Properties

Label 9025.2.a.ct.1.22
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,18,0,-12,0,0,12,0,12,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.22
Character \(\chi\) \(=\) 9025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.32462 q^{2} +1.14858 q^{3} +3.40387 q^{4} +2.67001 q^{6} +0.143302 q^{7} +3.26348 q^{8} -1.68077 q^{9} -2.81557 q^{11} +3.90962 q^{12} +1.70854 q^{13} +0.333123 q^{14} +0.778610 q^{16} -3.55886 q^{17} -3.90715 q^{18} +0.164594 q^{21} -6.54515 q^{22} -7.19394 q^{23} +3.74836 q^{24} +3.97171 q^{26} -5.37623 q^{27} +0.487782 q^{28} -7.57154 q^{29} -4.84686 q^{31} -4.71698 q^{32} -3.23391 q^{33} -8.27302 q^{34} -5.72111 q^{36} +9.49127 q^{37} +1.96239 q^{39} +0.187320 q^{41} +0.382619 q^{42} -10.9943 q^{43} -9.58385 q^{44} -16.7232 q^{46} +3.67032 q^{47} +0.894296 q^{48} -6.97946 q^{49} -4.08764 q^{51} +5.81566 q^{52} +1.64322 q^{53} -12.4977 q^{54} +0.467663 q^{56} -17.6010 q^{58} +5.36637 q^{59} +10.1127 q^{61} -11.2671 q^{62} -0.240857 q^{63} -12.5224 q^{64} -7.51762 q^{66} +6.00805 q^{67} -12.1139 q^{68} -8.26281 q^{69} -0.540979 q^{71} -5.48514 q^{72} -10.4674 q^{73} +22.0636 q^{74} -0.403477 q^{77} +4.56183 q^{78} +11.6088 q^{79} -1.13273 q^{81} +0.435449 q^{82} -7.59579 q^{83} +0.560257 q^{84} -25.5576 q^{86} -8.69652 q^{87} -9.18856 q^{88} -1.44684 q^{89} +0.244837 q^{91} -24.4873 q^{92} -5.56701 q^{93} +8.53210 q^{94} -5.41783 q^{96} +8.80212 q^{97} -16.2246 q^{98} +4.73232 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 18 q^{4} - 12 q^{6} + 12 q^{9} + 12 q^{11} - 24 q^{14} + 6 q^{16} - 6 q^{21} - 42 q^{24} - 12 q^{26} - 36 q^{29} - 42 q^{31} - 6 q^{34} - 6 q^{36} + 24 q^{39} - 60 q^{41} - 30 q^{44} - 6 q^{46} + 12 q^{49}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.32462 1.64376 0.821878 0.569663i \(-0.192926\pi\)
0.821878 + 0.569663i \(0.192926\pi\)
\(3\) 1.14858 0.663133 0.331566 0.943432i \(-0.392423\pi\)
0.331566 + 0.943432i \(0.392423\pi\)
\(4\) 3.40387 1.70194
\(5\) 0 0
\(6\) 2.67001 1.09003
\(7\) 0.143302 0.0541631 0.0270816 0.999633i \(-0.491379\pi\)
0.0270816 + 0.999633i \(0.491379\pi\)
\(8\) 3.26348 1.15381
\(9\) −1.68077 −0.560255
\(10\) 0 0
\(11\) −2.81557 −0.848927 −0.424463 0.905445i \(-0.639537\pi\)
−0.424463 + 0.905445i \(0.639537\pi\)
\(12\) 3.90962 1.12861
\(13\) 1.70854 0.473864 0.236932 0.971526i \(-0.423858\pi\)
0.236932 + 0.971526i \(0.423858\pi\)
\(14\) 0.333123 0.0890310
\(15\) 0 0
\(16\) 0.778610 0.194653
\(17\) −3.55886 −0.863151 −0.431576 0.902077i \(-0.642042\pi\)
−0.431576 + 0.902077i \(0.642042\pi\)
\(18\) −3.90715 −0.920923
\(19\) 0 0
\(20\) 0 0
\(21\) 0.164594 0.0359173
\(22\) −6.54515 −1.39543
\(23\) −7.19394 −1.50004 −0.750020 0.661415i \(-0.769956\pi\)
−0.750020 + 0.661415i \(0.769956\pi\)
\(24\) 3.74836 0.765132
\(25\) 0 0
\(26\) 3.97171 0.778917
\(27\) −5.37623 −1.03466
\(28\) 0.487782 0.0921822
\(29\) −7.57154 −1.40600 −0.703000 0.711190i \(-0.748157\pi\)
−0.703000 + 0.711190i \(0.748157\pi\)
\(30\) 0 0
\(31\) −4.84686 −0.870522 −0.435261 0.900304i \(-0.643344\pi\)
−0.435261 + 0.900304i \(0.643344\pi\)
\(32\) −4.71698 −0.833852
\(33\) −3.23391 −0.562951
\(34\) −8.27302 −1.41881
\(35\) 0 0
\(36\) −5.72111 −0.953519
\(37\) 9.49127 1.56035 0.780177 0.625559i \(-0.215129\pi\)
0.780177 + 0.625559i \(0.215129\pi\)
\(38\) 0 0
\(39\) 1.96239 0.314235
\(40\) 0 0
\(41\) 0.187320 0.0292545 0.0146272 0.999893i \(-0.495344\pi\)
0.0146272 + 0.999893i \(0.495344\pi\)
\(42\) 0.382619 0.0590393
\(43\) −10.9943 −1.67662 −0.838309 0.545196i \(-0.816455\pi\)
−0.838309 + 0.545196i \(0.816455\pi\)
\(44\) −9.58385 −1.44482
\(45\) 0 0
\(46\) −16.7232 −2.46570
\(47\) 3.67032 0.535371 0.267685 0.963506i \(-0.413741\pi\)
0.267685 + 0.963506i \(0.413741\pi\)
\(48\) 0.894296 0.129080
\(49\) −6.97946 −0.997066
\(50\) 0 0
\(51\) −4.08764 −0.572384
\(52\) 5.81566 0.806486
\(53\) 1.64322 0.225714 0.112857 0.993611i \(-0.464000\pi\)
0.112857 + 0.993611i \(0.464000\pi\)
\(54\) −12.4977 −1.70072
\(55\) 0 0
\(56\) 0.467663 0.0624941
\(57\) 0 0
\(58\) −17.6010 −2.31112
\(59\) 5.36637 0.698642 0.349321 0.937003i \(-0.386412\pi\)
0.349321 + 0.937003i \(0.386412\pi\)
\(60\) 0 0
\(61\) 10.1127 1.29480 0.647402 0.762148i \(-0.275855\pi\)
0.647402 + 0.762148i \(0.275855\pi\)
\(62\) −11.2671 −1.43093
\(63\) −0.240857 −0.0303452
\(64\) −12.5224 −1.56530
\(65\) 0 0
\(66\) −7.51762 −0.925355
\(67\) 6.00805 0.734001 0.367000 0.930221i \(-0.380385\pi\)
0.367000 + 0.930221i \(0.380385\pi\)
\(68\) −12.1139 −1.46903
\(69\) −8.26281 −0.994725
\(70\) 0 0
\(71\) −0.540979 −0.0642024 −0.0321012 0.999485i \(-0.510220\pi\)
−0.0321012 + 0.999485i \(0.510220\pi\)
\(72\) −5.48514 −0.646430
\(73\) −10.4674 −1.22512 −0.612559 0.790425i \(-0.709860\pi\)
−0.612559 + 0.790425i \(0.709860\pi\)
\(74\) 22.0636 2.56484
\(75\) 0 0
\(76\) 0 0
