Properties

Label 1805.2.b.l.1084.7
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-18,-3,-12,0,0,-12,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.7
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.l.1084.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.47917i q^{2} -2.48321i q^{3} -0.187941 q^{4} +(0.111989 - 2.23326i) q^{5} -3.67308 q^{6} +3.24988i q^{7} -2.68034i q^{8} -3.16631 q^{9} +(-3.30337 - 0.165651i) q^{10} -4.18399 q^{11} +0.466696i q^{12} -1.78413i q^{13} +4.80712 q^{14} +(-5.54565 - 0.278093i) q^{15} -4.34056 q^{16} -6.33226i q^{17} +4.68351i q^{18} +(-0.0210474 + 0.419722i) q^{20} +8.07011 q^{21} +6.18883i q^{22} +1.43368i q^{23} -6.65584 q^{24} +(-4.97492 - 0.500204i) q^{25} -2.63904 q^{26} +0.412988i q^{27} -0.610785i q^{28} -0.339390 q^{29} +(-0.411347 + 8.20295i) q^{30} +2.77865 q^{31} +1.05974i q^{32} +10.3897i q^{33} -9.36648 q^{34} +(7.25782 + 0.363952i) q^{35} +0.595080 q^{36} -2.70482i q^{37} -4.43037 q^{39} +(-5.98590 - 0.300170i) q^{40} +7.13821 q^{41} -11.9371i q^{42} +9.89425i q^{43} +0.786344 q^{44} +(-0.354594 + 7.07120i) q^{45} +2.12065 q^{46} +0.445441i q^{47} +10.7785i q^{48} -3.56169 q^{49} +(-0.739886 + 7.35874i) q^{50} -15.7243 q^{51} +0.335312i q^{52} +7.23734i q^{53} +0.610879 q^{54} +(-0.468563 + 9.34395i) q^{55} +8.71078 q^{56} +0.502015i q^{58} +3.14263 q^{59} +(1.04226 + 0.0522651i) q^{60} -3.06562 q^{61} -4.11009i q^{62} -10.2901i q^{63} -7.11359 q^{64} +(-3.98444 - 0.199804i) q^{65} +15.3681 q^{66} +8.55254i q^{67} +1.19009i q^{68} +3.56011 q^{69} +(0.538346 - 10.7355i) q^{70} -12.8928 q^{71} +8.48680i q^{72} -1.82227i q^{73} -4.00089 q^{74} +(-1.24211 + 12.3537i) q^{75} -13.5974i q^{77} +6.55327i q^{78} +0.698700 q^{79} +(-0.486097 + 9.69361i) q^{80} -8.47340 q^{81} -10.5586i q^{82} -0.552985i q^{83} -1.51671 q^{84} +(-14.1416 - 0.709146i) q^{85} +14.6353 q^{86} +0.842775i q^{87} +11.2145i q^{88} +6.82870 q^{89} +(10.4595 + 0.524504i) q^{90} +5.79822 q^{91} -0.269446i q^{92} -6.89995i q^{93} +0.658883 q^{94} +2.63155 q^{96} -13.2006i q^{97} +5.26835i q^{98} +13.2478 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} + 6 q^{10} + 12 q^{11} + 24 q^{14} + 9 q^{15} + 6 q^{16} + 21 q^{20} - 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} + 36 q^{29} - 18 q^{30} - 42 q^{31} + 6 q^{34}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.47917i 1.04593i −0.852354 0.522965i \(-0.824826\pi\)
0.852354 0.522965i \(-0.175174\pi\)
\(3\) 2.48321i 1.43368i −0.697238 0.716840i \(-0.745588\pi\)
0.697238 0.716840i \(-0.254412\pi\)
\(4\) −0.187941 −0.0939705
\(5\) 0.111989 2.23326i 0.0500832 0.998745i
\(6\) −3.67308 −1.49953
\(7\) 3.24988i 1.22834i 0.789175 + 0.614169i \(0.210509\pi\)
−0.789175 + 0.614169i \(0.789491\pi\)
\(8\) 2.68034i 0.947644i
\(9\) −3.16631 −1.05544
\(10\) −3.30337 0.165651i −1.04462 0.0523836i
\(11\) −4.18399 −1.26152 −0.630760 0.775978i \(-0.717257\pi\)
−0.630760 + 0.775978i \(0.717257\pi\)
\(12\) 0.466696i 0.134724i
\(13\) 1.78413i 0.494830i −0.968910 0.247415i \(-0.920419\pi\)
0.968910 0.247415i \(-0.0795811\pi\)
\(14\) 4.80712 1.28476
\(15\) −5.54565 0.278093i −1.43188 0.0718033i
\(16\) −4.34056 −1.08514
\(17\) 6.33226i 1.53580i −0.640571 0.767899i \(-0.721302\pi\)
0.640571 0.767899i \(-0.278698\pi\)
\(18\) 4.68351i 1.10391i
\(19\) 0 0
\(20\) −0.0210474 + 0.419722i −0.00470635 + 0.0938526i
\(21\) 8.07011 1.76104
\(22\) 6.18883i 1.31946i
\(23\) 1.43368i 0.298942i 0.988766 + 0.149471i \(0.0477571\pi\)
−0.988766 + 0.149471i \(0.952243\pi\)
\(24\) −6.65584 −1.35862
\(25\) −4.97492 0.500204i −0.994983 0.100041i
\(26\) −2.63904 −0.517558
\(27\) 0.412988i 0.0794796i
\(28\) 0.610785i 0.115428i
\(29\) −0.339390 −0.0630231 −0.0315116 0.999503i \(-0.510032\pi\)
−0.0315116 + 0.999503i \(0.510032\pi\)
\(30\) −0.411347 + 8.20295i −0.0751013 + 1.49765i
\(31\) 2.77865 0.499060 0.249530 0.968367i \(-0.419724\pi\)
0.249530 + 0.968367i \(0.419724\pi\)
\(32\) 1.05974i 0.187337i
\(33\) 10.3897i 1.80862i
\(34\) −9.36648 −1.60634
\(35\) 7.25782 + 0.363952i 1.22680 + 0.0615191i
\(36\) 0.595080 0.0991800
\(37\) 2.70482i 0.444670i −0.974970 0.222335i \(-0.928632\pi\)
0.974970 0.222335i \(-0.0713679\pi\)
\(38\) 0 0
\(39\) −4.43037 −0.709427
\(40\) −5.98590 0.300170i −0.946455 0.0474611i
\(41\) 7.13821 1.11480 0.557401 0.830244i \(-0.311799\pi\)
0.557401 + 0.830244i \(0.311799\pi\)
\(42\) 11.9371i 1.84193i
\(43\) 9.89425i 1.50886i 0.656381 + 0.754429i \(0.272086\pi\)
−0.656381 + 0.754429i \(0.727914\pi\)
\(44\) 0.786344 0.118546
\(45\) −0.354594 + 7.07120i −0.0528597 + 1.05411i
\(46\) 2.12065 0.312673
\(47\) 0.445441i 0.0649743i 0.999472 + 0.0324871i \(0.0103428\pi\)
−0.999472 + 0.0324871i \(0.989657\pi\)
\(48\) 10.7785i 1.55574i
\(49\) −3.56169 −0.508813
\(50\) −0.739886 + 7.35874i −0.104636 + 1.04068i
\(51\) −15.7243 −2.20184
\(52\) 0.335312i 0.0464994i
\(53\) 7.23734i 0.994125i 0.867715 + 0.497062i \(0.165588\pi\)
−0.867715 + 0.497062i \(0.834412\pi\)
\(54\) 0.610879 0.0831301
\(55\) −0.468563 + 9.34395i −0.0631810 + 1.25994i
\(56\) 8.71078 1.16403
\(57\) 0 0
\(58\) 0.502015i 0.0659178i
\(59\) 3.14263 0.409136 0.204568 0.978852i \(-0.434421\pi\)
0.204568 + 0.978852i \(0.434421\pi\)
\(60\) 1.04226 + 0.0522651i 0.134555 + 0.00674739i
\(61\) −3.06562 −0.392512 −0.196256 0.980553i \(-0.562878\pi\)
−0.196256 + 0.980553i \(0.562878\pi\)
\(62\) 4.11009i 0.521982i
\(63\) 10.2901i 1.29643i
\(64\) −7.11359 −0.889198
\(65\) −3.98444 0.199804i −0.494209 0.0247827i
\(66\) 15.3681 1.89169
\(67\) 8.55254i 1.04486i 0.852682 + 0.522430i \(0.174974\pi\)
−0.852682 + 0.522430i \(0.825026\pi\)
\(68\) 1.19009i 0.144320i
\(69\) 3.56011 0.428587
\(70\) 0.538346 10.7355i 0.0643447 1.28314i
\(71\) −12.8928 −1.53009 −0.765046 0.643975i \(-0.777284\pi\)
−0.765046 + 0.643975i \(0.777284\pi\)
