460515 −0.230257 0.973130i \(-0.573957\pi\)
−0.230257 + 0.973130i \(0.573957\pi\)
\(402\) 31.4142 1.56680
\(403\) 4.95748 0.246950
\(404\) 3.24681 0.161535
\(405\) 0 0
\(406\) −1.63149 −0.0809693
\(407\) −11.3169 −0.560960
\(408\) −42.1465 −2.08656
\(409\) 34.4572 1.70380 0.851899 0.523706i \(-0.175451\pi\)
0.851899 + 0.523706i \(0.175451\pi\)
\(410\) 0 0
\(411\) 21.7381 1.07226
\(412\) −2.59896 −0.128042
\(413\) 10.2132 0.502557
\(414\) −6.71464 −0.330006
\(415\) 0 0
\(416\) 1.89072 0.0927001
\(417\) −19.0943 −0.935053
\(418\) 0 0
\(419\) −7.86047 −0.384009 −0.192005 0.981394i \(-0.561499\pi\)
−0.192005 + 0.981394i \(0.561499\pi\)
\(420\) 0 0
\(421\) 10.4922 0.511360 0.255680 0.966761i \(-0.417701\pi\)
0.255680 + 0.966761i \(0.417701\pi\)
\(422\) 17.4796 0.850892
\(423\) 1.41041 0.0685763
\(424\) −19.3985 −0.942076
\(425\) 0 0
\(426\) −47.3563 −2.29442
\(427\) −9.96288 −0.482138
\(428\) 0.613552 0.0296571
\(429\) −18.5366 −0.894957
\(430\) 0 0
\(431\) 29.8923 1.43986 0.719931 0.694046i \(-0.244173\pi\)
0.719931 + 0.694046i \(0.244173\pi\)
\(432\) 1.79260 0.0862465
\(433\) 6.79977 0.326776 0.163388 0.986562i \(-0.447758\pi\)
0.163388 + 0.986562i \(0.447758\pi\)
\(434\) −13.3573 −0.641170
\(435\) 0 0
\(436\) −0.605347 −0.0289908
\(437\) 0 0
\(438\) −6.69335 −0.319820
\(439\) 7.96606 0.380199 0.190100 0.981765i \(-0.439119\pi\)
0.190100 + 0.981765i \(0.439119\pi\)
\(440\) 0 0
\(441\) 11.2774 0.537021
\(442\) 16.7111 0.794864
\(443\) −21.7893 −1.03524 −0.517621 0.855610i \(-0.673182\pi\)
−0.517621 + 0.855610i \(0.673182\pi\)
\(444\) −1.26233 −0.0599076
\(445\) 0 0
\(446\) −13.1611 −0.623194
\(447\) 37.1025 1.75489
\(448\) 23.1183 1.09224
\(449\) 18.7837 0.886458 0.443229 0.896409i \(-0.353833\pi\)
0.443229 + 0.896409i \(0.353833\pi\)
\(450\) 0 0
\(451\) 29.8662 1.40634
\(452\) −0.885215 −0.0416370
\(453\) −32.6353 −1.53334
\(454\) 39.0619 1.83327
\(455\) 0 0
\(456\) 0 0
\(457\) 28.2368 1.32086 0.660431 0.750887i \(-0.270373\pi\)
0.660431 + 0.750887i \(0.270373\pi\)
\(458\) 32.2240 1.50573
\(459\) 2.61515 0.122065
\(460\) 0 0
\(461\) −0.196008 −0.00912900 −0.00456450 0.999990i \(-0.501453\pi\)
−0.00456450 + 0.999990i \(0.501453\pi\)
\(462\) 49.9445 2.32363
\(463\) 13.9641 0.648967 0.324484 0.945891i \(-0.394809\pi\)
0.324484 + 0.945891i \(0.394809\pi\)
\(464\) 1.47314 0.0683889
\(465\) 0 0
\(466\) −14.7931 −0.685275
\(467\) −32.1025 −1.48553 −0.742763 0.669555i \(-0.766485\pi\)
−0.742763 + 0.669555i \(0.766485\pi\)
\(468\) −1.06170 −0.0490772
\(469\) −27.7947 −1.28344
\(470\) 0 0
\(471\) 26.9110 1.23999
\(472\) −8.42333 −0.387715
\(473\) 41.3974 1.90346
\(474\) −2.56638 −0.117878
\(475\) 0 0
\(476\) −3.86765 −0.177273
\(477\) 22.9157 1.04924
\(478\) 26.3831 1.20674