\(77\) −0.403477 −0.0459805
\(78\) 4.56183 0.516525
\(79\) 11.6088 1.30610 0.653048 0.757317i \(-0.273490\pi\)
0.653048 + 0.757317i \(0.273490\pi\)
\(80\) 0 0
\(81\) −1.13273 −0.125859
\(82\) 0.435449 0.0480873
\(83\) −7.59579 −0.833746 −0.416873 0.908965i \(-0.636874\pi\)
−0.416873 + 0.908965i \(0.636874\pi\)
\(84\) 0.560257 0.0611290
\(85\) 0 0
\(86\) −25.5576 −2.75595
\(87\) −8.69652 −0.932365
\(88\) −9.18856 −0.979504
\(89\) −1.44684 −0.153365 −0.0766823 0.997056i \(-0.524433\pi\)
−0.0766823 + 0.997056i \(0.524433\pi\)
\(90\) 0 0
\(91\) 0.244837 0.0256659
\(92\) −24.4873 −2.55297
\(93\) −5.56701 −0.577272
\(94\) 8.53210 0.880019
\(95\) 0 0
\(96\) −5.41783 −0.552955
\(97\) 8.80212 0.893720 0.446860 0.894604i \(-0.352542\pi\)
0.446860 + 0.894604i \(0.352542\pi\)
\(98\) −16.2246 −1.63893
\(99\) 4.73232 0.475616
\(100\) 0 0
\(101\) −2.87795 −0.286367 −0.143183 0.989696i \(-0.545734\pi\)
−0.143183 + 0.989696i \(0.545734\pi\)
\(102\) −9.50222 −0.940860
\(103\) 1.19966 0.118206 0.0591032 0.998252i \(-0.481176\pi\)
0.0591032 + 0.998252i \(0.481176\pi\)
\(104\) 5.57578 0.546751
\(105\) 0 0
\(106\) 3.81987 0.371019
\(107\) −4.09536 −0.395913 −0.197957 0.980211i \(-0.563430\pi\)
−0.197957 + 0.980211i \(0.563430\pi\)
\(108\) −18.3000 −1.76092
\(109\) 16.1941 1.55111 0.775555 0.631280i \(-0.217470\pi\)
0.775555 + 0.631280i \(0.217470\pi\)
\(110\) 0 0
\(111\) 10.9015 1.03472
\(112\) 0.111576 0.0105430
\(113\) 3.11845 0.293359 0.146680 0.989184i \(-0.453141\pi\)
0.146680 + 0.989184i \(0.453141\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −25.7726 −2.39292
\(117\) −2.87166 −0.265485
\(118\) 12.4748 1.14840
\(119\) −0.509993 −0.0467509
\(120\) 0 0
\(121\) −3.07255 −0.279323
\(122\) 23.5083 2.12834
\(123\) 0.215152 0.0193996
\(124\) −16.4981 −1.48157
\(125\) 0 0
\(126\) −0.559902 −0.0498801
\(127\) −8.16019 −0.724100 −0.362050 0.932159i \(-0.617923\pi\)
−0.362050 + 0.932159i \(0.617923\pi\)
\(128\) −19.6760 −1.73913
\(129\) −12.6278 −1.11182
\(130\) 0 0
\(131\) 2.61996 0.228907 0.114453 0.993429i \(-0.463488\pi\)
0.114453 + 0.993429i \(0.463488\pi\)
\(132\) −11.0078 −0.958108
\(133\) 0 0
\(134\) 13.9665 1.20652
\(135\) 0 0
\(136\) −11.6143 −0.995916
\(137\) 12.3205 1.05261 0.526305 0.850296i \(-0.323577\pi\)
0.526305 + 0.850296i \(0.323577\pi\)
\(138\) −19.2079 −1.63509
\(139\) 7.95376 0.674629 0.337314 0.941392i \(-0.390481\pi\)
0.337314 + 0.941392i \(0.390481\pi\)
\(140\) 0 0
\(141\) 4.21565 0.355022
\(142\) −1.25757 −0.105533
\(143\) −4.81052 −0.402276
\(144\) −1.30866 −0.109055
\(145\) 0 0
\(146\) −24.3328 −2.01380
\(147\) −8.01647 −0.661187
\(148\) 32.3071 2.65562
\(149\) −4.19620 −0.343766 −0.171883 0.985117i \(-0.554985\pi\)
−0.171883 + 0.985117i \(0.554985\pi\)
\(150\) 0 0
\(151\) 2.86140 0.232857 0.116429 0.993199i \(-0.462855\pi\)
0.116429 + 0.993199i \(0.462855\pi\)
\(152\) 0 0
\(153\) 5.98161 0.483585
\(154\) −0.937933 −0.0755808
\(155\) 0 0
\(156\) 6.67974 0.534807
\(157\) 11.5244 0.919744 0.459872 0.887985i \(-0.347895\pi\)
0.459872 + 0.887985i \(0.347895\pi\)
\(158\) 26.9862 2.14690
\(159\) 1.88737 0.149678
\(160\) 0 0
\(161\) −1.03091 −0.0812468
\(162\) −2.63318 −0.206882
\(163\) −18.9195 −1.48189 −0.740944 0.671567i \(-0.765621\pi\)
−0.740944 + 0.671567i \(0.765621\pi\)
\(164\) 0.637614 0.0497893
\(165\) 0 0
\(166\) −17.6573 −1.37048
\(167\) 15.0690 1.16607 0.583036 0.812447i \(-0.301865\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(168\) 0.537148 0.0414419
\(169\) −10.0809 −0.775453
\(170\) 0 0
\(171\) 0 0
\(172\) −37.4233 −2.85350
\(173\) 21.6950 1.64944 0.824719 0.565542i \(-0.191333\pi\)
0.824719 + 0.565542i \(0.191333\pi\)
\(174\) −20.2161 −1.53258
\(175\) 0 0
\(176\) −2.19223 −0.165246
\(177\) 6.16370 0.463292
\(178\) −3.36336 −0.252094
\(179\) −22.8790 −1.71006 −0.855028 0.518581i \(-0.826460\pi\)
−0.855028 + 0.518581i \(0.826460\pi\)
\(180\) 0 0
\(181\) 11.5660 0.859693 0.429847 0.902902i \(-0.358568\pi\)
0.429847 + 0.902902i \(0.358568\pi\)
\(182\) 0.569155 0.0421886
\(183\) 11.6153 0.858627
\(184\) −23.4773 −1.73077
\(185\) 0 0
\(186\) −12.9412 −0.948894
\(187\) 10.0202 0.732752
\(188\) 12.4933 0.911167
\(189\) −0.770425 −0.0560402
\(190\) 0 0
\(191\) 7.28958 0.527455 0.263728 0.964597i \(-0.415048\pi\)
0.263728 + 0.964597i \(0.415048\pi\)
\(192\) −14.3830 −1.03800
\(193\) −26.1862 −1.88493 −0.942464 0.334308i \(-0.891497\pi\)
−0.942464 + 0.334308i \(0.891497\pi\)
\(194\) 20.4616 1.46906
\(195\) 0 0
\(196\) −23.7572 −1.69694
\(197\) 2.28820 0.163027 0.0815136 0.996672i \(-0.474025\pi\)
0.0815136 + 0.996672i \(0.474025\pi\)
\(198\) 11.0009 0.781797
\(199\) −12.2469 −0.868159 −0.434079 0.900875i \(-0.642926\pi\)
−0.434079 + 0.900875i \(0.642926\pi\)
\(200\) 0 0
\(201\) 6.90073 0.486740
\(202\) −6.69015 −0.470717
\(203\) −1.08502 −0.0761533