\(72\) 8.48680i 1.00018i
\(73\) 1.82227i 0.213281i −0.994298 0.106640i \(-0.965991\pi\)
0.994298 0.106640i \(-0.0340093\pi\)
\(74\) −4.00089 −0.465094
\(75\) −1.24211 + 12.3537i −0.143426 + 1.42649i
\(76\) 0 0
\(77\) 13.5974i 1.54957i
\(78\) 6.55327i 0.742012i
\(79\) 0.698700 0.0786099 0.0393050 0.999227i \(-0.487486\pi\)
0.0393050 + 0.999227i \(0.487486\pi\)
\(80\) −0.486097 + 9.69361i −0.0543473 + 1.08378i
\(81\) −8.47340 −0.941489
\(82\) 10.5586i 1.16600i
\(83\) 0.552985i 0.0606980i −0.999539 0.0303490i \(-0.990338\pi\)
0.999539 0.0303490i \(-0.00966188\pi\)
\(84\) −1.51671 −0.165486
\(85\) −14.1416 0.709146i −1.53387 0.0769177i
\(86\) 14.6353 1.57816
\(87\) 0.842775i 0.0903550i
\(88\) 11.2145i 1.19547i
\(89\) 6.82870 0.723841 0.361920 0.932209i \(-0.382121\pi\)
0.361920 + 0.932209i \(0.382121\pi\)
\(90\) 10.4595 + 0.524504i 1.10253 + 0.0552876i
\(91\) 5.79822 0.607818
\(92\) 0.269446i 0.0280917i
\(93\) 6.89995i 0.715492i
\(94\) 0.658883 0.0679586
\(95\) 0 0
\(96\) 2.63155 0.268582
\(97\) 13.2006i 1.34032i −0.742217 0.670160i \(-0.766226\pi\)
0.742217 0.670160i \(-0.233774\pi\)
\(98\) 5.26835i 0.532183i
\(99\) 13.2478 1.33146
\(100\) 0.934991 + 0.0940088i 0.0934991 + 0.00940088i
\(101\) 17.2757 1.71899 0.859496 0.511142i \(-0.170777\pi\)
0.859496 + 0.511142i \(0.170777\pi\)
\(102\) 23.2589i 2.30297i
\(103\) 13.8286i 1.36257i −0.732017 0.681286i \(-0.761421\pi\)
0.732017 0.681286i \(-0.238579\pi\)
\(104\) −4.78209 −0.468922
\(105\) 0.903768 18.0227i 0.0881987 1.75883i
\(106\) 10.7052 1.03979
\(107\) 3.26460i 0.315600i −0.987471 0.157800i \(-0.949560\pi\)
0.987471 0.157800i \(-0.0504402\pi\)
\(108\) 0.0776174i 0.00746874i
\(109\) −3.22094 −0.308510 −0.154255 0.988031i \(-0.549298\pi\)
−0.154255 + 0.988031i \(0.549298\pi\)
\(110\) 13.8213 + 0.693084i 1.31781 + 0.0660829i
\(111\) −6.71663 −0.637514
\(112\) 14.1063i 1.33292i
\(113\) 4.71007i 0.443086i −0.975151 0.221543i \(-0.928891\pi\)
0.975151 0.221543i \(-0.0711093\pi\)
\(114\) 0 0
\(115\) 3.20177 + 0.160557i 0.298567 + 0.0149720i
\(116\) 0.0637853 0.00592232
\(117\) 5.64913i 0.522262i
\(118\) 4.64849i 0.427928i
\(119\) 20.5791 1.88648
\(120\) −0.745384 + 14.8642i −0.0680440 + 1.35691i
\(121\) 6.50577 0.591434
\(122\) 4.53457i 0.410541i
\(123\) 17.7257i 1.59827i
\(124\) −0.522222 −0.0468969
\(125\) −1.67422 + 11.0543i −0.149747 + 0.988724i
\(126\) −15.2208 −1.35598
\(127\) 0.592012i 0.0525325i 0.999655 + 0.0262663i \(0.00836177\pi\)
−0.999655 + 0.0262663i \(0.991638\pi\)
\(128\) 12.6417i 1.11738i
\(129\) 24.5695 2.16322
\(130\) −0.295544 + 5.89366i −0.0259210 + 0.516908i
\(131\) −20.5490 −1.79538 −0.897689 0.440629i \(-0.854755\pi\)
−0.897689 + 0.440629i \(0.854755\pi\)
\(132\) 1.95265i 0.169957i
\(133\) 0 0
\(134\) 12.6507 1.09285
\(135\) 0.922310 + 0.0462503i 0.0793798 + 0.00398059i
\(136\) −16.9726 −1.45539
\(137\) 8.75406i 0.747910i −0.927447 0.373955i \(-0.878001\pi\)
0.927447 0.373955i \(-0.121999\pi\)
\(138\) 5.26601i 0.448272i
\(139\) −7.68939 −0.652205 −0.326103 0.945334i \(-0.605736\pi\)
−0.326103 + 0.945334i \(0.605736\pi\)
\(140\) −1.36404 0.0684015i −0.115283 0.00578098i
\(141\) 1.10612 0.0931523
\(142\) 19.0706i 1.60037i
\(143\) 7.46480i 0.624238i
\(144\) 13.7436 1.14530
\(145\) −0.0380081 + 0.757947i −0.00315640 + 0.0629440i
\(146\) −2.69545 −0.223077
\(147\) 8.84442i 0.729475i
\(148\) 0.508347i 0.0417859i
\(149\) 14.9414 1.22404 0.612022 0.790841i \(-0.290356\pi\)
0.612022 + 0.790841i \(0.290356\pi\)
\(150\) 18.2733 + 1.83729i 1.49201 + 0.150014i
\(151\) −13.1424 −1.06951 −0.534757 0.845006i \(-0.679597\pi\)
−0.534757 + 0.845006i \(0.679597\pi\)
\(152\) 0 0
\(153\) 20.0499i 1.62094i
\(154\) −20.1129 −1.62075
\(155\) 0.311179 6.20545i 0.0249945 0.498434i
\(156\) 0.832649 0.0666653
\(157\) 10.8372i 0.864902i −0.901657 0.432451i \(-0.857649\pi\)
0.901657 0.432451i \(-0.142351\pi\)
\(158\) 1.03350i 0.0822205i
\(159\) 17.9718 1.42526
\(160\) 2.36668 + 0.118680i 0.187102 + 0.00938245i
\(161\) −4.65927 −0.367202
\(162\) 12.5336i 0.984732i
\(163\) 8.44554i 0.661506i 0.943717 + 0.330753i \(0.107303\pi\)
−0.943717 + 0.330753i \(0.892697\pi\)
\(164\) −1.34156 −0.104758
\(165\) 23.2029 + 1.16354i 1.80635 + 0.0905813i
\(166\) −0.817959 −0.0634859
\(167\) 19.9012i 1.54000i −0.638041 0.770002i \(-0.720255\pi\)
0.638041 0.770002i \(-0.279745\pi\)
\(168\) 21.6307i 1.66884i
\(169\) 9.81686 0.755143
\(170\) −1.04895 + 20.9178i −0.0804506 + 1.60432i
\(171\) 0 0
\(172\) 1.85954i 0.141788i
\(173\) 11.7211i 0.891135i −0.895248 0.445568i \(-0.853002\pi\)
0.895248 0.445568i \(-0.146998\pi\)
\(174\) 1.24661 0.0945050
\(175\) 1.62560 16.1679i 0.122884 1.22218i
\(176\) 18.1609 1.36893
\(177\) 7.80380i 0.586570i
\(178\) 10.1008i 0.757087i
\(179\) 7.08378 0.529467 0.264733 0.964322i \(-0.414716\pi\)
0.264733 + 0.964322i \(0.414716\pi\)
\(180\) 0.0666427 1.32897i 0.00496726 0.0990556i
\(181\) −9.28177 −0.689908 −0.344954 0.938620i \(-0.612106\pi\)
−0.344954 + 0.938620i \(0.612106\pi\)
\(182\) 8.57654i 0.635735i
\(183\) 7.61257i 0.562737i
\(184\) 3.84274 0.283291
\(185\) −6.04057 0.302912i −0.444112 0.0222705i
\(186\) −10.2062 −0.748355
\(187\) 26.4941i 1.93744i
\(188\) 0.0837167i 0.00610567i
\(189\) −1.34216 −0.0976277
\(190\) 0 0
\(191\) 8.12426 0.587850 0.293925 0.955828i \(-0.405038\pi\)
0.293925 + 0.955828i \(0.405038\pi\)
\(192\) 17.6645i 1.27483i
\(193\) 7.72342i 0.555944i −0.960589 0.277972i \(-0.910338\pi\)
0.960589 0.277972i \(-0.0896623\pi\)
\(194\) −19.5259 −1.40188
\(195\) −0.496155 + 9.89418i −0.0355304 + 0.708537i
\(196\) 0.669388 0.0478135
\(197\) 3.56762i 0.254183i −0.991891 0.127091i \(-0.959436\pi\)
0.991891 0.127091i \(-0.0405641\pi\)
\(198\) 19.5958i 1.39261i
\(199\) 8.76938 0.621645 0.310822 0.950468i \(-0.399396\pi\)
0.310822 + 0.950468i \(0.399396\pi\)
