gp: [N,k,chi] = [9025,2,Mod(1,9025)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9025.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [24,0,0,18,0,-12,0,0,12,0,12,0,0,24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( -1 \)
\(19\)
\( +1 \)
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9025))\):
\( T_{2}^{24} - 33 T_{2}^{22} + 468 T_{2}^{20} - 3743 T_{2}^{18} + 18618 T_{2}^{16} - 59871 T_{2}^{14} + \cdots + 19 \)
T2^24 - 33*T2^22 + 468*T2^20 - 3743*T2^18 + 18618*T2^16 - 59871*T2^14 + 125215*T2^12 - 166671*T2^10 + 133557*T2^8 - 57610*T2^6 + 10782*T2^4 - 783*T2^2 + 19
\( T_{3}^{24} - 42 T_{3}^{22} + 771 T_{3}^{20} - 8116 T_{3}^{18} + 54009 T_{3}^{16} - 236172 T_{3}^{14} + \cdots + 1539 \)
T3^24 - 42*T3^22 + 771*T3^20 - 8116*T3^18 + 54009*T3^16 - 236172*T3^14 + 683568*T3^12 - 1288617*T3^10 + 1521996*T3^8 - 1053622*T3^6 + 379557*T3^4 - 55809*T3^2 + 1539
\( T_{7}^{24} - 90 T_{7}^{22} + 3516 T_{7}^{20} - 78431 T_{7}^{18} + 1105830 T_{7}^{16} - 10303185 T_{7}^{14} + \cdots + 5000211 \)
T7^24 - 90*T7^22 + 3516*T7^20 - 78431*T7^18 + 1105830*T7^16 - 10303185*T7^14 + 64379316*T7^12 - 267704640*T7^10 + 717036678*T7^8 - 1151590949*T7^6 + 949207302*T7^4 - 262504152*T7^2 + 5000211
\( T_{11}^{12} - 6 T_{11}^{11} - 39 T_{11}^{10} + 237 T_{11}^{9} + 570 T_{11}^{8} - 3315 T_{11}^{7} + \cdots + 18981 \)
T11^12 - 6*T11^11 - 39*T11^10 + 237*T11^9 + 570*T11^8 - 3315*T11^7 - 4355*T11^6 + 20499*T11^5 + 19323*T11^4 - 52480*T11^3 - 43137*T11^2 + 31158*T11 + 18981
\( T_{29}^{12} - 18 T_{29}^{11} + 45 T_{29}^{10} + 756 T_{29}^{9} - 3600 T_{29}^{8} - 9369 T_{29}^{7} + \cdots - 263169 \)
T29^12 - 18*T29^11 + 45*T29^10 + 756*T29^9 - 3600*T29^8 - 9369*T29^7 + 65511*T29^6 + 13797*T29^5 - 425574*T29^4 + 286713*T29^3 + 757431*T29^2 - 567891*T29 - 263169