Defining parameters
Level: | \( N \) | \(=\) | \( 9025 = 5^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9025.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 74 \) | ||
Sturm bound: | \(1900\) | ||
Trace bound: | \(14\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(7\), \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9025))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1010 | 566 | 444 |
Cusp forms | 891 | 515 | 376 |
Eisenstein series | 119 | 51 | 68 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(121\) |
\(+\) | \(-\) | \(-\) | \(126\) |
\(-\) | \(+\) | \(-\) | \(139\) |
\(-\) | \(-\) | \(+\) | \(129\) |
Plus space | \(+\) | \(250\) | |
Minus space | \(-\) | \(265\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9025))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9025))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9025)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(475))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1805))\)\(^{\oplus 2}\)