\(200\) −1.34072 + 13.3345i −0.0948030 + 0.942890i
\(201\) 21.2377 1.49799
\(202\) 25.5536i 1.79795i
\(203\) 1.10298i 0.0774137i
\(204\) 2.95524 0.206908
\(205\) 0.799405 15.9415i 0.0558328 1.11340i
\(206\) −20.4548 −1.42516
\(207\) 4.53946i 0.315515i
\(208\) 7.74414i 0.536960i
\(209\) 0 0
\(210\) −26.6586 1.33683i −1.83962 0.0922497i
\(211\) −11.8171 −0.813526 −0.406763 0.913534i \(-0.633343\pi\)
−0.406763 + 0.913534i \(0.633343\pi\)
\(212\) 1.36019i 0.0934184i
\(213\) 32.0155i 2.19366i
\(214\) −4.82889 −0.330096
\(215\) 22.0964 + 1.10805i 1.50696 + 0.0755685i
\(216\) 1.10695 0.0753183
\(217\) 9.03026i 0.613014i
\(218\) 4.76431i 0.322680i
\(219\) −4.52507 −0.305776
\(220\) 0.0880622 1.75611i 0.00593715 0.118397i
\(221\) −11.2976 −0.759959
\(222\) 9.93503i 0.666796i
\(223\) 8.89760i 0.595827i −0.954593 0.297914i \(-0.903709\pi\)
0.954593 0.297914i \(-0.0962908\pi\)
\(224\) −3.44402 −0.230113
\(225\) 15.7521 + 1.58380i 1.05014 + 0.105587i
\(226\) −6.96698 −0.463437
\(227\) 26.4080i 1.75276i −0.481620 0.876380i \(-0.659951\pi\)
0.481620 0.876380i \(-0.340049\pi\)
\(228\) 0 0
\(229\) −21.7852 −1.43961 −0.719804 0.694177i \(-0.755768\pi\)
−0.719804 + 0.694177i \(0.755768\pi\)
\(230\) 0.237490 4.73596i 0.0156596 0.312280i
\(231\) −33.7653 −2.22159
\(232\) 0.909681i 0.0597235i
\(233\) 10.0009i 0.655183i 0.944820 + 0.327591i \(0.106237\pi\)
−0.944820 + 0.327591i \(0.893763\pi\)
\(234\) 8.35601 0.546250
\(235\) 0.994787 + 0.0498847i 0.0648927 + 0.00325412i
\(236\) −0.590630 −0.0384467
\(237\) 1.73502i 0.112701i
\(238\) 30.4399i 1.97313i
\(239\) −17.8365 −1.15374 −0.576872 0.816834i \(-0.695727\pi\)
−0.576872 + 0.816834i \(0.695727\pi\)
\(240\) 24.0712 + 1.20708i 1.55379 + 0.0779166i
\(241\) 17.1442 1.10435 0.552177 0.833727i \(-0.313797\pi\)
0.552177 + 0.833727i \(0.313797\pi\)
\(242\) 9.62314i 0.618599i
\(243\) 22.2802i 1.42927i
\(244\) 0.576156 0.0368846
\(245\) −0.398872 + 7.95419i −0.0254830 + 0.508175i
\(246\) −26.2192 −1.67168
\(247\) 0 0
\(248\) 7.44772i 0.472931i
\(249\) −1.37318 −0.0870215
\(250\) 16.3511 + 2.47646i 1.03414 + 0.156625i
\(251\) 9.69585 0.611997 0.305998 0.952032i \(-0.401010\pi\)
0.305998 + 0.952032i \(0.401010\pi\)
\(252\) 1.93394i 0.121827i
\(253\) 5.99848i 0.377121i
\(254\) 0.875685 0.0549454
\(255\) −1.76096 + 35.1165i −0.110275 + 2.19908i
\(256\) 4.47200 0.279500
\(257\) 10.0506i 0.626942i −0.949598 0.313471i \(-0.898508\pi\)
0.949598 0.313471i \(-0.101492\pi\)
\(258\) 36.3424i 2.26258i
\(259\) 8.79033 0.546205
\(260\) 0.748840 + 0.0375514i 0.0464411 + 0.00232884i
\(261\) 1.07461 0.0665170
\(262\) 30.3955i 1.87784i
\(263\) 21.8306i 1.34613i −0.739583 0.673065i \(-0.764977\pi\)
0.739583 0.673065i \(-0.235023\pi\)
\(264\) 27.8480 1.71392
\(265\) 16.1629 + 0.810506i 0.992877 + 0.0497890i
\(266\) 0 0
\(267\) 16.9571i 1.03776i
\(268\) 1.60737i 0.0981860i
\(269\) 15.4551 0.942312 0.471156 0.882050i \(-0.343837\pi\)
0.471156 + 0.882050i \(0.343837\pi\)
\(270\) 0.0684120 1.36425i 0.00416342 0.0830258i
\(271\) 5.16319 0.313642 0.156821 0.987627i \(-0.449875\pi\)
0.156821 + 0.987627i \(0.449875\pi\)
\(272\) 27.4855i 1.66656i
\(273\) 14.3982i 0.871416i
\(274\) −12.9487 −0.782262
\(275\) 20.8150 + 2.09285i 1.25519 + 0.126203i
\(276\) −0.669091 −0.0402746
\(277\) 5.57030i 0.334687i 0.985899 + 0.167343i \(0.0535189\pi\)
−0.985899 + 0.167343i \(0.946481\pi\)
\(278\) 11.3739i 0.682161i
\(279\) −8.79807 −0.526726
\(280\) 0.975516 19.4534i 0.0582982 1.16257i
\(281\) −27.2729 −1.62697 −0.813483 0.581589i \(-0.802431\pi\)
−0.813483 + 0.581589i \(0.802431\pi\)
\(282\) 1.63614i 0.0974308i
\(283\) 15.0458i 0.894379i 0.894439 + 0.447190i \(0.147575\pi\)
−0.894439 + 0.447190i \(0.852425\pi\)
\(284\) 2.42308 0.143784
\(285\) 0 0
\(286\) 11.0417 0.652910
\(287\) 23.1983i 1.36935i
\(288\) 3.35547i 0.197723i
\(289\) −23.0975 −1.35868
\(290\) 1.12113 + 0.0562204i 0.0658351 + 0.00330138i
\(291\) −32.7799 −1.92159
\(292\) 0.342479i 0.0200421i
\(293\) 7.82882i 0.457364i −0.973501 0.228682i \(-0.926558\pi\)
0.973501 0.228682i \(-0.0734416\pi\)
\(294\) 13.0824 0.762981
\(295\) 0.351942 7.01832i 0.0204908 0.408622i
\(296\) −7.24985 −0.421389
\(297\) 1.72794i 0.100265i
\(298\) 22.1008i 1.28026i
\(299\) 2.55787 0.147925
\(300\) 0.233443 2.32178i 0.0134779 0.134048i
\(301\) −32.1551 −1.85339
\(302\) 19.4398i 1.11864i
\(303\) 42.8990i 2.46449i
\(304\) 0 0
\(305\) −0.343317 + 6.84633i −0.0196583 + 0.392020i
\(306\) 29.6572 1.69539
\(307\) 15.7146i 0.896879i 0.893813 + 0.448439i \(0.148020\pi\)
−0.893813 + 0.448439i \(0.851980\pi\)
\(308\) 2.55552i 0.145614i
\(309\) −34.3393 −1.95349
\(310\) −9.17891 0.460287i −0.521327 0.0261425i
\(311\) 17.9812 1.01962 0.509810 0.860287i \(-0.329716\pi\)
0.509810 + 0.860287i \(0.329716\pi\)
\(312\) 11.8749i 0.672285i
\(313\) 21.2005i 1.19832i −0.800628 0.599161i \(-0.795501\pi\)
0.800628 0.599161i \(-0.204499\pi\)
\(314\) −16.0300 −0.904627
\(315\) −22.9805 1.15239i −1.29481 0.0649296i
\(316\) −0.131314 −0.00738702
\(317\) 3.06442i 0.172115i −0.996290 0.0860575i \(-0.972573\pi\)
0.996290 0.0860575i \(-0.0274269\pi\)
\(318\) 26.5833i 1.49072i
\(319\) 1.42000 0.0795050
\(320\) −0.796647 + 15.8865i −0.0445339 + 0.888082i
\(321\) −8.10666 −0.452470
\(322\) 6.89184i 0.384067i
\(323\) 0 0
\(324\) 1.59250 0.0884722
\(325\) −0.892431 + 8.87592i −0.0495031 + 0.492347i
\(326\) 12.4924 0.691889
\(327\) 7.99825i 0.442304i
\(328\) 19.1328i 1.05643i
\(329\) −1.44763 −0.0798103
\(330\) 1.72107 34.3211i 0.0947418 1.88931i
\(331\) 25.9509 1.42639 0.713195 0.700966i \(-0.247247\pi\)
0.713195 + 0.700966i \(0.247247\pi\)
\(332\) 0.103929i 0.00570383i
\(333\) 8.56431i 0.469321i
\(334\) −29.4373 −1.61074
\(335\) 19.1001 + 0.957795i 1.04355 + 0.0523299i
\(336\) −35.0288 −1.91098
\(337\) 10.0575i 0.547865i −0.961749 0.273933i \(-0.911676\pi\)