\(204\) −13.9138 −0.974161
\(205\) 0 0
\(206\) 2.78877 0.194302
\(207\) 12.0913 0.840405
\(208\) 1.33029 0.0922388
\(209\) 0 0
\(210\) 0 0
\(211\) −3.00309 −0.206741 −0.103371 0.994643i \(-0.532963\pi\)
−0.103371 + 0.994643i \(0.532963\pi\)
\(212\) 5.59332 0.384151
\(213\) −0.621357 −0.0425747
\(214\) −9.52016 −0.650785
\(215\) 0 0
\(216\) −17.5452 −1.19380
\(217\) −0.694565 −0.0471502
\(218\) 37.6451 2.54965
\(219\) −12.0227 −0.812416
\(220\) 0 0
\(221\) −6.08046 −0.409016
\(222\) 25.3418 1.70083
\(223\) 2.19363 0.146897 0.0734483 0.997299i \(-0.476600\pi\)
0.0734483 + 0.997299i \(0.476600\pi\)
\(224\) −0.675953 −0.0451640
\(225\) 0 0
\(226\) 7.24922 0.482211
\(227\) −6.44357 −0.427675 −0.213838 0.976869i \(-0.568596\pi\)
−0.213838 + 0.976869i \(0.568596\pi\)
\(228\) 0 0
\(229\) −1.54321 −0.101978 −0.0509892 0.998699i \(-0.516237\pi\)
−0.0509892 + 0.998699i \(0.516237\pi\)
\(230\) 0 0
\(231\) −0.463426 −0.0304912
\(232\) −24.7096 −1.62226
\(233\) −20.4612 −1.34046 −0.670228 0.742155i \(-0.733804\pi\)
−0.670228 + 0.742155i \(0.733804\pi\)
\(234\) −6.67552 −0.436392
\(235\) 0 0
\(236\) 18.2665 1.18904
\(237\) 13.3337 0.866115
\(238\) −1.18554 −0.0768472
\(239\) 6.24066 0.403675 0.201837 0.979419i \(-0.435309\pi\)
0.201837 + 0.979419i \(0.435309\pi\)
\(240\) 0 0
\(241\) 26.3148 1.69508 0.847542 0.530728i \(-0.178081\pi\)
0.847542 + 0.530728i \(0.178081\pi\)
\(242\) −7.14253 −0.459139
\(243\) 14.8277 0.951195
\(244\) 34.4225 2.20368
\(245\) 0 0
\(246\) 0.500147 0.0318882
\(247\) 0 0
\(248\) −15.8176 −1.00442
\(249\) −8.72437 −0.552884
\(250\) 0 0
\(251\) −10.7064 −0.675779 −0.337889 0.941186i \(-0.609713\pi\)
−0.337889 + 0.941186i \(0.609713\pi\)
\(252\) −0.819847 −0.0516455
\(253\) 20.2551 1.27342
\(254\) −18.9694 −1.19024
\(255\) 0 0
\(256\) −20.6943 −1.29340
\(257\) −13.5240 −0.843603 −0.421802 0.906688i \(-0.638602\pi\)
−0.421802 + 0.906688i \(0.638602\pi\)
\(258\) −29.3550 −1.82756
\(259\) 1.36012 0.0845136
\(260\) 0 0
\(261\) 12.7260 0.787719
\(262\) 6.09042 0.376267
\(263\) 6.54056 0.403308 0.201654 0.979457i \(-0.435368\pi\)
0.201654 + 0.979457i \(0.435368\pi\)
\(264\) −10.5538 −0.649541
\(265\) 0 0
\(266\) 0 0
\(267\) −1.66181 −0.101701
\(268\) 20.4507 1.24922
\(269\) −14.4220 −0.879327 −0.439663 0.898163i \(-0.644902\pi\)
−0.439663 + 0.898163i \(0.644902\pi\)
\(270\) 0 0
\(271\) −2.18429 −0.132686 −0.0663431 0.997797i \(-0.521133\pi\)
−0.0663431 + 0.997797i \(0.521133\pi\)
\(272\) −2.77097 −0.168015
\(273\) 0.281215 0.0170199
\(274\) 28.6405 1.73024
\(275\) 0 0
\(276\) −28.1256 −1.69296
\(277\) −15.9746 −0.959823 −0.479911 0.877317i \(-0.659331\pi\)
−0.479911 + 0.877317i \(0.659331\pi\)
\(278\) 18.4895 1.10893
\(279\) 8.14644 0.487714
\(280\) 0 0
\(281\) 14.2569 0.850496 0.425248 0.905077i \(-0.360187\pi\)
0.425248 + 0.905077i \(0.360187\pi\)
\(282\) 9.79980 0.583569
\(283\) −7.06732 −0.420108 −0.210054 0.977690i \(-0.567364\pi\)
−0.210054 + 0.977690i \(0.567364\pi\)
\(284\) −1.84142 −0.109268
\(285\) 0 0
\(286\) −11.1826 −0.661244
\(287\) 0.0268434 0.00158451
\(288\) 7.92814 0.467170
\(289\) −4.33449 −0.254970
\(290\) 0 0
\(291\) 10.1099 0.592655
\(292\) −35.6298 −2.08507
\(293\) −0.976745 −0.0570621 −0.0285310 0.999593i \(-0.509083\pi\)
−0.0285310 + 0.999593i \(0.509083\pi\)
\(294\) −18.6353 −1.08683
\(295\) 0 0
\(296\) 30.9745 1.80036
\(297\) 15.1372 0.878347
\(298\) −9.75458 −0.565068
\(299\) −12.2911 −0.710815
\(300\) 0 0
\(301\) −1.57551 −0.0908108
\(302\) 6.65167 0.382760
\(303\) −3.30555 −0.189899
\(304\) 0 0
\(305\) 0 0
\(306\) 13.9050 0.794896
\(307\) −28.4670 −1.62470 −0.812350 0.583171i \(-0.801812\pi\)
−0.812350 + 0.583171i \(0.801812\pi\)
\(308\) −1.37339 −0.0782559
\(309\) 1.37791 0.0783865
\(310\) 0 0
\(311\) −25.5461 −1.44858 −0.724292 0.689493i \(-0.757833\pi\)
−0.724292 + 0.689493i \(0.757833\pi\)
\(312\) 6.40423 0.362568
\(313\) −14.9513 −0.845098 −0.422549 0.906340i \(-0.638865\pi\)
−0.422549 + 0.906340i \(0.638865\pi\)
\(314\) 26.7898 1.51184
\(315\) 0 0
\(316\) 39.5150 2.22289
\(317\) −22.5401 −1.26598 −0.632990 0.774160i \(-0.718173\pi\)
−0.632990 + 0.774160i \(0.718173\pi\)
\(318\) 4.38743 0.246035
\(319\) 21.3182 1.19359
\(320\) 0 0
\(321\) −4.70384 −0.262543
\(322\) −2.39647 −0.133550
\(323\) 0 0
\(324\) −3.85568 −0.214204
\(325\) 0 0
\(326\) −43.9806 −2.43586
\(327\) 18.6002 1.02859
\(328\) 0.611315 0.0337542
\(329\) 0.525964 0.0289973
\(330\) 0 0
\(331\) 10.8681 0.597365 0.298682 0.954353i \(-0.403453\pi\)
0.298682 + 0.954353i \(0.403453\pi\)
\(332\) −25.8551 −1.41898
\(333\) −15.9526 −0.874196
\(334\) 35.0297 1.91674
\(335\) 0 0
\(336\) 0.128154 0.00699140
\(337\) 7.70906 0.419939 0.209970 0.977708i \(-0.432663\pi\)
0.209970 + 0.977708i \(0.432663\pi\)
\(338\) −23.4343 −1.27466
\(339\) 3.58179 0.194536
\(340\) 0 0
\(341\) 13.6467 0.739010