\(479\) −1.98226 −0.0905717 −0.0452858 0.998974i \(-0.514420\pi\)
−0.0452858 + 0.998974i \(0.514420\pi\)
\(480\) 0 0
\(481\) −4.82576 −0.220036
\(482\) −25.3591 −1.15508
\(483\) 11.5699 0.526450
\(484\) 1.22270 0.0555774
\(485\) 0 0
\(486\) 32.9561 1.49492
\(487\) 8.58916 0.389212 0.194606 0.980881i \(-0.437657\pi\)
0.194606 + 0.980881i \(0.437657\pi\)
\(488\) 8.21691 0.371962
\(489\) 20.9720 0.948387
\(490\) 0 0
\(491\) 25.9002 1.16886 0.584430 0.811444i \(-0.301318\pi\)
0.584430 + 0.811444i \(0.301318\pi\)
\(492\) 3.33138 0.150190
\(493\) 2.14910 0.0967908
\(494\) 0 0
\(495\) 0 0
\(496\) 12.0609 0.541550
\(497\) 41.9000 1.87947
\(498\) −2.03116 −0.0910185
\(499\) −21.2038 −0.949214 −0.474607 0.880198i \(-0.657410\pi\)
−0.474607 + 0.880198i \(0.657410\pi\)
\(500\) 0 0
\(501\) −49.4189 −2.20787
\(502\) 14.3418 0.640106
\(503\) 25.5162 1.13771 0.568855 0.822438i \(-0.307386\pi\)
0.568855 + 0.822438i \(0.307386\pi\)
\(504\) −27.5810 −1.22856
\(505\) 0 0
\(506\) 8.87277 0.394443
\(507\) 24.3773 1.08263
\(508\) −0.111263 −0.00493651
\(509\) −17.0407 −0.755314 −0.377657 0.925946i \(-0.623270\pi\)
−0.377657 + 0.925946i \(0.623270\pi\)
\(510\) 0 0
\(511\) 5.92215 0.261981
\(512\) −18.6685 −0.825039
\(513\) 0 0
\(514\) 14.8666 0.655738
\(515\) 0 0
\(516\) 4.61761 0.203279
\(517\) −1.86372 −0.0819664
\(518\) 13.0024 0.571292
\(519\) 29.1058 1.27760
\(520\) 0 0
\(521\) 21.7817 0.954274 0.477137 0.878829i \(-0.341675\pi\)
0.477137 + 0.878829i \(0.341675\pi\)
\(522\) −1.58954 −0.0695721
\(523\) −17.4855 −0.764589 −0.382294 0.924041i \(-0.624866\pi\)
−0.382294 + 0.924041i \(0.624866\pi\)
\(524\) −3.86201 −0.168713
\(525\) 0 0
\(526\) 32.2911 1.40796
\(527\) 17.5951 0.766455
\(528\) −45.0972 −1.96260
\(529\) −20.9446 −0.910634
\(530\) 0 0
\(531\) 9.95056 0.431817
\(532\) 0 0
\(533\) 12.7355 0.551637
\(534\) −25.0824 −1.08542
\(535\) 0 0
\(536\) 22.9237 0.990154
\(537\) −17.5905 −0.759086
\(538\) 22.8607 0.985593
\(539\) −14.9021 −0.641878
\(540\) 0 0
\(541\) 14.8091 0.636691 0.318346 0.947975i \(-0.396873\pi\)
0.318346 + 0.947975i \(0.396873\pi\)
\(542\) 7.63724 0.328047
\(543\) −23.0485 −0.989108
\(544\) 6.71054 0.287712
\(545\) 0 0
\(546\) 21.2973 0.911441
\(547\) −26.5735 −1.13620 −0.568100 0.822959i \(-0.692321\pi\)
−0.568100 + 0.822959i \(0.692321\pi\)
\(548\) −1.64525 −0.0702815
\(549\) −9.70671 −0.414272
\(550\) 0 0
\(551\) 0 0
\(552\) −9.54231 −0.406148
\(553\) 2.27069 0.0965595
\(554\) 8.23942 0.350059
\(555\) 0 0
\(556\) 1.44515 0.0612881
\(557\) −16.0752 −0.681129 −0.340565 0.940221i \(-0.610618\pi\)
−0.340565 + 0.940221i \(0.610618\pi\)
\(558\) −13.0138 −0.550919
\(559\) 17.6527 0.746628
\(560\) 0 0
\(561\) −65.7903 −2.77767
\(562\) 40.3413 1.70169