0.961749 0.273933i \(-0.0883245\pi\)
\(338\) 14.5208i 0.789828i
\(339\) −11.6961 −0.635243
\(340\) 2.65779 + 0.133278i 0.144139 + 0.00722800i
\(341\) −11.6258 −0.629574
\(342\) 0 0
\(343\) 11.1741i 0.603343i
\(344\) 26.5200 1.42986
\(345\) 0.398695 7.95066i 0.0214650 0.428049i
\(346\) −17.3374 −0.932065
\(347\) 6.81801i 0.366010i 0.983112 + 0.183005i \(0.0585824\pi\)
−0.983112 + 0.183005i \(0.941418\pi\)
\(348\) 0.158392i 0.00849071i
\(349\) −31.5966 −1.69133 −0.845663 0.533718i \(-0.820795\pi\)
−0.845663 + 0.533718i \(0.820795\pi\)
\(350\) −23.9150 2.40454i −1.27831 0.128528i
\(351\) 0.736826 0.0393289
\(352\) 4.43394i 0.236330i
\(353\) 6.30657i 0.335665i 0.985816 + 0.167832i \(0.0536767\pi\)
−0.985816 + 0.167832i \(0.946323\pi\)
\(354\) −11.5431 −0.613511
\(355\) −1.44386 + 28.7930i −0.0766320 + 1.52817i
\(356\) −1.28339 −0.0680197
\(357\) 51.1020i 2.70461i
\(358\) 10.4781i 0.553785i
\(359\) −4.17666 −0.220436 −0.110218 0.993907i \(-0.535155\pi\)
−0.110218 + 0.993907i \(0.535155\pi\)
\(360\) 18.9532 + 0.950432i 0.998924 + 0.0500922i
\(361\) 0 0
\(362\) 13.7293i 0.721596i
\(363\) 16.1552i 0.847927i
\(364\) −1.08972 −0.0571170
\(365\) −4.06961 0.204075i −0.213013 0.0106818i
\(366\) 11.2603 0.588584
\(367\) 16.5710i 0.864998i −0.901634 0.432499i \(-0.857632\pi\)
0.901634 0.432499i \(-0.142368\pi\)
\(368\) 6.22295i 0.324394i
\(369\) −22.6018 −1.17660
\(370\) −0.448057 + 8.93503i −0.0232934 + 0.464510i
\(371\) −23.5204 −1.22112
\(372\) 1.29678i 0.0672352i
\(373\) 37.0004i 1.91581i −0.287085 0.957905i \(-0.592686\pi\)
0.287085 0.957905i \(-0.407314\pi\)
\(374\) 39.1893 2.02643
\(375\) 27.4500 + 4.15744i 1.41751 + 0.214689i
\(376\) 1.19393 0.0615725
\(377\) 0.605517i 0.0311857i
\(378\) 1.98528i 0.102112i
\(379\) 31.5147 1.61880 0.809400 0.587257i \(-0.199792\pi\)
0.809400 + 0.587257i \(0.199792\pi\)
\(380\) 0 0
\(381\) 1.47009 0.0753148
\(382\) 12.0171i 0.614851i
\(383\) 3.09813i 0.158307i −0.996862 0.0791536i \(-0.974778\pi\)
0.996862 0.0791536i \(-0.0252218\pi\)
\(384\) 31.3919 1.60196
\(385\) −30.3667 1.52277i −1.54763 0.0776076i
\(386\) −11.4243 −0.581479
\(387\) 31.3283i 1.59251i
\(388\) 2.48094i 0.125951i
\(389\) −26.0318 −1.31986 −0.659931 0.751326i \(-0.729415\pi\)
−0.659931 + 0.751326i \(0.729415\pi\)
\(390\) 14.6352 + 0.733897i 0.741081 + 0.0371623i
\(391\) 9.07840 0.459115
\(392\) 9.54655i 0.482174i
\(393\) 51.0275i 2.57400i
\(394\) −5.27712 −0.265857
\(395\) 0.0782471 1.56038i 0.00393704 0.0785113i
\(396\) −2.48981 −0.125118
\(397\) 12.6607i 0.635423i 0.948187 + 0.317712i \(0.102914\pi\)
−0.948187 + 0.317712i \(0.897086\pi\)
\(398\) 12.9714i 0.650197i
\(399\) 0 0
\(400\) 21.5939 + 2.17116i 1.07970 + 0.108558i
\(401\) 9.22180 0.460515 0.230257 0.973130i \(-0.426043\pi\)
0.230257 + 0.973130i \(0.426043\pi\)
\(402\) 31.4142i 1.56680i
\(403\) 4.95748i 0.246950i
\(404\) −3.24681 −0.161535
\(405\) −0.948932 + 18.9233i −0.0471528 + 0.940308i
\(406\) −1.63149 −0.0809693
\(407\) 11.3169i 0.560960i
\(408\) 42.1465i 2.08656i
\(409\) 34.4572 1.70380 0.851899 0.523706i \(-0.175451\pi\)
0.851899 + 0.523706i \(0.175451\pi\)
\(410\) −23.5802 1.18245i −1.16454 0.0583973i
\(411\) −21.7381 −1.07226
\(412\) 2.59896i 0.128042i
\(413\) 10.2132i 0.502557i
\(414\) −6.71464 −0.330006
\(415\) −1.23496 0.0619286i −0.0606219 0.00303995i
\(416\) 1.89072 0.0927001
\(417\) 19.0943i 0.935053i
\(418\) 0 0
\(419\) 7.86047 0.384009 0.192005 0.981394i \(-0.438501\pi\)
0.192005 + 0.981394i \(0.438501\pi\)
\(420\) −0.169855 + 3.38720i −0.00828808 + 0.165278i
\(421\) −10.4922 −0.511360 −0.255680 0.966761i \(-0.582299\pi\)
−0.255680 + 0.966761i \(0.582299\pi\)
\(422\) 17.4796i 0.850892i
\(423\) 1.41041i 0.0685763i
\(424\) 19.3985 0.942076
\(425\) −3.16742 + 31.5025i −0.153642 + 1.52809i
\(426\) 47.3563 2.29442
\(427\) 9.96288i 0.482138i
\(428\) 0.613552i 0.0296571i
\(429\) 18.5366 0.894957
\(430\) 1.63900 32.6844i 0.0790394 1.57618i
\(431\) −29.8923 −1.43986 −0.719931 0.694046i \(-0.755827\pi\)
−0.719931 + 0.694046i \(0.755827\pi\)
\(432\) 1.79260i 0.0862465i
\(433\) 6.79977i 0.326776i 0.986562 + 0.163388i \(0.0522422\pi\)
−0.986562 + 0.163388i \(0.947758\pi\)
\(434\) 13.3573 0.641170
\(435\) 1.88214 + 0.0943820i 0.0902416 + 0.00452527i
\(436\) 0.605347 0.0289908
\(437\) 0 0
\(438\) 6.69335i 0.319820i
\(439\) 7.96606 0.380199 0.190100 0.981765i \(-0.439119\pi\)
0.190100 + 0.981765i \(0.439119\pi\)
\(440\) 25.0450 + 1.25591i 1.19397 + 0.0598731i
\(441\) 11.2774 0.537021
\(442\) 16.7111i 0.794864i
\(443\) 21.7893i 1.03524i 0.855610 + 0.517621i \(0.173182\pi\)
−0.855610 + 0.517621i \(0.826818\pi\)
\(444\) 1.26233 0.0599076
\(445\) 0.764743 15.2503i 0.0362523 0.722932i
\(446\) −13.1611 −0.623194
\(447\) 37.1025i 1.75489i
\(448\) 23.1183i 1.09224i
\(449\) 18.7837 0.886458 0.443229 0.896409i \(-0.353833\pi\)
0.443229 + 0.896409i \(0.353833\pi\)
\(450\) 2.34271 23.3001i 0.110436 1.09838i
\(451\) −29.8662 −1.40634
\(452\) 0.885215i 0.0416370i
\(453\) 32.6353i 1.53334i
\(454\) −39.0619 −1.83327
\(455\) 0.649339 12.9489i 0.0304415 0.607055i
\(456\) 0 0
\(457\) 28.2368i 1.32086i 0.750887 + 0.660431i \(0.229627\pi\)
−0.750887 + 0.660431i \(0.770373\pi\)
\(458\) 32.2240i 1.50573i
\(459\) 2.61515 0.122065
\(460\) −0.601745 0.0301752i −0.0280565 0.00140692i
\(461\) −0.196008 −0.00912900 −0.00456450 0.999990i \(-0.501453\pi\)
−0.00456450 + 0.999990i \(0.501453\pi\)
\(462\) 49.9445i 2.32363i
\(463\) 13.9641i 0.648967i −0.945891 0.324484i \(-0.894809\pi\)
0.945891 0.324484i \(-0.105191\pi\)
\(464\) 1.47314 0.0683889
\(465\) −15.4094 0.772722i −0.714594 0.0358341i
\(466\) 14.7931 0.685275
\(467\) 32.1025i 1.48553i −0.669555 0.742763i \(-0.733515\pi\)
0.669555 0.742763i \(-0.266485\pi\)
\(468\) 1.06170i 0.0490772i
\(469\) −27.7947 −1.28344