\(342\) 0 0
\(343\) −2.00329 −0.108167
\(344\) −35.8797 −1.93450
\(345\) 0 0
\(346\) 50.4327 2.71128
\(347\) −20.2699 −1.08814 −0.544072 0.839039i \(-0.683118\pi\)
−0.544072 + 0.839039i \(0.683118\pi\)
\(348\) −29.6019 −1.58683
\(349\) 19.0503 1.01974 0.509870 0.860252i \(-0.329694\pi\)
0.509870 + 0.860252i \(0.329694\pi\)
\(350\) 0 0
\(351\) −9.18551 −0.490286
\(352\) 13.2810 0.707880
\(353\) 18.1667 0.966917 0.483459 0.875367i \(-0.339380\pi\)
0.483459 + 0.875367i \(0.339380\pi\)
\(354\) 14.3283 0.761540
\(355\) 0 0
\(356\) −4.92486 −0.261017
\(357\) −0.585767 −0.0310021
\(358\) −53.1851 −2.81092
\(359\) −16.1318 −0.851406 −0.425703 0.904863i \(-0.639973\pi\)
−0.425703 + 0.904863i \(0.639973\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 26.8866 1.41313
\(363\) −3.52907 −0.185228
\(364\) 0.833396 0.0436818
\(365\) 0 0
\(366\) 27.0012 1.41137
\(367\) 32.2616 1.68404 0.842021 0.539445i \(-0.181366\pi\)
0.842021 + 0.539445i \(0.181366\pi\)
\(368\) −5.60127 −0.291987
\(369\) −0.314841 −0.0163900
\(370\) 0 0
\(371\) 0.235477 0.0122254
\(372\) −18.9494 −0.982480
\(373\) −2.38037 −0.123251 −0.0616253 0.998099i \(-0.519628\pi\)
−0.0616253 + 0.998099i \(0.519628\pi\)
\(374\) 23.2933 1.20447
\(375\) 0 0
\(376\) 11.9780 0.617718
\(377\) −12.9363 −0.666253
\(378\) −1.79095 −0.0921164
\(379\) −17.7215 −0.910291 −0.455145 0.890417i \(-0.650413\pi\)
−0.455145 + 0.890417i \(0.650413\pi\)
\(380\) 0 0
\(381\) −9.37263 −0.480174
\(382\) 16.9455 0.867009
\(383\) −10.6646 −0.544934 −0.272467 0.962165i \(-0.587840\pi\)
−0.272467 + 0.962165i \(0.587840\pi\)
\(384\) −22.5994 −1.15327
\(385\) 0 0
\(386\) −60.8732 −3.09836
\(387\) 18.4789 0.939333
\(388\) 29.9613 1.52105
\(389\) 22.7313 1.15252 0.576262 0.817265i \(-0.304511\pi\)
0.576262 + 0.817265i \(0.304511\pi\)
\(390\) 0 0
\(391\) 25.6022 1.29476
\(392\) −22.7773 −1.15043
\(393\) 3.00923 0.151796
\(394\) 5.31919 0.267977
\(395\) 0 0
\(396\) 16.1082 0.809468
\(397\) −20.4405 −1.02588 −0.512939 0.858425i \(-0.671443\pi\)
−0.512939 + 0.858425i \(0.671443\pi\)
\(398\) −28.4694 −1.42704
\(399\) 0 0
\(400\) 0 0
\(401\) −16.6972 −0.833817 −0.416908 0.908949i \(-0.636886\pi\)
−0.416908 + 0.908949i \(0.636886\pi\)
\(402\) 16.0416 0.800082
\(403\) −8.28106 −0.412509
\(404\) −9.79618 −0.487378
\(405\) 0 0
\(406\) −2.52226 −0.125178
\(407\) −26.7233 −1.32463
\(408\) −13.3399 −0.660424
\(409\) 17.6846 0.874447 0.437224 0.899353i \(-0.355962\pi\)
0.437224 + 0.899353i \(0.355962\pi\)
\(410\) 0 0
\(411\) 14.1511 0.698021
\(412\) 4.08350 0.201180
\(413\) 0.769012 0.0378406
\(414\) 28.1078 1.38142
\(415\) 0 0
\(416\) −8.05915 −0.395133
\(417\) 9.13552 0.447369
\(418\) 0 0
\(419\) −37.9339 −1.85319 −0.926596 0.376059i \(-0.877279\pi\)
−0.926596 + 0.376059i \(0.877279\pi\)
\(420\) 0 0
\(421\) −11.5822 −0.564481 −0.282241 0.959344i \(-0.591078\pi\)
−0.282241 + 0.959344i \(0.591078\pi\)
\(422\) −6.98106 −0.339833
\(423\) −6.16894 −0.299944
\(424\) 5.36262 0.260432
\(425\) 0 0
\(426\) −1.44442 −0.0699825
\(427\) 1.44918 0.0701306
\(428\) −13.9401 −0.673819
\(429\) −5.52526 −0.266762
\(430\) 0 0
\(431\) −31.7898 −1.53126 −0.765629 0.643282i \(-0.777572\pi\)
−0.765629 + 0.643282i \(0.777572\pi\)
\(432\) −4.18599 −0.201398
\(433\) 4.08848 0.196480 0.0982399 0.995163i \(-0.468679\pi\)
0.0982399 + 0.995163i \(0.468679\pi\)
\(434\) −1.61460 −0.0775034
\(435\) 0 0
\(436\) 55.1226 2.63989
\(437\) 0 0
\(438\) −27.9481 −1.33541
\(439\) 11.7557 0.561070 0.280535 0.959844i \(-0.409488\pi\)
0.280535 + 0.959844i \(0.409488\pi\)
\(440\) 0 0
\(441\) 11.7308 0.558611
\(442\) −14.1348 −0.672323
\(443\) −7.88658 −0.374703 −0.187351 0.982293i \(-0.559990\pi\)
−0.187351 + 0.982293i \(0.559990\pi\)
\(444\) 37.1072 1.76103
\(445\) 0 0
\(446\) 5.09937 0.241462
\(447\) −4.81967 −0.227962
\(448\) −1.79449 −0.0847817
\(449\) 1.16079 0.0547812 0.0273906 0.999625i \(-0.491280\pi\)
0.0273906 + 0.999625i \(0.491280\pi\)
\(450\) 0 0
\(451\) −0.527413 −0.0248349
\(452\) 10.6148 0.499279
\(453\) 3.28654 0.154415
\(454\) −14.9789 −0.702994
\(455\) 0 0
\(456\) 0 0
\(457\) 38.6888 1.80978 0.904892 0.425641i \(-0.139951\pi\)
0.904892 + 0.425641i \(0.139951\pi\)
\(458\) −3.58739 −0.167628
\(459\) 19.1333 0.893065
\(460\) 0 0
\(461\) −24.4994 −1.14105 −0.570525 0.821280i \(-0.693260\pi\)
−0.570525 + 0.821280i \(0.693260\pi\)
\(462\) −1.07729 −0.0501201
\(463\) −32.4849 −1.50970 −0.754852 0.655895i \(-0.772291\pi\)
−0.754852 + 0.655895i \(0.772291\pi\)
\(464\) −5.89528 −0.273681
\(465\) 0 0
\(466\) −47.5645 −2.20338
\(467\) 14.7020 0.680327 0.340163 0.940366i \(-0.389518\pi\)
0.340163 + 0.940366i \(0.389518\pi\)
\(468\) −9.77475 −0.451838
\(469\) 0.860967 0.0397558
\(470\) 0 0
\(471\) 13.2366 0.609912
\(472\) 17.5130 0.806103
\(473\) 30.9553 1.42333
\(474\) 30.9957 1.42368
\(475\) 0 0