\(563\) −2.03145 −0.0856155 −0.0428078 0.999083i \(-0.513630\pi\)
−0.0428078 + 0.999083i \(0.513630\pi\)
\(564\) −0.207886 −0.00875357
\(565\) 0 0
\(566\) −22.2553 −0.935459
\(567\) −27.5375 −1.15647
\(568\) −34.5571 −1.44998
\(569\) −12.8224 −0.537543 −0.268772 0.963204i \(-0.586618\pi\)
−0.268772 + 0.963204i \(0.586618\pi\)
\(570\) 0 0
\(571\) 12.9168 0.540551 0.270276 0.962783i \(-0.412885\pi\)
0.270276 + 0.962783i \(0.412885\pi\)
\(572\) 1.40294 0.0586600
\(573\) −20.1742 −0.842789
\(574\) −34.3142 −1.43225
\(575\) 0 0
\(576\) 22.5238 0.938493
\(577\) −8.11359 −0.337773 −0.168887 0.985635i \(-0.554017\pi\)
−0.168887 + 0.985635i \(0.554017\pi\)
\(578\) 34.1651 1.42108
\(579\) 19.1789 0.797046
\(580\) 0 0
\(581\) 1.79713 0.0745577
\(582\) −48.4869 −2.00985
\(583\) −30.2809 −1.25411
\(584\) −4.88431 −0.202114
\(585\) 0 0
\(586\) −11.5801 −0.478371
\(587\) 32.5617 1.34396 0.671982 0.740568i \(-0.265443\pi\)
0.671982 + 0.740568i \(0.265443\pi\)
\(588\) −1.66223 −0.0685492
\(589\) 0 0
\(590\) 0 0
\(591\) 8.85914 0.364416
\(592\) −11.7404 −0.482529
\(593\) 11.4752 0.471231 0.235616 0.971846i \(-0.424289\pi\)
0.235616 + 0.971846i \(0.424289\pi\)
\(594\) 2.55591 0.104870
\(595\) 0 0
\(596\) −2.80809 −0.115024
\(597\) 21.7762 0.891239
\(598\) 3.78352 0.154720
\(599\) 33.2099 1.35692 0.678460 0.734637i \(-0.262648\pi\)
0.678460 + 0.734637i \(0.262648\pi\)
\(600\) 0 0
\(601\) 27.3180 1.11433 0.557163 0.830403i \(-0.311890\pi\)
0.557163 + 0.830403i \(0.311890\pi\)
\(602\) −47.5628 −1.93851
\(603\) −27.0800 −1.10278
\(604\) 2.47000 0.100503
\(605\) 0 0
\(606\) −63.4549 −2.57768
\(607\) −25.7405 −1.04478 −0.522388 0.852708i \(-0.674959\pi\)
−0.522388 + 0.852708i \(0.674959\pi\)
\(608\) 0 0
\(609\) 2.73892 0.110986
\(610\) 0 0
\(611\) −0.794727 −0.0321512
\(612\) −3.76820 −0.152320
\(613\) −40.6039 −1.63997 −0.819987 0.572382i \(-0.806020\pi\)
−0.819987 + 0.572382i \(0.806020\pi\)
\(614\) −23.2445 −0.938073
\(615\) 0 0
\(616\) 36.4458 1.46844
\(617\) −14.2113 −0.572125 −0.286063 0.958211i \(-0.592347\pi\)
−0.286063 + 0.958211i \(0.592347\pi\)
\(618\) 50.7936 2.04322
\(619\) −29.5635 −1.18826 −0.594129 0.804370i \(-0.702503\pi\)
−0.594129 + 0.804370i \(0.702503\pi\)
\(620\) 0 0
\(621\) 0.592091 0.0237598
\(622\) 26.5973 1.06645
\(623\) 22.1924 0.889121
\(624\) −19.2303 −0.769828
\(625\) 0 0
\(626\) 31.3591 1.25336
\(627\) 0 0
\(628\) −2.03675 −0.0812753
\(629\) −17.1276 −0.682923
\(630\) 0 0
\(631\) −1.70763 −0.0679798 −0.0339899 0.999422i \(-0.510821\pi\)
−0.0339899 + 0.999422i \(0.510821\pi\)
\(632\) −1.87276 −0.0744942
\(633\) −29.3444 −1.16634
\(634\) 4.53280 0.180020
\(635\) 0 0
\(636\) −3.37764 −0.133932
\(637\) −6.35454 −0.251776
\(638\) 2.10043 0.0831567
\(639\) 40.8226 1.61492