\(470\) 0.0737880 1.47146i 0.00340358 0.0678733i
\(471\) −26.9110 −1.23999
\(472\) 8.42333i 0.387715i
\(473\) 41.3974i 1.90346i
\(474\) −2.56638 −0.117878
\(475\) 0 0
\(476\) −3.86765 −0.177273
\(477\) 22.9157i 1.04924i
\(478\) 26.3831i 1.20674i
\(479\) 1.98226 0.0905717 0.0452858 0.998974i \(-0.485580\pi\)
0.0452858 + 0.998974i \(0.485580\pi\)
\(480\) 0.294706 5.87694i 0.0134514 0.268245i
\(481\) −4.82576 −0.220036
\(482\) 25.3591i 1.15508i
\(483\) 11.5699i 0.526450i
\(484\) −1.22270 −0.0555774
\(485\) −29.4804 1.47833i −1.33864 0.0671275i
\(486\) 32.9561 1.49492
\(487\) 8.58916i 0.389212i −0.980881 0.194606i \(-0.937657\pi\)
0.980881 0.194606i \(-0.0623428\pi\)
\(488\) 8.21691i 0.371962i
\(489\) 20.9720 0.948387
\(490\) 11.7656 + 0.589999i 0.531516 + 0.0266535i
\(491\) 25.9002 1.16886 0.584430 0.811444i \(-0.301318\pi\)
0.584430 + 0.811444i \(0.301318\pi\)
\(492\) 3.33138i 0.150190i
\(493\) 2.14910i 0.0967908i
\(494\) 0 0
\(495\) 1.48362 29.5858i 0.0666836 1.32979i
\(496\) −12.0609 −0.541550
\(497\) 41.9000i 1.87947i
\(498\) 2.03116i 0.0910185i
\(499\) 21.2038 0.949214 0.474607 0.880198i \(-0.342590\pi\)
0.474607 + 0.880198i \(0.342590\pi\)
\(500\) 0.314655 2.07755i 0.0140718 0.0929109i
\(501\) −49.4189 −2.20787
\(502\) 14.3418i 0.640106i
\(503\) 25.5162i 1.13771i −0.822438 0.568855i \(-0.807386\pi\)
0.822438 0.568855i \(-0.192614\pi\)
\(504\) −27.5810 −1.22856
\(505\) 1.93469 38.5811i 0.0860927 1.71684i
\(506\) −8.87277 −0.394443
\(507\) 24.3773i 1.08263i
\(508\) 0.111263i 0.00493651i
\(509\) −17.0407 −0.755314 −0.377657 0.925946i \(-0.623270\pi\)
−0.377657 + 0.925946i \(0.623270\pi\)
\(510\) 51.9432 + 2.60475i 2.30008 + 0.115340i
\(511\) 5.92215 0.261981
\(512\) 18.6685i 0.825039i
\(513\) 0 0
\(514\) −14.8666 −0.655738
\(515\) −30.8829 1.54866i −1.36086 0.0682420i
\(516\) −4.61761 −0.203279
\(517\) 1.86372i 0.0819664i
\(518\) 13.0024i 0.571292i
\(519\) −29.1058 −1.27760
\(520\) −0.535544 + 10.6797i −0.0234851 + 0.468334i
\(521\) −21.7817 −0.954274 −0.477137 0.878829i \(-0.658325\pi\)
−0.477137 + 0.878829i \(0.658325\pi\)
\(522\) 1.58954i 0.0695721i
\(523\) 17.4855i 0.764589i −0.924041 0.382294i \(-0.875134\pi\)
0.924041 0.382294i \(-0.124866\pi\)
\(524\) 3.86201 0.168713
\(525\) −40.1481 4.03670i −1.75221 0.176176i
\(526\) −32.2911 −1.40796
\(527\) 17.5951i 0.766455i
\(528\) 45.0972i 1.96260i
\(529\) 20.9446 0.910634
\(530\) 1.19887 23.9076i 0.0520758 1.03848i
\(531\) −9.95056 −0.431817
\(532\) 0 0
\(533\) 12.7355i 0.551637i
\(534\) −25.0824 −1.08542
\(535\) −7.29070 0.365600i −0.315204 0.0158063i
\(536\) 22.9237 0.990154
\(537\) 17.5905i 0.759086i
\(538\) 22.8607i 0.985593i
\(539\) 14.9021 0.641878
\(540\) −0.173340 0.00869233i −0.00745936 0.000374058i
\(541\) 14.8091 0.636691 0.318346 0.947975i \(-0.396873\pi\)
0.318346 + 0.947975i \(0.396873\pi\)
\(542\) 7.63724i 0.328047i
\(543\) 23.0485i 0.989108i
\(544\) 6.71054 0.287712
\(545\) −0.360711 + 7.19320i −0.0154512 + 0.308123i
\(546\) −21.2973 −0.911441
\(547\) 26.5735i 1.13620i 0.822959 + 0.568100i \(0.192321\pi\)
−0.822959 + 0.568100i \(0.807679\pi\)
\(548\) 1.64525i 0.0702815i
\(549\) 9.70671 0.414272
\(550\) 3.09568 30.7889i 0.132000 1.31284i
\(551\) 0 0
\(552\) 9.54231i 0.406148i
\(553\) 2.27069i 0.0965595i
\(554\) 8.23942 0.350059
\(555\) −0.752192 + 15.0000i −0.0319288 + 0.636714i
\(556\) 1.44515 0.0612881
\(557\) 16.0752i 0.681129i −0.940221 0.340565i \(-0.889382\pi\)
0.940221 0.340565i \(-0.110618\pi\)
\(558\) 13.0138i 0.550919i
\(559\) 17.6527 0.746628
\(560\) −31.5030 1.57976i −1.33125 0.0667569i
\(561\) 65.7903 2.77767
\(562\) 40.3413i 1.70169i
\(563\) 2.03145i 0.0856155i −0.999083 0.0428078i \(-0.986370\pi\)
0.999083 0.0428078i \(-0.0136303\pi\)
\(564\) −0.207886 −0.00875357
\(565\) −10.5188 0.527478i −0.442530 0.0221912i
\(566\) 22.2553 0.935459
\(567\) 27.5375i 1.15647i
\(568\) 34.5571i 1.44998i
\(569\) −12.8224 −0.537543 −0.268772 0.963204i \(-0.586618\pi\)
−0.268772 + 0.963204i \(0.586618\pi\)
\(570\) 0 0
\(571\) 12.9168 0.540551 0.270276 0.962783i \(-0.412885\pi\)
0.270276 + 0.962783i \(0.412885\pi\)
\(572\) 1.40294i 0.0586600i
\(573\) 20.1742i 0.842789i
\(574\) 34.3142 1.43225
\(575\) 0.717130 7.13242i 0.0299064 0.297442i
\(576\) 22.5238 0.938493
\(577\) 8.11359i 0.337773i −0.985635 0.168887i \(-0.945983\pi\)
0.985635 0.168887i \(-0.0540172\pi\)
\(578\) 34.1651i 1.42108i
\(579\) −19.1789 −0.797046
\(580\) 0.00714329 0.142449i 0.000296609 0.00591489i
\(581\) 1.79713 0.0745577
\(582\) 48.4869i 2.00985i
\(583\) 30.2809i 1.25411i
\(584\) −4.88431 −0.202114
\(585\) 12.6160 + 0.632643i 0.521607 + 0.0261566i
\(586\) −11.5801 −0.478371
\(587\) 32.5617i 1.34396i 0.740568 + 0.671982i \(0.234557\pi\)
−0.740568 + 0.671982i \(0.765443\pi\)
\(588\) 1.66223i 0.0685492i
\(589\) 0 0
\(590\) −10.3813 0.520581i −0.427391 0.0214320i
\(591\) −8.85914 −0.364416
\(592\) 11.7404i 0.482529i
\(593\) 11.4752i 0.471231i −0.971846 0.235616i \(-0.924289\pi\)
0.971846 0.235616i \(-0.0757106\pi\)
\(594\) −2.55591 −0.104870
\(595\) 2.30464 45.9584i 0.0944809 1.88411i
\(596\) −2.80809 −0.115024
\(597\) 21.7762i 0.891239i
\(598\) 3.78352i 0.154720i
\(599\) 33.2099 1.35692 0.678460 0.734637i \(-0.262648\pi\)
0.678460 + 0.734637i \(0.262648\pi\)
\(600\) 33.1123 + 3.32928i 1.35180 + 0.135917i
\(601\) −27.3180 −1.11433 −0.557163 0.830403i \(-0.688110\pi\)
−0.557163 + 0.830403i \(0.688110\pi\)
\(602\) 47.5628i 1.93851i
\(603\) 27.0800i 1.10278i
\(604\) 2.47000 0.100503
\(605\) 0.728578 14.5291i 0.0296209 0.590692i
\(606\) −63.4549 −2.57768
\(607\) 25.7405i 1.04478i 0.852708 + 0.522388i \(0.174959\pi\)
−0.852708 + 0.522388i \(0.825041\pi\)
\(608\) 0 0
\(609\) −2.73892 −0.110986
\(610\) 10.1269 + 0.507824i 0.410025 + 0.0205612i
\(611\) 0.794727 0.0321512
\(612\) 3.76820i 0.152320i