\(476\) −1.73595 −0.0795672
\(477\) −2.76187 −0.126457
\(478\) 14.5072 0.663543
\(479\) −13.2196 −0.604020 −0.302010 0.953305i \(-0.597658\pi\)
−0.302010 + 0.953305i \(0.597658\pi\)
\(480\) 0 0
\(481\) 16.2162 0.739396
\(482\) 61.1720 2.78631
\(483\) −1.18408 −0.0538774
\(484\) −10.4586 −0.475390
\(485\) 0 0
\(486\) 34.4687 1.56353
\(487\) 9.66071 0.437769 0.218884 0.975751i \(-0.429758\pi\)
0.218884 + 0.975751i \(0.429758\pi\)
\(488\) 33.0027 1.49396
\(489\) −21.7305 −0.982688
\(490\) 0 0
\(491\) 2.68634 0.121233 0.0606165 0.998161i \(-0.480693\pi\)
0.0606165 + 0.998161i \(0.480693\pi\)
\(492\) 0.732350 0.0330169
\(493\) 26.9461 1.21359
\(494\) 0 0
\(495\) 0 0
\(496\) −3.77382 −0.169449
\(497\) −0.0775234 −0.00347740
\(498\) −20.2809 −0.908807
\(499\) 2.35546 0.105445 0.0527224 0.998609i \(-0.483210\pi\)
0.0527224 + 0.998609i \(0.483210\pi\)
\(500\) 0 0
\(501\) 17.3079 0.773260
\(502\) −24.8882 −1.11082
\(503\) 13.7390 0.612590 0.306295 0.951937i \(-0.400911\pi\)
0.306295 + 0.951937i \(0.400911\pi\)
\(504\) −0.786032 −0.0350127
\(505\) 0 0
\(506\) 47.0854 2.09320
\(507\) −11.5787 −0.514228
\(508\) −27.7763 −1.23237
\(509\) 36.3796 1.61250 0.806249 0.591577i \(-0.201494\pi\)
0.806249 + 0.591577i \(0.201494\pi\)
\(510\) 0 0
\(511\) −1.50000 −0.0663562
\(512\) −8.75464 −0.386904
\(513\) 0 0
\(514\) −31.4382 −1.38668
\(515\) 0 0
\(516\) −42.9836 −1.89225
\(517\) −10.3340 −0.454491
\(518\) 3.16176 0.138920
\(519\) 24.9184 1.09380
\(520\) 0 0
\(521\) −0.580423 −0.0254288 −0.0127144 0.999919i \(-0.504047\pi\)
−0.0127144 + 0.999919i \(0.504047\pi\)
\(522\) 29.5831 1.29482
\(523\) 19.2463 0.841582 0.420791 0.907158i \(-0.361753\pi\)
0.420791 + 0.907158i \(0.361753\pi\)
\(524\) 8.91801 0.389585
\(525\) 0 0
\(526\) 15.2043 0.662941
\(527\) 17.2493 0.751392
\(528\) −2.51795 −0.109580
\(529\) 28.7528 1.25012
\(530\) 0 0
\(531\) −9.01961 −0.391418
\(532\) 0 0
\(533\) 0.320044 0.0138626
\(534\) −3.86308 −0.167172
\(535\) 0 0
\(536\) 19.6072 0.846900
\(537\) −26.2783 −1.13399
\(538\) −33.5258 −1.44540
\(539\) 19.6512 0.846437
\(540\) 0 0
\(541\) −31.9066 −1.37177 −0.685886 0.727709i \(-0.740585\pi\)
−0.685886 + 0.727709i \(0.740585\pi\)
\(542\) −5.07765 −0.218104
\(543\) 13.2845 0.570091
\(544\) 16.7871 0.719741
\(545\) 0 0
\(546\) 0.653720 0.0279766
\(547\) −3.43452 −0.146849 −0.0734246 0.997301i \(-0.523393\pi\)
−0.0734246 + 0.997301i \(0.523393\pi\)
\(548\) 41.9374 1.79148
\(549\) −16.9972 −0.725421
\(550\) 0 0
\(551\) 0 0
\(552\) −26.9655 −1.14773
\(553\) 1.66357 0.0707422
\(554\) −37.1350 −1.57772
\(555\) 0 0
\(556\) 27.0736 1.14818
\(557\) −6.83010 −0.289401 −0.144700 0.989476i \(-0.546222\pi\)
−0.144700 + 0.989476i \(0.546222\pi\)
\(558\) 18.9374 0.801684
\(559\) −18.7842 −0.794488
\(560\) 0 0
\(561\) 11.5090 0.485912
\(562\) 33.1419 1.39801
\(563\) −12.5628 −0.529460 −0.264730 0.964323i \(-0.585283\pi\)
−0.264730 + 0.964323i \(0.585283\pi\)
\(564\) 14.3495 0.604225
\(565\) 0 0
\(566\) −16.4289 −0.690556
\(567\) −0.162323 −0.00681692
\(568\) −1.76547 −0.0740776
\(569\) −3.47978 −0.145880 −0.0729400 0.997336i \(-0.523238\pi\)
−0.0729400 + 0.997336i \(0.523238\pi\)
\(570\) 0 0
\(571\) −0.621524 −0.0260100 −0.0130050 0.999915i \(-0.504140\pi\)
−0.0130050 + 0.999915i \(0.504140\pi\)
\(572\) −16.3744 −0.684648
\(573\) 8.37266 0.349773
\(574\) 0.0624007 0.00260456
\(575\) 0 0
\(576\) 21.0473 0.876969
\(577\) −3.85170 −0.160348 −0.0801742 0.996781i \(-0.525548\pi\)
−0.0801742 + 0.996781i \(0.525548\pi\)
\(578\) −10.0761 −0.419109
\(579\) −30.0770 −1.24996
\(580\) 0 0
\(581\) −1.08849 −0.0451583
\(582\) 23.5018 0.974180
\(583\) −4.62661 −0.191615
\(584\) −34.1602 −1.41356
\(585\) 0 0
\(586\) −2.27056 −0.0937961
\(587\) −40.4333 −1.66886 −0.834431 0.551113i \(-0.814203\pi\)
−0.834431 + 0.551113i \(0.814203\pi\)
\(588\) −27.2871 −1.12530
\(589\) 0 0
\(590\) 0 0
\(591\) 2.62817 0.108109
\(592\) 7.38999 0.303727
\(593\) 5.87362 0.241201 0.120600 0.992701i \(-0.461518\pi\)
0.120600 + 0.992701i \(0.461518\pi\)
\(594\) 35.1882 1.44379
\(595\) 0 0
\(596\) −14.2833 −0.585068
\(597\) −14.0665 −0.575704
\(598\) −28.5723 −1.16841
\(599\) 13.3107 0.543862 0.271931 0.962317i \(-0.412338\pi\)
0.271931 + 0.962317i \(0.412338\pi\)
\(600\) 0 0
\(601\) −5.16016 −0.210487 −0.105244 0.994446i \(-0.533562\pi\)
−0.105244 + 0.994446i \(0.533562\pi\)
\(602\) −3.66246 −0.149271
\(603\) −10.0981 −0.411228
\(604\) 9.73983 0.396308
\(605\) 0 0
\(606\) −7.68417 −0.312148
\(607\) 30.5069 1.23824 0.619119 0.785297i \(-0.287490\pi\)
0.619119 + 0.785297i \(0.287490\pi\)
\(608\) 0 0
\(609\) −1.24623 −0.0504998
\(610\) 0 0
\(611\) 6.27088 0.253693
\(612\) 20.3607 0.823031
\(613\) 45.5007 1.83776 0.918879 0.394540i \(-0.129096\pi\)
0.918879 + 0.394540i \(0.129096\pi\)
\(614\) −66.1751 −2.67061
\(615\) 0 0
\(616\) −1.31674 −0.0530530