\(640\) 0 0
\(641\) 2.76200 0.109092 0.0545462 0.998511i \(-0.482629\pi\)
0.0545462 + 0.998511i \(0.482629\pi\)
\(642\) −11.9911 −0.473252
\(643\) −21.6971 −0.855648 −0.427824 0.903862i \(-0.640720\pi\)
−0.427824 + 0.903862i \(0.640720\pi\)
\(644\) −0.875668 −0.0345061
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0268 1.10185 0.550923 0.834556i \(-0.314276\pi\)
0.550923 + 0.834556i \(0.314276\pi\)
\(648\) 22.7116 0.892196
\(649\) −13.1487 −0.516133
\(650\) 0 0
\(651\) 22.4240 0.878866
\(652\) −1.58726 −0.0621620
\(653\) −7.59308 −0.297140 −0.148570 0.988902i \(-0.547467\pi\)
−0.148570 + 0.988902i \(0.547467\pi\)
\(654\) 11.8308 0.462620
\(655\) 0 0
\(656\) 30.9838 1.20972
\(657\) 5.76988 0.225104
\(658\) 2.14129 0.0834761
\(659\) 7.18394 0.279847 0.139923 0.990162i \(-0.455314\pi\)
0.139923 + 0.990162i \(0.455314\pi\)
\(660\) 0 0
\(661\) −28.8678 −1.12283 −0.561413 0.827536i \(-0.689742\pi\)
−0.561413 + 0.827536i \(0.689742\pi\)
\(662\) −38.3857 −1.49190
\(663\) −28.0543 −1.08954
\(664\) −1.48219 −0.0575201
\(665\) 0 0
\(666\) 12.6681 0.490877
\(667\) 0.486575 0.0188403
\(668\) 3.74026 0.144715
\(669\) 22.0946 0.854226
\(670\) 0 0
\(671\) 12.8265 0.495162
\(672\) 8.55222 0.329909
\(673\) 23.3191 0.898885 0.449442 0.893309i \(-0.351623\pi\)
0.449442 + 0.893309i \(0.351623\pi\)
\(674\) 14.8767 0.573029
\(675\) 0 0
\(676\) −1.84499 −0.0709612
\(677\) −17.5099 −0.672958 −0.336479 0.941691i \(-0.609236\pi\)
−0.336479 + 0.941691i \(0.609236\pi\)
\(678\) 17.3005 0.664420
\(679\) 42.9004 1.64636
\(680\) 0 0
\(681\) −65.5765 −2.51290
\(682\) 17.1966 0.658491
\(683\) 22.0114 0.842243 0.421122 0.907004i \(-0.361637\pi\)
0.421122 + 0.907004i \(0.361637\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −16.5283 −0.631055
\(687\) −54.0972 −2.06394
\(688\) 42.9466 1.63732
\(689\) −12.9124 −0.491923
\(690\) 0 0
\(691\) −2.65623 −0.101048 −0.0505238 0.998723i \(-0.516089\pi\)
−0.0505238 + 0.998723i \(0.516089\pi\)
\(692\) −2.20287 −0.0837404
\(693\) −43.0538 −1.63548
\(694\) 10.0850 0.382821
\(695\) 0 0
\(696\) −2.25893 −0.0856244
\(697\) 45.2010 1.71211
\(698\) 46.7367 1.76901
\(699\) 24.8344 0.939322
\(700\) 0 0
\(701\) −7.36728 −0.278258 −0.139129 0.990274i \(-0.544430\pi\)
−0.139129 + 0.990274i \(0.544430\pi\)
\(702\) 1.08989 0.0411352
\(703\) 0 0
\(704\) −29.7632 −1.12174
\(705\) 0 0
\(706\) −9.32848 −0.351082
\(707\) 56.1438 2.11150
\(708\) −1.46666 −0.0551203
\(709\) −5.99178 −0.225026 −0.112513 0.993650i \(-0.535890\pi\)
−0.112513 + 0.993650i \(0.535890\pi\)
\(710\) 0 0
\(711\) 2.21230 0.0829679
\(712\) −18.3032 −0.685943
\(713\) 3.98368 0.149190
\(714\) 75.5885 2.82883
\(715\) 0 0
\(716\) 1.33133 0.0497543
\(717\) −44.2916 −1.65410
\(718\) 6.17798 0.230560