\(613\) 40.6039i 1.63997i 0.572382 + 0.819987i \(0.306020\pi\)
−0.572382 + 0.819987i \(0.693980\pi\)
\(614\) 23.2445 0.938073
\(615\) −39.5860 1.98509i −1.59626 0.0800464i
\(616\) −36.4458 −1.46844
\(617\) 14.2113i 0.572125i −0.958211 0.286063i \(-0.907653\pi\)
0.958211 0.286063i \(-0.0923465\pi\)
\(618\) 50.7936i 2.04322i
\(619\) 29.5635 1.18826 0.594129 0.804370i \(-0.297497\pi\)
0.594129 + 0.804370i \(0.297497\pi\)
\(620\) −0.0584834 + 1.16626i −0.00234875 + 0.0468381i
\(621\) −0.592091 −0.0237598
\(622\) 26.5973i 1.06645i
\(623\) 22.1924i 0.889121i
\(624\) 19.2303 0.769828
\(625\) 24.4996 + 4.97694i 0.979984 + 0.199078i
\(626\) −31.3591 −1.25336
\(627\) 0 0
\(628\) 2.03675i 0.0812753i
\(629\) −17.1276 −0.682923
\(630\) −1.70457 + 33.9921i −0.0679118 + 1.35428i
\(631\) −1.70763 −0.0679798 −0.0339899 0.999422i \(-0.510821\pi\)
−0.0339899 + 0.999422i \(0.510821\pi\)
\(632\) 1.87276i 0.0744942i
\(633\) 29.3444i 1.16634i
\(634\) −4.53280 −0.180020
\(635\) 1.32212 + 0.0662991i 0.0524666 + 0.00263100i
\(636\) −3.37764 −0.133932
\(637\) 6.35454i 0.251776i
\(638\) 2.10043i 0.0831567i
\(639\) 40.8226 1.61492
\(640\) 28.2322 + 1.41573i 1.11597 + 0.0559618i
\(641\) −2.76200 −0.109092 −0.0545462 0.998511i \(-0.517371\pi\)
−0.0545462 + 0.998511i \(0.517371\pi\)
\(642\) 11.9911i 0.473252i
\(643\) 21.6971i 0.855648i 0.903862 + 0.427824i \(0.140720\pi\)
−0.903862 + 0.427824i \(0.859280\pi\)
\(644\) 0.875668 0.0345061
\(645\) 2.75152 54.8700i 0.108341 2.16050i
\(646\) 0 0
\(647\) 28.0268i 1.10185i 0.834556 + 0.550923i \(0.185724\pi\)
−0.834556 + 0.550923i \(0.814276\pi\)
\(648\) 22.7116i 0.892196i
\(649\) −13.1487 −0.516133
\(650\) 13.1290 + 1.32006i 0.514961 + 0.0517768i
\(651\) 22.4240 0.878866
\(652\) 1.58726i 0.0621620i
\(653\) 7.59308i 0.297140i 0.988902 + 0.148570i \(0.0474671\pi\)
−0.988902 + 0.148570i \(0.952533\pi\)
\(654\) 11.8308 0.462620
\(655\) −2.30128 + 45.8914i −0.0899183 + 1.79313i
\(656\) −30.9838 −1.20972
\(657\) 5.76988i 0.225104i
\(658\) 2.14129i 0.0834761i
\(659\) 7.18394 0.279847 0.139923 0.990162i \(-0.455314\pi\)
0.139923 + 0.990162i \(0.455314\pi\)
\(660\) −4.36079 0.218677i −0.169743 0.00851198i
\(661\) 28.8678 1.12283 0.561413 0.827536i \(-0.310258\pi\)
0.561413 + 0.827536i \(0.310258\pi\)
\(662\) 38.3857i 1.49190i
\(663\) 28.0543i 1.08954i
\(664\) −1.48219 −0.0575201
\(665\) 0 0
\(666\) 12.6681 0.490877
\(667\) 0.486575i 0.0188403i
\(668\) 3.74026i 0.144715i
\(669\) −22.0946 −0.854226
\(670\) 1.41674 28.2522i 0.0547334 1.09148i
\(671\) 12.8265 0.495162
\(672\) 8.55222i 0.329909i
\(673\) 23.3191i 0.898885i 0.893309 + 0.449442i \(0.148377\pi\)
−0.893309 + 0.449442i \(0.851623\pi\)
\(674\) −14.8767 −0.573029
\(675\) 0.206578 2.05458i 0.00795119 0.0790808i
\(676\) −1.84499 −0.0709612
\(677\) 17.5099i 0.672958i 0.941691 + 0.336479i \(0.109236\pi\)
−0.941691 + 0.336479i \(0.890764\pi\)
\(678\) 17.3005i 0.664420i
\(679\) 42.9004 1.64636
\(680\) −1.90075 + 37.9043i −0.0728906 + 1.45356i
\(681\) −65.5765 −2.51290
\(682\) 17.1966i 0.658491i
\(683\) 22.0114i 0.842243i 0.907004 + 0.421122i \(0.138363\pi\)
−0.907004 + 0.421122i \(0.861637\pi\)
\(684\) 0 0
\(685\) −19.5501 0.980363i −0.746971 0.0374577i
\(686\) 16.5283 0.631055
\(687\) 54.0972i 2.06394i
\(688\) 42.9466i 1.63732i
\(689\) 12.9124 0.491923
\(690\) −11.7604 0.589737i −0.447710 0.0224509i
\(691\) −2.65623 −0.101048 −0.0505238 0.998723i \(-0.516089\pi\)
−0.0505238 + 0.998723i \(0.516089\pi\)
\(692\) 2.20287i 0.0837404i
\(693\) 43.0538i 1.63548i
\(694\) 10.0850 0.382821
\(695\) −0.861130 + 17.1724i −0.0326645 + 0.651387i
\(696\) 2.25893 0.0856244
\(697\) 45.2010i 1.71211i
\(698\) 46.7367i 1.76901i
\(699\) 24.8344 0.939322
\(700\) −0.305517 + 3.03861i −0.0115475 + 0.114848i
\(701\) −7.36728 −0.278258 −0.139129 0.990274i \(-0.544430\pi\)
−0.139129 + 0.990274i \(0.544430\pi\)
\(702\) 1.08989i 0.0411352i
\(703\) 0 0
\(704\) 29.7632 1.12174
\(705\) 0.123874 2.47026i 0.00466537 0.0930354i
\(706\) 9.32848 0.351082
\(707\) 56.1438i 2.11150i
\(708\) 1.46666i 0.0551203i
\(709\) 5.99178 0.225026 0.112513 0.993650i \(-0.464110\pi\)
0.112513 + 0.993650i \(0.464110\pi\)
\(710\) 42.5897 + 2.13571i 1.59836 + 0.0801517i
\(711\) −2.21230 −0.0829679
\(712\) 18.3032i 0.685943i
\(713\) 3.98368i 0.149190i
\(714\) −75.5885 −2.82883
\(715\) 16.6709 + 0.835979i 0.623455 + 0.0312639i
\(716\) −1.33133 −0.0497543
\(717\) 44.2916i 1.65410i
\(718\) 6.17798i 0.230560i
\(719\) −13.5815 −0.506504 −0.253252 0.967400i \(-0.581500\pi\)
−0.253252 + 0.967400i \(0.581500\pi\)
\(720\) 1.53914 30.6930i 0.0573602 1.14386i
\(721\) 44.9412 1.67370
\(722\) 0 0
\(723\) 42.5725i 1.58329i
\(724\) 1.74443 0.0648311
\(725\) 1.68844 + 0.169764i 0.0627070 + 0.00630488i
\(726\) −23.8962 −0.886872
\(727\) 41.2448i 1.52968i 0.644218 + 0.764842i \(0.277183\pi\)
−0.644218 + 0.764842i \(0.722817\pi\)
\(728\) 15.5412i 0.575995i
\(729\) 29.9060 1.10763
\(730\) −0.301862 + 6.01963i −0.0111724 + 0.222797i
\(731\) 62.6529 2.31730
\(732\) 1.43071i 0.0528807i
\(733\) 0.123848i 0.00457443i −0.999997 0.00228722i \(-0.999272\pi\)
0.999997 0.00228722i \(-0.000728044\pi\)
\(734\) −24.5113 −0.904728
\(735\) 19.7519 + 0.990482i 0.728560 + 0.0365345i
\(736\) −1.51932 −0.0560030
\(737\) 35.7837i 1.31811i
\(738\) 33.4319i 1.23065i
\(739\) 36.5134 1.34317 0.671584 0.740928i \(-0.265614\pi\)
0.671584 + 0.740928i \(0.265614\pi\)
\(740\) 1.13527 + 0.0569295i 0.0417334 + 0.00209277i
\(741\) 0 0
\(742\) 34.7907i 1.27721i
\(743\) 9.06197i 0.332451i −0.986088 0.166226i \(-0.946842\pi\)
0.986088 0.166226i \(-0.0531580\pi\)
\(744\) −18.4942 −0.678032
\(745\) 1.67328 33.3680i 0.0613041 1.22251i
\(746\) −54.7299 −2.00380
\(747\) 1.75092i 0.0640630i
\(748\) 4.97933i 0.182062i
\(749\) 10.6095 0.387664
\(750\) 6.14956 40.6032i 0.224550 1.48262i