\(617\) −2.48247 −0.0999403 −0.0499701 0.998751i \(-0.515913\pi\)
−0.0499701 + 0.998751i \(0.515913\pi\)
\(618\) 3.20312 0.128848
\(619\) 23.4945 0.944325 0.472162 0.881512i \(-0.343474\pi\)
0.472162 + 0.881512i \(0.343474\pi\)
\(620\) 0 0
\(621\) 38.6763 1.55203
\(622\) −59.3850 −2.38112
\(623\) −0.207335 −0.00830670
\(624\) 1.52794 0.0611666
\(625\) 0 0
\(626\) −34.7562 −1.38914
\(627\) 0 0
\(628\) 39.2275 1.56535
\(629\) −33.7781 −1.34682
\(630\) 0 0
\(631\) −17.8197 −0.709392 −0.354696 0.934982i \(-0.615416\pi\)
−0.354696 + 0.934982i \(0.615416\pi\)
\(632\) 37.8852 1.50699
\(633\) −3.44929 −0.137097
\(634\) −52.3974 −2.08096
\(635\) 0 0
\(636\) 6.42437 0.254743
\(637\) −11.9247 −0.472474
\(638\) 49.5568 1.96197
\(639\) 0.909259 0.0359697
\(640\) 0 0
\(641\) −37.4631 −1.47970 −0.739852 0.672770i \(-0.765104\pi\)
−0.739852 + 0.672770i \(0.765104\pi\)
\(642\) −10.9347 −0.431557
\(643\) 19.8886 0.784331 0.392165 0.919895i \(-0.371726\pi\)
0.392165 + 0.919895i \(0.371726\pi\)
\(644\) −3.50908 −0.138277
\(645\) 0 0
\(646\) 0 0
\(647\) 23.0645 0.906759 0.453380 0.891318i \(-0.350218\pi\)
0.453380 + 0.891318i \(0.350218\pi\)
\(648\) −3.69665 −0.145218
\(649\) −15.1094 −0.593096
\(650\) 0 0
\(651\) −0.797764 −0.0312668
\(652\) −64.3995 −2.52208
\(653\) 26.9839 1.05596 0.527981 0.849256i \(-0.322949\pi\)
0.527981 + 0.849256i \(0.322949\pi\)
\(654\) 43.2384 1.69075
\(655\) 0 0
\(656\) 0.145849 0.00569446
\(657\) 17.5933 0.686379
\(658\) 1.22267 0.0476646
\(659\) −13.4880 −0.525418 −0.262709 0.964875i \(-0.584616\pi\)
−0.262709 + 0.964875i \(0.584616\pi\)
\(660\) 0 0
\(661\) 21.9777 0.854835 0.427417 0.904054i \(-0.359423\pi\)
0.427417 + 0.904054i \(0.359423\pi\)
\(662\) 25.2642 0.981922
\(663\) −6.98389 −0.271232
\(664\) −24.7887 −0.961988
\(665\) 0 0
\(666\) −37.0838 −1.43697
\(667\) 54.4692 2.10906
\(668\) 51.2928 1.98458
\(669\) 2.51956 0.0974119
\(670\) 0 0
\(671\) −28.4732 −1.09919
\(672\) −0.776386 −0.0299497
\(673\) −23.1998 −0.894286 −0.447143 0.894462i \(-0.647559\pi\)
−0.447143 + 0.894462i \(0.647559\pi\)
\(674\) 17.9207 0.690278
\(675\) 0 0
\(676\) −34.3141 −1.31977
\(677\) 28.7294 1.10416 0.552081 0.833791i \(-0.313834\pi\)
0.552081 + 0.833791i \(0.313834\pi\)
\(678\) 8.32631 0.319770
\(679\) 1.26136 0.0484066
\(680\) 0 0
\(681\) −7.40096 −0.283605
\(682\) 31.7234 1.21475
\(683\) 24.0010 0.918374 0.459187 0.888340i \(-0.348141\pi\)
0.459187 + 0.888340i \(0.348141\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −4.65689 −0.177801
\(687\) −1.77250 −0.0676252
\(688\) −8.56028 −0.326358
\(689\) 2.80751 0.106958
\(690\) 0 0
\(691\) 37.3866 1.42226 0.711128 0.703063i \(-0.248185\pi\)
0.711128 + 0.703063i \(0.248185\pi\)
\(692\) 73.8470 2.80724
\(693\) 0.678151 0.0257608
\(694\) −47.1198 −1.78864
\(695\) 0 0
\(696\) −28.3809 −1.07578
\(697\) −0.666647 −0.0252510
\(698\) 44.2848 1.67620
\(699\) −23.5013 −0.888900
\(700\) 0 0
\(701\) −2.32624 −0.0878609 −0.0439304 0.999035i \(-0.513988\pi\)
−0.0439304 + 0.999035i \(0.513988\pi\)
\(702\) −21.3528 −0.805911
\(703\) 0 0
\(704\) 35.2578 1.32883
\(705\) 0 0
\(706\) 42.2308 1.58938
\(707\) −0.412416 −0.0155105
\(708\) 20.9805 0.788494
\(709\) −24.3523 −0.914568 −0.457284 0.889321i \(-0.651178\pi\)
−0.457284 + 0.889321i \(0.651178\pi\)
\(710\) 0 0
\(711\) −19.5117 −0.731747
\(712\) −4.72173 −0.176954
\(713\) 34.8680 1.30582
\(714\) −1.36169 −0.0509599
\(715\) 0 0
\(716\) −77.8772 −2.91041
\(717\) 7.16789 0.267690
\(718\) −37.5004 −1.39950
\(719\) 17.0622 0.636311 0.318155 0.948039i \(-0.396937\pi\)
0.318155 + 0.948039i \(0.396937\pi\)
\(720\) 0 0
\(721\) 0.171914 0.00640242
\(722\) 0 0
\(723\) 30.2246 1.12407
\(724\) 39.3692 1.46314
\(725\) 0 0
\(726\) −8.20376 −0.304470
\(727\) 14.6251 0.542415 0.271207 0.962521i \(-0.412577\pi\)
0.271207 + 0.962521i \(0.412577\pi\)
\(728\) 0.799022 0.0296137
\(729\) 20.4289 0.756628
\(730\) 0 0
\(731\) 39.1273 1.44717
\(732\) 39.5370 1.46133
\(733\) −33.5260 −1.23831 −0.619156 0.785268i \(-0.712525\pi\)
−0.619156 + 0.785268i \(0.712525\pi\)
\(734\) 74.9961 2.76816
\(735\) 0 0
\(736\) 33.9337 1.25081
\(737\) −16.9161 −0.623113
\(738\) −0.731887 −0.0269411
\(739\) −15.2098 −0.559501 −0.279751 0.960073i \(-0.590252\pi\)
−0.279751 + 0.960073i \(0.590252\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.547396 0.0200955
\(743\) 6.65799 0.244258 0.122129 0.992514i \(-0.461028\pi\)
0.122129 + 0.992514i \(0.461028\pi\)
\(744\) −18.1678 −0.666064
\(745\) 0 0
\(746\) −5.53345 −0.202594
\(747\) 12.7667 0.467110
\(748\) 34.1076 1.24710
\(749\) −0.586873 −0.0214439
\(750\) 0 0
\(751\) −7.81110 −0.285031 −0.142516 0.989793i \(-0.545519\pi\)
−0.142516 + 0.989793i \(0.545519\pi\)
\(752\) 2.85774 0.104211
\(753\) −12.2971 −0.448131
\(754\) −30.0720 −1.09516
\(755\) 0 0
\(756\) −2.62243 −0.0953769