\(719\) 13.5815 0.506504 0.253252 0.967400i \(-0.418500\pi\)
0.253252 + 0.967400i \(0.418500\pi\)
\(720\) 0 0
\(721\) −44.9412 −1.67370
\(722\) 0 0
\(723\) 42.5725 1.58329
\(724\) 1.74443 0.0648311
\(725\) 0 0
\(726\) −23.8962 −0.886872
\(727\) 41.2448 1.52968 0.764842 0.644218i \(-0.222817\pi\)
0.764842 + 0.644218i \(0.222817\pi\)
\(728\) 15.5412 0.575995
\(729\) −29.9060 −1.10763
\(730\) 0 0
\(731\) 62.6529 2.31730
\(732\) 1.43071 0.0528807
\(733\) 0.123848 0.00457443 0.00228722 0.999997i \(-0.499272\pi\)
0.00228722 + 0.999997i \(0.499272\pi\)
\(734\) −24.5113 −0.904728
\(735\) 0 0
\(736\) 1.51932 0.0560030
\(737\) 35.7837 1.31811
\(738\) −33.4319 −1.23065
\(739\) −36.5134 −1.34317 −0.671584 0.740928i \(-0.734386\pi\)
−0.671584 + 0.740928i \(0.734386\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 34.7907 1.27721
\(743\) −9.06197 −0.332451 −0.166226 0.986088i \(-0.553158\pi\)
−0.166226 + 0.986088i \(0.553158\pi\)
\(744\) −18.4942 −0.678032
\(745\) 0 0
\(746\) −54.7299 −2.00380
\(747\) 1.75092 0.0640630
\(748\) 4.97933 0.182062
\(749\) 10.6095 0.387664
\(750\) 0 0
\(751\) −4.08610 −0.149104 −0.0745519 0.997217i \(-0.523753\pi\)
−0.0745519 + 0.997217i \(0.523753\pi\)
\(752\) −1.93346 −0.0705062
\(753\) −24.0768 −0.877407
\(754\) 0.895663 0.0326181
\(755\) 0 0
\(756\) −0.252247 −0.00917413
\(757\) 34.4597 1.25246 0.626230 0.779638i \(-0.284597\pi\)
0.626230 + 0.779638i \(0.284597\pi\)
\(758\) 46.6155 1.69315
\(759\) −14.8955 −0.540671
\(760\) 0 0
\(761\) 20.5813 0.746072 0.373036 0.927817i \(-0.378317\pi\)
0.373036 + 0.927817i \(0.378317\pi\)
\(762\) 2.17451 0.0787741
\(763\) −10.4676 −0.378954
\(764\) 1.52688 0.0552406
\(765\) 0 0
\(766\) −4.58266 −0.165578
\(767\) −5.60688 −0.202453
\(768\) −11.1049 −0.400714
\(769\) −30.3550 −1.09463 −0.547315 0.836927i \(-0.684350\pi\)
−0.547315 + 0.836927i \(0.684350\pi\)
\(770\) 0 0
\(771\) −24.9578 −0.898834
\(772\) −1.45155 −0.0522424
\(773\) −19.5225 −0.702176 −0.351088 0.936343i \(-0.614188\pi\)
−0.351088 + 0.936343i \(0.614188\pi\)
\(774\) −46.3398 −1.66565
\(775\) 0 0
\(776\) −35.3822 −1.27015
\(777\) −21.8282 −0.783083
\(778\) 38.5054 1.38048
\(779\) 0 0
\(780\) 0 0
\(781\) −53.9433 −1.93024
\(782\) 13.4285 0.480202
\(783\) 0.140164 0.00500905
\(784\) −15.4597 −0.552134
\(785\) 0 0
\(786\) 75.4783 2.69222
\(787\) 35.2236 1.25559 0.627793 0.778380i \(-0.283958\pi\)
0.627793 + 0.778380i \(0.283958\pi\)
\(788\) −0.670503 −0.0238857
\(789\) −54.2098 −1.92992
\(790\) 0 0
\(791\) −15.3071 −0.544259
\(792\) 35.5087 1.26175
\(793\) 5.46948 0.194227
\(794\) 18.7273 0.664608
\(795\) 0 0
\(796\) −1.64813 −0.0584163
\(797\) −28.7940 −1.01994 −0.509969 0.860193i \(-0.670343\pi\)
−0.509969 + 0.860193i \(0.670343\pi\)
\(798\) 0 0