\(751\) 4.08610 0.149104 0.0745519 0.997217i \(-0.476247\pi\)
0.0745519 + 0.997217i \(0.476247\pi\)
\(752\) 1.93346i 0.0705062i
\(753\) 24.0768i 0.877407i
\(754\) 0.895663 0.0326181
\(755\) −1.47181 + 29.3504i −0.0535647 + 1.06817i
\(756\) 0.252247 0.00917413
\(757\) 34.4597i 1.25246i 0.779638 + 0.626230i \(0.215403\pi\)
−0.779638 + 0.626230i \(0.784597\pi\)
\(758\) 46.6155i 1.69315i
\(759\) −14.8955 −0.540671
\(760\) 0 0
\(761\) 20.5813 0.746072 0.373036 0.927817i \(-0.378317\pi\)
0.373036 + 0.927817i \(0.378317\pi\)
\(762\) 2.17451i 0.0787741i
\(763\) 10.4676i 0.378954i
\(764\) −1.52688 −0.0552406
\(765\) 44.7767 + 2.24538i 1.61890 + 0.0811818i
\(766\) −4.58266 −0.165578
\(767\) 5.60688i 0.202453i
\(768\) 11.1049i 0.400714i
\(769\) 30.3550 1.09463 0.547315 0.836927i \(-0.315650\pi\)
0.547315 + 0.836927i \(0.315650\pi\)
\(770\) −2.25244 + 44.9174i −0.0811722 + 1.61871i
\(771\) −24.9578 −0.898834
\(772\) 1.45155i 0.0522424i
\(773\) 19.5225i 0.702176i −0.936343 0.351088i \(-0.885812\pi\)
0.936343 0.351088i \(-0.114188\pi\)
\(774\) −46.3398 −1.66565
\(775\) −13.8235 1.38989i −0.496556 0.0499263i
\(776\) −35.3822 −1.27015
\(777\) 21.8282i 0.783083i
\(778\) 38.5054i 1.38048i
\(779\) 0 0
\(780\) 0.0932479 1.85952i 0.00333881 0.0665816i
\(781\) 53.9433 1.93024
\(782\) 13.4285i 0.480202i
\(783\) 0.140164i 0.00500905i
\(784\) 15.4597 0.552134
\(785\) −24.2023 1.21365i −0.863817 0.0433171i
\(786\) 75.4783 2.69222
\(787\) 35.2236i 1.25559i −0.778380 0.627793i \(-0.783958\pi\)
0.778380 0.627793i \(-0.216042\pi\)
\(788\) 0.670503i 0.0238857i
\(789\) −54.2098 −1.92992
\(790\) −2.30807 0.115741i −0.0821173 0.00411787i
\(791\) 15.3071 0.544259
\(792\) 35.5087i 1.26175i
\(793\) 5.46948i 0.194227i
\(794\) 18.7273 0.664608
\(795\) 2.01265 40.1357i 0.0713814 1.42347i
\(796\) −1.64813 −0.0584163
\(797\) 28.7940i 1.01994i 0.860193 + 0.509969i \(0.170343\pi\)
−0.860193 + 0.509969i \(0.829657\pi\)
\(798\) 0 0
\(799\) 2.82065 0.0997874
\(800\) 0.530086 5.27212i 0.0187414 0.186397i
\(801\) −21.6218 −0.763969
\(802\) 13.6406i 0.481666i
\(803\) 7.62436i 0.269058i
\(804\) −3.99144 −0.140767
\(805\) −0.521789 + 10.4054i −0.0183906 + 0.366741i
\(806\) −7.33295 −0.258292
\(807\) 38.3781i 1.35097i
\(808\) 46.3047i 1.62899i
\(809\) 48.0068 1.68783 0.843915 0.536478i \(-0.180245\pi\)
0.843915 + 0.536478i \(0.180245\pi\)
\(810\) 27.9908 + 1.40363i 0.983496 + 0.0493186i
\(811\) 9.62886 0.338115 0.169057 0.985606i \(-0.445928\pi\)
0.169057 + 0.985606i \(0.445928\pi\)
\(812\) 0.207294i 0.00727461i
\(813\) 12.8213i 0.449662i
\(814\) 16.7397 0.586725
\(815\) 18.8611 + 0.945812i 0.660675 + 0.0331303i
\(816\) 68.2523 2.38931
\(817\) 0 0
\(818\) 50.9680i 1.78205i
\(819\) −18.3590 −0.641514
\(820\) −0.150241 + 2.99606i −0.00524664 + 0.104627i
\(821\) −25.7257 −0.897834 −0.448917 0.893573i \(-0.648190\pi\)
−0.448917 + 0.893573i \(0.648190\pi\)
\(822\) 32.1544i 1.12151i
\(823\) 13.4584i 0.469132i −0.972100 0.234566i \(-0.924633\pi\)
0.972100 0.234566i \(-0.0753668\pi\)
\(824\) −37.0654 −1.29123
\(825\) 5.19697 51.6879i 0.180935 1.79954i
\(826\) 15.1070 0.525640
\(827\) 0.172408i 0.00599520i 0.999996 + 0.00299760i \(0.000954168\pi\)
−0.999996 + 0.00299760i \(0.999046\pi\)
\(828\) 0.853152i 0.0296491i
\(829\) −42.3791 −1.47189 −0.735943 0.677044i \(-0.763261\pi\)
−0.735943 + 0.677044i \(0.763261\pi\)
\(830\) −0.0916028 + 1.82672i −0.00317958 + 0.0634063i
\(831\) 13.8322 0.479834
\(832\) 12.6916i 0.440002i
\(833\) 22.5536i 0.781435i
\(834\) 28.2437 0.978001
\(835\) −44.4447 2.22873i −1.53807 0.0771284i
\(836\) 0 0
\(837\) 1.14755i 0.0396651i
\(838\) 11.6270i 0.401647i
\(839\) 45.1399 1.55840 0.779200 0.626775i \(-0.215625\pi\)
0.779200 + 0.626775i \(0.215625\pi\)
\(840\) −48.3069 2.42241i −1.66675 0.0835810i
\(841\) −28.8848 −0.996028
\(842\) 15.5198i 0.534847i
\(843\) 67.7243i 2.33255i
\(844\) 2.22093 0.0764475
\(845\) 1.09939 21.9236i 0.0378200 0.754196i
\(846\) −2.08623 −0.0717260
\(847\) 21.1430i 0.726481i
\(848\) 31.4141i 1.07876i
\(849\) 37.3618 1.28225
\(850\) 46.5975 + 4.68515i 1.59828 + 0.160699i
\(851\) 3.87784 0.132931
\(852\) 6.01702i 0.206140i
\(853\) 46.3405i 1.58667i −0.608787 0.793333i \(-0.708344\pi\)
0.608787 0.793333i \(-0.291656\pi\)
\(854\) −14.7368 −0.504283
\(855\) 0 0
\(856\) −8.75023 −0.299077
\(857\) 21.8934i 0.747863i 0.927456 + 0.373931i \(0.121990\pi\)
−0.927456 + 0.373931i \(0.878010\pi\)
\(858\) 27.4188i 0.936063i
\(859\) −33.4020 −1.13966 −0.569830 0.821762i \(-0.692991\pi\)
−0.569830 + 0.821762i \(0.692991\pi\)
\(860\) −4.15283 0.208248i −0.141610 0.00710121i
\(861\) 57.6062 1.96321
\(862\) 44.2158i 1.50600i
\(863\) 27.1254i 0.923359i 0.887047 + 0.461680i \(0.152753\pi\)
−0.887047 + 0.461680i \(0.847247\pi\)
\(864\) −0.437660 −0.0148895
\(865\) −26.1762 1.31263i −0.890017 0.0446309i
\(866\) 10.0580 0.341785
\(867\) 57.3558i 1.94791i
\(868\) 1.69716i 0.0576052i
\(869\) −2.92335 −0.0991680
\(870\) 0.139607 2.78400i 0.00473312 0.0943864i
\(871\) 15.2589 0.517027
\(872\) 8.63321i 0.292358i
\(873\) 41.7973i 1.41462i
\(874\) 0 0
\(875\) −35.9250 5.44102i −1.21449 0.183940i
\(876\) 0.850447 0.0287339
\(877\) 49.0823i 1.65739i −0.559700 0.828695i \(-0.689084\pi\)
0.559700 0.828695i \(-0.310916\pi\)
\(878\) 11.7832i 0.397662i
\(879\) −19.4406 −0.655714
\(880\) 2.03383 40.5580i 0.0685602 1.36721i
\(881\) 37.9778 1.27951 0.639753 0.768581i \(-0.279037\pi\)
0.639753 + 0.768581i \(0.279037\pi\)
\(882\) 16.6812i 0.561686i
\(883\) 33.2100i 1.11761i 0.829300 + 0.558803i \(0.188739\pi\)
−0.829300 + 0.558803i \(0.811261\pi\)
\(884\) 2.12328 0.0714137
\(885\) −17.4279 0.873944i −0.585834 0.0293773i
\(886\) 32.2301 1.08279
\(887\) 26.2525i 0.881474i 0.897636 + 0.440737i \(0.145283\pi\)
−0.897636 + 0.440737i \(0.854717\pi\)
\(888\) 18.0029i 0.604136i
\(889\) −1.92396 −0.0645277