\(757\) 18.3846 0.668201 0.334100 0.942537i \(-0.391568\pi\)
0.334100 + 0.942537i \(0.391568\pi\)
\(758\) −41.1958 −1.49630
\(759\) 23.2645 0.844449
\(760\) 0 0
\(761\) 22.4779 0.814822 0.407411 0.913245i \(-0.366432\pi\)
0.407411 + 0.913245i \(0.366432\pi\)
\(762\) −21.7878 −0.789290
\(763\) 2.32064 0.0840129
\(764\) 24.8128 0.897696
\(765\) 0 0
\(766\) −24.7911 −0.895739
\(767\) 9.16866 0.331061
\(768\) −23.7691 −0.857694
\(769\) 5.51880 0.199013 0.0995065 0.995037i \(-0.468274\pi\)
0.0995065 + 0.995037i \(0.468274\pi\)
\(770\) 0 0
\(771\) −15.5334 −0.559421
\(772\) −89.1347 −3.20803
\(773\) −33.1881 −1.19369 −0.596846 0.802356i \(-0.703580\pi\)
−0.596846 + 0.802356i \(0.703580\pi\)
\(774\) 42.9564 1.54404
\(775\) 0 0
\(776\) 28.7255 1.03119
\(777\) 1.56220 0.0560438
\(778\) 52.8418 1.89447
\(779\) 0 0
\(780\) 0 0
\(781\) 1.52317 0.0545031
\(782\) 59.5156 2.12827
\(783\) 40.7064 1.45473
\(784\) −5.43428 −0.194081
\(785\) 0 0
\(786\) 6.99533 0.249515
\(787\) −48.6451 −1.73401 −0.867005 0.498300i \(-0.833958\pi\)
−0.867005 + 0.498300i \(0.833958\pi\)
\(788\) 7.78873 0.277462
\(789\) 7.51235 0.267447
\(790\) 0 0
\(791\) 0.446881 0.0158892
\(792\) 15.4438 0.548772
\(793\) 17.2780 0.613561
\(794\) −47.5164 −1.68630
\(795\) 0 0
\(796\) −41.6869 −1.47755
\(797\) −1.06027 −0.0375567 −0.0187784 0.999824i \(-0.505978\pi\)
−0.0187784 + 0.999824i \(0.505978\pi\)
\(798\) 0 0
\(799\) −13.0622 −0.462106
\(800\) 0 0
\(801\) 2.43180 0.0859233
\(802\) −38.8146 −1.37059
\(803\) 29.4718 1.04004
\(804\) 23.4892 0.828400
\(805\) 0 0
\(806\) −19.2503 −0.678064
\(807\) −16.5648 −0.583110
\(808\) −9.39213 −0.330414
\(809\) −13.6192 −0.478826 −0.239413 0.970918i \(-0.576955\pi\)
−0.239413 + 0.970918i \(0.576955\pi\)
\(810\) 0 0
\(811\) −22.3947 −0.786385 −0.393192 0.919456i \(-0.628629\pi\)
−0.393192 + 0.919456i \(0.628629\pi\)
\(812\) −3.69326 −0.129608
\(813\) −2.50883 −0.0879886
\(814\) −62.1217 −2.17736
\(815\) 0 0
\(816\) −3.18268 −0.111416
\(817\) 0 0
\(818\) 41.1100 1.43738
\(819\) −0.411514 −0.0143795
\(820\) 0 0
\(821\) −5.51937 −0.192627 −0.0963137 0.995351i \(-0.530705\pi\)
−0.0963137 + 0.995351i \(0.530705\pi\)
\(822\) 32.8959 1.14738
\(823\) 22.3523 0.779154 0.389577 0.920994i \(-0.372621\pi\)
0.389577 + 0.920994i \(0.372621\pi\)
\(824\) 3.91508 0.136388
\(825\) 0 0
\(826\) 1.78766 0.0622008
\(827\) −4.48687 −0.156024 −0.0780118 0.996952i \(-0.524857\pi\)
−0.0780118 + 0.996952i \(0.524857\pi\)
\(828\) 41.1573 1.43032
\(829\) −27.0312 −0.938832 −0.469416 0.882977i \(-0.655535\pi\)
−0.469416 + 0.882977i \(0.655535\pi\)
\(830\) 0 0
\(831\) −18.3481 −0.636490
\(832\) −21.3951 −0.741741
\(833\) 24.8390 0.860619
\(834\) 21.2367 0.735365
\(835\) 0 0
\(836\) 0 0
\(837\) 26.0578 0.900691
\(838\) −88.1820 −3.04620
\(839\) 10.1152 0.349214 0.174607 0.984638i \(-0.444135\pi\)
0.174607 + 0.984638i \(0.444135\pi\)
\(840\) 0 0
\(841\) 28.3283 0.976837
\(842\) −26.9242 −0.927870
\(843\) 16.3752 0.563991
\(844\) −10.2221 −0.351861
\(845\) 0 0
\(846\) −14.3405 −0.493035
\(847\) −0.440303 −0.0151290
\(848\) 1.27943 0.0439358
\(849\) −8.11738 −0.278588
\(850\) 0 0
\(851\) −68.2796 −2.34059
\(852\) −2.11502 −0.0724595
\(853\) −27.6102 −0.945356 −0.472678 0.881235i \(-0.656713\pi\)
−0.472678 + 0.881235i \(0.656713\pi\)
\(854\) 3.36879 0.115278
\(855\) 0 0
\(856\) −13.3651 −0.456810
\(857\) −38.6174 −1.31915 −0.659573 0.751640i \(-0.729263\pi\)
−0.659573 + 0.751640i \(0.729263\pi\)
\(858\) −12.8442 −0.438492
\(859\) 57.1723 1.95069 0.975346 0.220681i \(-0.0708280\pi\)
0.975346 + 0.220681i \(0.0708280\pi\)
\(860\) 0 0
\(861\) 0.0308317 0.00105074
\(862\) −73.8992 −2.51702
\(863\) −28.4419 −0.968173 −0.484087 0.875020i \(-0.660848\pi\)
−0.484087 + 0.875020i \(0.660848\pi\)
\(864\) 25.3596 0.862750
\(865\) 0 0
\(866\) 9.50417 0.322965
\(867\) −4.97851 −0.169079
\(868\) −2.36421 −0.0802466
\(869\) −32.6855 −1.10878
\(870\) 0 0
\(871\) 10.2650 0.347816
\(872\) 52.8490 1.78969
\(873\) −14.7943 −0.500711
\(874\) 0 0
\(875\) 0 0
\(876\) −40.9236 −1.38268
\(877\) −13.3300 −0.450121 −0.225060 0.974345i \(-0.572258\pi\)
−0.225060 + 0.974345i \(0.572258\pi\)
\(878\) 27.3276 0.922263
\(879\) −1.12187 −0.0378397
\(880\) 0 0
\(881\) −28.1384 −0.948007 −0.474004 0.880523i \(-0.657192\pi\)
−0.474004 + 0.880523i \(0.657192\pi\)
\(882\) 27.2698 0.918222
\(883\) 35.6238 1.19884 0.599418 0.800436i \(-0.295399\pi\)
0.599418 + 0.800436i \(0.295399\pi\)
\(884\) −20.6971 −0.696120
\(885\) 0 0
\(886\) −18.3333 −0.615920
\(887\) 59.1722 1.98681 0.993403 0.114672i \(-0.0365818\pi\)
0.993403 + 0.114672i \(0.0365818\pi\)
\(888\) 35.5767 1.19388
\(889\) −1.16937 −0.0392195
\(890\) 0 0
\(891\) 3.18929 0.106845
\(892\) 7.46685 0.250009
\(893\) 0 0
\(894\) −11.2039 −0.374715
\(895\) 0 0
\(896\) −2.81961 −0.0941964
\(897\) −14.1173 −0.471364