\(799\) −2.82065 −0.0997874
\(800\) 0 0
\(801\) 21.6218 0.763969
\(802\) −13.6406 −0.481666
\(803\) −7.62436 −0.269058
\(804\) 3.99144 0.140767
\(805\) 0 0
\(806\) 7.33295 0.258292
\(807\) −38.3781 −1.35097
\(808\) −46.3047 −1.62899
\(809\) −48.0068 −1.68783 −0.843915 0.536478i \(-0.819755\pi\)
−0.843915 + 0.536478i \(0.819755\pi\)
\(810\) 0 0
\(811\) −9.62886 −0.338115 −0.169057 0.985606i \(-0.554072\pi\)
−0.169057 + 0.985606i \(0.554072\pi\)
\(812\) −0.207294 −0.00727461
\(813\) −12.8213 −0.449662
\(814\) −16.7397 −0.586725
\(815\) 0 0
\(816\) −68.2523 −2.38931
\(817\) 0 0
\(818\) 50.9680 1.78205
\(819\) −18.3590 −0.641514
\(820\) 0 0
\(821\) −25.7257 −0.897834 −0.448917 0.893573i \(-0.648190\pi\)
−0.448917 + 0.893573i \(0.648190\pi\)
\(822\) 32.1544 1.12151
\(823\) 13.4584 0.469132 0.234566 0.972100i \(-0.424633\pi\)
0.234566 + 0.972100i \(0.424633\pi\)
\(824\) 37.0654 1.29123
\(825\) 0 0
\(826\) 15.1070 0.525640
\(827\) −0.172408 −0.00599520 −0.00299760 0.999996i \(-0.500954\pi\)
−0.00299760 + 0.999996i \(0.500954\pi\)
\(828\) −0.853152 −0.0296491
\(829\) −42.3791 −1.47189 −0.735943 0.677044i \(-0.763261\pi\)
−0.735943 + 0.677044i \(0.763261\pi\)
\(830\) 0 0
\(831\) −13.8322 −0.479834
\(832\) −12.6916 −0.440002
\(833\) −22.5536 −0.781435
\(834\) −28.2437 −0.978001
\(835\) 0 0
\(836\) 0 0
\(837\) 1.14755 0.0396651
\(838\) −11.6270 −0.401647
\(839\) 45.1399 1.55840 0.779200 0.626775i \(-0.215625\pi\)
0.779200 + 0.626775i \(0.215625\pi\)
\(840\) 0 0
\(841\) −28.8848 −0.996028
\(842\) 15.5198 0.534847
\(843\) −67.7243 −2.33255
\(844\) 2.22093 0.0764475
\(845\) 0 0
\(846\) 2.08623 0.0717260
\(847\) 21.1430 0.726481
\(848\) −31.4141 −1.07876
\(849\) 37.3618 1.28225
\(850\) 0 0
\(851\) −3.87784 −0.132931
\(852\) −6.01702 −0.206140
\(853\) 46.3405 1.58667 0.793333 0.608787i \(-0.208344\pi\)
0.793333 + 0.608787i \(0.208344\pi\)
\(854\) −14.7368 −0.504283
\(855\) 0 0
\(856\) −8.75023 −0.299077
\(857\) −21.8934 −0.747863 −0.373931 0.927456i \(-0.621990\pi\)
−0.373931 + 0.927456i \(0.621990\pi\)
\(858\) −27.4188 −0.936063
\(859\) 33.4020 1.13966 0.569830 0.821762i \(-0.307009\pi\)
0.569830 + 0.821762i \(0.307009\pi\)
\(860\) 0 0
\(861\) 57.6062 1.96321
\(862\) 44.2158 1.50600
\(863\) 27.1254 0.923359 0.461680 0.887047i \(-0.347247\pi\)
0.461680 + 0.887047i \(0.347247\pi\)
\(864\) 0.437660 0.0148895
\(865\) 0 0
\(866\) 10.0580 0.341785
\(867\) −57.3558 −1.94791
\(868\) −1.69716 −0.0576052
\(869\) −2.92335 −0.0991680
\(870\) 0 0
\(871\) 15.2589 0.517027
\(872\) 8.63321 0.292358
\(873\) 41.7973 1.41462
\(874\) 0 0
\(875\) 0 0
\(876\) −0.850447 −0.0287339
\(877\) 49.0823 1.65739 0.828695 0.559700i \(-0.189084\pi\)
0.828695 + 0.559700i \(0.189084\pi\)
\(878\) 11.7832 0.397662