\(890\) −22.5577 1.13118i −0.756137 0.0379174i
\(891\) 35.4526 1.18771
\(892\) 1.67222i 0.0559902i
\(893\) 0 0
\(894\) −54.8808 −1.83549
\(895\) 0.793309 15.8199i 0.0265174 0.528802i
\(896\) −41.0839 −1.37252
\(897\) 6.35172i 0.212078i
\(898\) 27.7843i 0.927173i
\(899\) −0.943045 −0.0314523
\(900\) −2.96047 0.297661i −0.0986825 0.00992204i
\(901\) 45.8287 1.52677
\(902\) 44.1772i 1.47094i
\(903\) 79.8477i 2.65716i
\(904\) −12.6246 −0.419888
\(905\) −1.03946 + 20.7286i −0.0345528 + 0.689043i
\(906\) 48.2731 1.60377
\(907\) 7.92760i 0.263231i 0.991301 + 0.131616i \(0.0420165\pi\)
−0.991301 + 0.131616i \(0.957983\pi\)
\(908\) 4.96315i 0.164708i
\(909\) −54.7002 −1.81429
\(910\) −19.1537 0.960482i −0.634938 0.0318397i
\(911\) 0.619746 0.0205331 0.0102665 0.999947i \(-0.496732\pi\)
0.0102665 + 0.999947i \(0.496732\pi\)
\(912\) 0 0
\(913\) 2.31369i 0.0765718i
\(914\) 41.7670 1.38153
\(915\) 17.0009 + 0.852527i 0.562031 + 0.0281837i
\(916\) 4.09434 0.135281
\(917\) 66.7818i 2.20533i
\(918\) 3.86824i 0.127671i
\(919\) 35.0574 1.15644 0.578219 0.815882i \(-0.303748\pi\)
0.578219 + 0.815882i \(0.303748\pi\)
\(920\) 0.430346 8.58184i 0.0141881 0.282935i
\(921\) 39.0226 1.28584
\(922\) 0.289929i 0.00954830i
\(923\) 23.0025i 0.757135i
\(924\) 6.34588 0.208764
\(925\) −1.35296 + 13.4563i −0.0444851 + 0.442439i
\(926\) −20.6553 −0.678775
\(927\) 43.7857i 1.43811i
\(928\) 0.359665i 0.0118066i
\(929\) −12.0434 −0.395132 −0.197566 0.980290i \(-0.563304\pi\)
−0.197566 + 0.980290i \(0.563304\pi\)
\(930\) −1.14299 + 22.7931i −0.0374800 + 0.747416i
\(931\) 0 0
\(932\) 1.87959i 0.0615679i
\(933\) 44.6511i 1.46181i
\(934\) −47.4850 −1.55376
\(935\) 59.1683 + 2.96706i 1.93501 + 0.0970333i
\(936\) 15.1416 0.494918
\(937\) 14.9304i 0.487757i −0.969806 0.243878i \(-0.921580\pi\)
0.969806 0.243878i \(-0.0784197\pi\)
\(938\) 41.1131i 1.34239i
\(939\) −52.6452 −1.71801
\(940\) −0.186961 0.00937539i −0.00609800 0.000305792i
\(941\) −19.4198 −0.633068 −0.316534 0.948581i \(-0.602519\pi\)
−0.316534 + 0.948581i \(0.602519\pi\)
\(942\) 39.8059i 1.29695i
\(943\) 10.2339i 0.333261i
\(944\) −13.6408 −0.443970
\(945\) −0.150308 + 2.99739i −0.00488951 + 0.0975052i
\(946\) −61.2338 −1.99088
\(947\) 16.7369i 0.543878i −0.962315 0.271939i \(-0.912335\pi\)
0.962315 0.271939i \(-0.0876648\pi\)
\(948\) 0.326081i 0.0105906i
\(949\) −3.25117 −0.105538
\(950\) 0 0
\(951\) −7.60959 −0.246758
\(952\) 55.1589i 1.78771i
\(953\) 53.1772i 1.72258i 0.508114 + 0.861290i \(0.330343\pi\)
−0.508114 + 0.861290i \(0.669657\pi\)
\(954\) −33.8962 −1.09743
\(955\) 0.909831 18.1436i 0.0294414 0.587113i
\(956\) 3.35220 0.108418
\(957\) 3.52616i 0.113985i
\(958\) 2.93209i 0.0947317i
\(959\) 28.4496 0.918686
\(960\) 39.4495 + 1.97824i 1.27323 + 0.0638474i
\(961\) −23.2791 −0.750939
\(962\) 7.13812i 0.230142i
\(963\) 10.3367i 0.333096i
\(964\) −3.22209 −0.103777
\(965\) −17.2484 0.864942i −0.555247 0.0278435i
\(966\) 17.1139 0.550630
\(967\) 30.0281i 0.965637i −0.875720 0.482819i \(-0.839613\pi\)
0.875720 0.482819i \(-0.160387\pi\)
\(968\) 17.4377i 0.560469i
\(969\) 0 0
\(970\) −2.18670 + 43.6065i −0.0702107 + 1.40012i
\(971\) −24.1413 −0.774732 −0.387366 0.921926i \(-0.626615\pi\)
−0.387366 + 0.921926i \(0.626615\pi\)
\(972\) 4.18736i 0.134310i
\(973\) 24.9896i 0.801128i
\(974\) −12.7048 −0.407089
\(975\) 22.0407 + 2.21609i 0.705869 + 0.0709717i
\(976\) 13.3065 0.425931
\(977\) 9.57680i 0.306389i −0.988196 0.153195i \(-0.951044\pi\)
0.988196 0.153195i \(-0.0489561\pi\)
\(978\) 31.0211i 0.991947i
\(979\) −28.5712 −0.913140
\(980\) 0.0749645 1.49492i 0.00239465 0.0477535i
\(981\) 10.1985 0.325613
\(982\) 38.3108i 1.22255i
\(983\) 31.1715i 0.994216i −0.867689 0.497108i \(-0.834395\pi\)
0.867689 0.497108i \(-0.165605\pi\)
\(984\) −47.5108 −1.51459
\(985\) −7.96743 0.399536i −0.253864 0.0127303i
\(986\) 3.17889 0.101236
\(987\) 3.59476i 0.114422i
\(988\) 0 0
\(989\) −14.1851 −0.451061
\(990\) −43.7625 2.19452i −1.39086 0.0697464i
\(991\) 48.6643 1.54587 0.772937 0.634483i \(-0.218787\pi\)
0.772937 + 0.634483i \(0.218787\pi\)
\(992\) 2.94464i 0.0934925i
\(993\) 64.4414i 2.04499i
\(994\) −61.9771 −1.96580
\(995\) 0.982078 19.5843i 0.0311340 0.620865i
\(996\) 0.258076 0.00817746
\(997\) 31.8954i 1.01014i −0.863080 0.505068i \(-0.831467\pi\)
0.863080 0.505068i \(-0.168533\pi\)
\(998\) 31.3641i 0.992812i
\(999\) 1.11706 0.0353422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.l.1084.7 24
5.2 odd 4 9025.2.a.ct.1.18 24
5.3 odd 4 9025.2.a.ct.1.7 24
5.4 even 2 inner 1805.2.b.l.1084.18 24
19.3 odd 18 95.2.p.a.9.2 48
19.13 odd 18 95.2.p.a.74.7 yes 48
19.18 odd 2 1805.2.b.k.1084.18 24
57.32 even 18 855.2.da.b.739.2 48
57.41 even 18 855.2.da.b.199.7 48
95.3 even 36 475.2.l.f.351.7 48
95.13 even 36 475.2.l.f.226.7 48
95.18 even 4 9025.2.a.cu.1.18 24
95.22 even 36 475.2.l.f.351.2 48
95.32 even 36 475.2.l.f.226.2 48
95.37 even 4 9025.2.a.cu.1.7 24
95.79 odd 18 95.2.p.a.9.7 yes 48
95.89 odd 18 95.2.p.a.74.2 yes 48
95.94 odd 2 1805.2.b.k.1084.7 24
285.89 even 18 855.2.da.b.739.7 48
285.269 even 18 855.2.da.b.199.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.9.2 48 19.3 odd 18
95.2.p.a.9.7 yes 48 95.79 odd 18
95.2.p.a.74.2 yes 48 95.89 odd 18
95.2.p.a.74.7 yes 48 19.13 odd 18
475.2.l.f.226.2 48 95.32 even 36
475.2.l.f.226.7 48 95.13 even 36
475.2.l.f.351.2 48 95.22 even 36
475.2.l.f.351.7 48 95.3 even 36
855.2.da.b.199.2 48 285.269 even 18
855.2.da.b.199.7 48 57.41 even 18
855.2.da.b.739.2 48 57.32 even 18
855.2.da.b.739.7 48 285.89 even 18
1805.2.b.k.1084.7 24 95.94 odd 2
1805.2.b.k.1084.18 24 19.18 odd 2
1805.2.b.l.1084.7 24 1.1 even 1 trivial
1805.2.b.l.1084.18 24 5.4 even 2 inner
9025.2.a.ct.1.7 24 5.3 odd 4
9025.2.a.ct.1.18 24 5.2 odd 4
9025.2.a.cu.1.7 24 95.37 even 4
9025.2.a.cu.1.18 24 95.18 even 4