\(898\) 2.69841 0.0900470
\(899\) 36.6982 1.22395
\(900\) 0 0
\(901\) −5.84800 −0.194825
\(902\) −1.22604 −0.0408226
\(903\) −1.80960 −0.0602196
\(904\) 10.1770 0.338482
\(905\) 0 0
\(906\) 7.63997 0.253821
\(907\) 46.2445 1.53552 0.767762 0.640735i \(-0.221370\pi\)
0.767762 + 0.640735i \(0.221370\pi\)
\(908\) −21.9331 −0.727876
\(909\) 4.83716 0.160438
\(910\) 0 0
\(911\) −48.8276 −1.61773 −0.808866 0.587994i \(-0.799918\pi\)
−0.808866 + 0.587994i \(0.799918\pi\)
\(912\) 0 0
\(913\) 21.3865 0.707790
\(914\) 89.9368 2.97485
\(915\) 0 0
\(916\) −5.25291 −0.173561
\(917\) 0.375446 0.0123983
\(918\) 44.4777 1.46798
\(919\) −9.60929 −0.316981 −0.158491 0.987360i \(-0.550663\pi\)
−0.158491 + 0.987360i \(0.550663\pi\)
\(920\) 0 0
\(921\) −32.6967 −1.07739
\(922\) −56.9519 −1.87561
\(923\) −0.924285 −0.0304232
\(924\) −1.57744 −0.0518941
\(925\) 0 0
\(926\) −75.5153 −2.48159
\(927\) −2.01635 −0.0662257
\(928\) 35.7148 1.17240
\(929\) 51.7174 1.69679 0.848396 0.529362i \(-0.177569\pi\)
0.848396 + 0.529362i \(0.177569\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −69.6473 −2.28137
\(933\) −29.3417 −0.960604
\(934\) 34.1766 1.11829
\(935\) 0 0
\(936\) −9.37158 −0.306320
\(937\) 11.4894 0.375341 0.187671 0.982232i \(-0.439906\pi\)
0.187671 + 0.982232i \(0.439906\pi\)
\(938\) 2.00142 0.0653488
\(939\) −17.1728 −0.560412
\(940\) 0 0
\(941\) −26.4897 −0.863540 −0.431770 0.901984i \(-0.642111\pi\)
−0.431770 + 0.901984i \(0.642111\pi\)
\(942\) 30.7702 1.00255
\(943\) −1.34757 −0.0438829
\(944\) 4.17831 0.135992
\(945\) 0 0
\(946\) 71.9594 2.33960
\(947\) −14.7018 −0.477745 −0.238873 0.971051i \(-0.576778\pi\)
−0.238873 + 0.971051i \(0.576778\pi\)
\(948\) 45.3861 1.47407
\(949\) −17.8840 −0.580539
\(950\) 0 0
\(951\) −25.8892 −0.839513
\(952\) −1.66435 −0.0539419
\(953\) 5.85051 0.189517 0.0947583 0.995500i \(-0.469792\pi\)
0.0947583 + 0.995500i \(0.469792\pi\)
\(954\) −6.42031 −0.207865
\(955\) 0 0
\(956\) 21.2424 0.687029
\(957\) 24.4857 0.791510
\(958\) −30.7306 −0.992862
\(959\) 1.76555 0.0570127
\(960\) 0 0
\(961\) −7.50793 −0.242191
\(962\) 37.6966 1.21539
\(963\) 6.88333 0.221812
\(964\) 89.5722 2.88493
\(965\) 0 0
\(966\) −2.75254 −0.0885614
\(967\) 24.0705 0.774054 0.387027 0.922068i \(-0.373502\pi\)
0.387027 + 0.922068i \(0.373502\pi\)
\(968\) −10.0272 −0.322287
\(969\) 0 0
\(970\) 0 0
\(971\) −52.6618 −1.69000 −0.844999 0.534768i \(-0.820399\pi\)
−0.844999 + 0.534768i \(0.820399\pi\)
\(972\) 50.4715 1.61887
\(973\) 1.13979 0.0365400
\(974\) 22.4575 0.719585
\(975\) 0 0
\(976\) 7.87389 0.252037
\(977\) −6.50872 −0.208232 −0.104116 0.994565i \(-0.533201\pi\)
−0.104116 + 0.994565i \(0.533201\pi\)
\(978\) −50.5153 −1.61530
\(979\) 4.07368 0.130195
\(980\) 0 0
\(981\) −27.2184 −0.869017
\(982\) 6.24474 0.199278
\(983\) −1.24935 −0.0398480 −0.0199240 0.999801i \(-0.506342\pi\)
−0.0199240 + 0.999801i \(0.506342\pi\)
\(984\) 0.702144 0.0223835
\(985\) 0 0
\(986\) 62.6395 1.99485
\(987\) 0.604111 0.0192291
\(988\) 0 0
\(989\) 79.0924 2.51499
\(990\) 0 0
\(991\) −37.5958 −1.19427 −0.597134 0.802141i \(-0.703694\pi\)
−0.597134 + 0.802141i \(0.703694\pi\)
\(992\) 22.8626 0.725887
\(993\) 12.4829 0.396132
\(994\) −0.180213 −0.00571600
\(995\) 0 0
\(996\) −29.6966 −0.940974
\(997\) −29.9308 −0.947918 −0.473959 0.880547i \(-0.657175\pi\)
−0.473959 + 0.880547i \(0.657175\pi\)
\(998\) 5.47555 0.173325
\(999\) −51.0272 −1.61443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.ct.1.22 24
5.2 odd 4 1805.2.b.l.1084.22 24
5.3 odd 4 1805.2.b.l.1084.3 24
5.4 even 2 inner 9025.2.a.ct.1.3 24
19.2 odd 18 475.2.l.f.251.7 48
19.10 odd 18 475.2.l.f.176.7 48
19.18 odd 2 9025.2.a.cu.1.3 24
95.2 even 36 95.2.p.a.4.2 48
95.18 even 4 1805.2.b.k.1084.22 24
95.29 odd 18 475.2.l.f.176.2 48
95.37 even 4 1805.2.b.k.1084.3 24
95.48 even 36 95.2.p.a.24.2 yes 48
95.59 odd 18 475.2.l.f.251.2 48
95.67 even 36 95.2.p.a.24.7 yes 48
95.78 even 36 95.2.p.a.4.7 yes 48
95.94 odd 2 9025.2.a.cu.1.22 24
285.2 odd 36 855.2.da.b.289.7 48
285.143 odd 36 855.2.da.b.784.7 48
285.173 odd 36 855.2.da.b.289.2 48
285.257 odd 36 855.2.da.b.784.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.4.2 48 95.2 even 36
95.2.p.a.4.7 yes 48 95.78 even 36
95.2.p.a.24.2 yes 48 95.48 even 36
95.2.p.a.24.7 yes 48 95.67 even 36
475.2.l.f.176.2 48 95.29 odd 18
475.2.l.f.176.7 48 19.10 odd 18
475.2.l.f.251.2 48 95.59 odd 18
475.2.l.f.251.7 48 19.2 odd 18
855.2.da.b.289.2 48 285.173 odd 36
855.2.da.b.289.7 48 285.2 odd 36
855.2.da.b.784.2 48 285.257 odd 36
855.2.da.b.784.7 48 285.143 odd 36
1805.2.b.k.1084.3 24 95.37 even 4
1805.2.b.k.1084.22 24 95.18 even 4
1805.2.b.l.1084.3 24 5.3 odd 4
1805.2.b.l.1084.22 24 5.2 odd 4
9025.2.a.ct.1.3 24 5.4 even 2 inner
9025.2.a.ct.1.22 24 1.1 even 1 trivial
9025.2.a.cu.1.3 24 19.18 odd 2
9025.2.a.cu.1.22 24 95.94 odd 2