\(879\) 19.4406 0.655714
\(880\) 0 0
\(881\) 37.9778 1.27951 0.639753 0.768581i \(-0.279037\pi\)
0.639753 + 0.768581i \(0.279037\pi\)
\(882\) 16.6812 0.561686
\(883\) −33.2100 −1.11761 −0.558803 0.829300i \(-0.688739\pi\)
−0.558803 + 0.829300i \(0.688739\pi\)
\(884\) 2.12328 0.0714137
\(885\) 0 0
\(886\) −32.2301 −1.08279
\(887\) −26.2525 −0.881474 −0.440737 0.897636i \(-0.645283\pi\)
−0.440737 + 0.897636i \(0.645283\pi\)
\(888\) 18.0029 0.604136
\(889\) −1.92396 −0.0645277
\(890\) 0 0
\(891\) 35.4526 1.18771
\(892\) −1.67222 −0.0559902
\(893\) 0 0
\(894\) 54.8808 1.83549
\(895\) 0 0
\(896\) 41.0839 1.37252
\(897\) −6.35172 −0.212078
\(898\) 27.7843 0.927173
\(899\) 0.943045 0.0314523
\(900\) 0 0
\(901\) −45.8287 −1.52677
\(902\) 44.1772 1.47094
\(903\) 79.8477 2.65716
\(904\) 12.6246 0.419888
\(905\) 0 0
\(906\) −48.2731 −1.60377
\(907\) −7.92760 −0.263231 −0.131616 0.991301i \(-0.542017\pi\)
−0.131616 + 0.991301i \(0.542017\pi\)
\(908\) 4.96315 0.164708
\(909\) 54.7002 1.81429
\(910\) 0 0
\(911\) −0.619746 −0.0205331 −0.0102665 0.999947i \(-0.503268\pi\)
−0.0102665 + 0.999947i \(0.503268\pi\)
\(912\) 0 0
\(913\) −2.31369 −0.0765718
\(914\) 41.7670 1.38153
\(915\) 0 0
\(916\) 4.09434 0.135281
\(917\) −66.7818 −2.20533
\(918\) 3.86824 0.127671
\(919\) −35.0574 −1.15644 −0.578219 0.815882i \(-0.696252\pi\)
−0.578219 + 0.815882i \(0.696252\pi\)
\(920\) 0 0
\(921\) 39.0226 1.28584
\(922\) −0.289929 −0.00954830
\(923\) −23.0025 −0.757135
\(924\) 6.34588 0.208764
\(925\) 0 0
\(926\) 20.6553 0.678775
\(927\) −43.7857 −1.43811
\(928\) 0.359665 0.0118066
\(929\) 12.0434 0.395132 0.197566 0.980290i \(-0.436696\pi\)
0.197566 + 0.980290i \(0.436696\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.87959 −0.0615679
\(933\) −44.6511 −1.46181
\(934\) −47.4850 −1.55376
\(935\) 0 0
\(936\) 15.1416 0.494918
\(937\) −14.9304 −0.487757 −0.243878 0.969806i \(-0.578420\pi\)
−0.243878 + 0.969806i \(0.578420\pi\)
\(938\) −41.1131 −1.34239
\(939\) −52.6452 −1.71801
\(940\) 0 0
\(941\) 19.4198 0.633068 0.316534 0.948581i \(-0.397481\pi\)
0.316534 + 0.948581i \(0.397481\pi\)
\(942\) 39.8059 1.29695
\(943\) 10.2339 0.333261
\(944\) −13.6408 −0.443970
\(945\) 0 0
\(946\) 61.2338 1.99088
\(947\) −16.7369 −0.543878 −0.271939 0.962315i \(-0.587665\pi\)
−0.271939 + 0.962315i \(0.587665\pi\)
\(948\) −0.326081 −0.0105906
\(949\) −3.25117 −0.105538
\(950\) 0 0
\(951\) −7.60959 −0.246758
\(952\) 55.1589 1.78771
\(953\) 53.1772 1.72258 0.861290 0.508114i \(-0.169657\pi\)
0.861290 + 0.508114i \(0.169657\pi\)
\(954\) 33.8962 1.09743
\(955\) 0 0
\(956\) 3.35220 0.108418
\(957\) −3.52616 −0.113985
\(958\) −2.93209 −0.0947317
\(959\) −28.4496 −0.918686
\(960\) 0 0
\(961\) −23.2791 −0.750939
\(962\) −7.13812 −0.230142
\(963\) 10.3367 0.333096
\(964\) −3.22209 −0.103777
\(965\) 0 0
\(966\) 17.1139 0.550630
\(967\) −30.0281 −0.965637 −0.482819 0.875720i \(-0.660387\pi\)
−0.482819 + 0.875720i \(0.660387\pi\)
\(968\) −17.4377 −0.560469
\(969\) 0 0
\(970\) 0 0
\(971\) 24.1413 0.774732 0.387366 0.921926i \(-0.373385\pi\)
0.387366 + 0.921926i \(0.373385\pi\)
\(972\) 4.18736 0.134310
\(973\) 24.9896 0.801128
\(974\) 12.7048 0.407089
\(975\) 0 0
\(976\) 13.3065 0.425931
\(977\) 9.57680 0.306389 0.153195 0.988196i \(-0.451044\pi\)
0.153195 + 0.988196i \(0.451044\pi\)
\(978\) 31.0211 0.991947
\(979\) −28.5712 −0.913140
\(980\) 0 0
\(981\) −10.1985 −0.325613
\(982\) 38.3108 1.22255
\(983\) −31.1715 −0.994216 −0.497108 0.867689i \(-0.665605\pi\)
−0.497108 + 0.867689i \(0.665605\pi\)
\(984\) −47.5108 −1.51459
\(985\) 0 0
\(986\) 3.17889 0.101236
\(987\) −3.59476 −0.114422
\(988\) 0 0
\(989\) 14.1851 0.451061
\(990\) 0 0
\(991\) −48.6643 −1.54587 −0.772937 0.634483i \(-0.781213\pi\)
−0.772937 + 0.634483i \(0.781213\pi\)
\(992\) 2.94464 0.0934925
\(993\) 64.4414 2.04499
\(994\) 61.9771 1.96580
\(995\) 0 0
\(996\) −0.258076 −0.00817746
\(997\) −31.8954 −1.01014 −0.505068 0.863080i \(-0.668533\pi\)
−0.505068 + 0.863080i \(0.668533\pi\)
\(998\) −31.3641 −0.992812
\(999\) −1.11706 −0.0353422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cu.1.18 24
5.2 odd 4 1805.2.b.k.1084.18 24
5.3 odd 4 1805.2.b.k.1084.7 24
5.4 even 2 inner 9025.2.a.cu.1.7 24
19.6 even 9 475.2.l.f.226.7 48
19.16 even 9 475.2.l.f.351.7 48
19.18 odd 2 9025.2.a.ct.1.7 24
95.18 even 4 1805.2.b.l.1084.18 24
95.37 even 4 1805.2.b.l.1084.7 24
95.44 even 18 475.2.l.f.226.2 48
95.54 even 18 475.2.l.f.351.2 48
95.63 odd 36 95.2.p.a.74.2 yes 48
95.73 odd 36 95.2.p.a.9.7 yes 48
95.82 odd 36 95.2.p.a.74.7 yes 48
95.92 odd 36 95.2.p.a.9.2 48
95.94 odd 2 9025.2.a.ct.1.18 24
285.92 even 36 855.2.da.b.199.7 48
285.158 even 36 855.2.da.b.739.7 48
285.263 even 36 855.2.da.b.199.2 48
285.272 even 36 855.2.da.b.739.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.9.2 48 95.92 odd 36
95.2.p.a.9.7 yes 48 95.73 odd 36
95.2.p.a.74.2 yes 48 95.63 odd 36
95.2.p.a.74.7 yes 48 95.82 odd 36
475.2.l.f.226.2 48 95.44 even 18
475.2.l.f.226.7 48 19.6 even 9
475.2.l.f.351.2 48 95.54 even 18
475.2.l.f.351.7 48 19.16 even 9
855.2.da.b.199.2 48 285.263 even 36
855.2.da.b.199.7 48 285.92 even 36
855.2.da.b.739.2 48 285.272 even 36
855.2.da.b.739.7 48 285.158 even 36
1805.2.b.k.1084.7 24 5.3 odd 4
1805.2.b.k.1084.18 24 5.2 odd 4
1805.2.b.l.1084.7 24 95.37 even 4
1805.2.b.l.1084.18 24 95.18 even 4
9025.2.a.ct.1.7 24 19.18 odd 2
9025.2.a.ct.1.18 24 95.94 odd 2
9025.2.a.cu.1.7 24 5.4 even 2 inner
9025.2.a.cu.1.18 24 1.1 even 1 trivial