Properties

Label 1805.2.b.k.1084.3
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-18,-3,-12,0,0,-12,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.3
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.k.1084.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.32462i q^{2} +1.14858i q^{3} -3.40387 q^{4} +(-2.01201 - 0.975617i) q^{5} +2.67001 q^{6} +0.143302i q^{7} +3.26348i q^{8} +1.68077 q^{9} +(-2.26794 + 4.67716i) q^{10} -2.81557 q^{11} -3.90962i q^{12} +1.70854i q^{13} +0.333123 q^{14} +(1.12057 - 2.31095i) q^{15} +0.778610 q^{16} -3.55886i q^{17} -3.90715i q^{18} +(6.84862 + 3.32088i) q^{20} -0.164594 q^{21} +6.54515i q^{22} +7.19394i q^{23} -3.74836 q^{24} +(3.09634 + 3.92590i) q^{25} +3.97171 q^{26} +5.37623i q^{27} -0.487782i q^{28} -7.57154 q^{29} +(-5.37209 - 2.60491i) q^{30} +4.84686 q^{31} +4.71698i q^{32} -3.23391i q^{33} -8.27302 q^{34} +(0.139808 - 0.288325i) q^{35} -5.72111 q^{36} -9.49127i q^{37} -1.96239 q^{39} +(3.18390 - 6.56614i) q^{40} -0.187320 q^{41} +0.382619i q^{42} +10.9943i q^{43} +9.58385 q^{44} +(-3.38171 - 1.63978i) q^{45} +16.7232 q^{46} +3.67032i q^{47} +0.894296i q^{48} +6.97946 q^{49} +(9.12623 - 7.19783i) q^{50} +4.08764 q^{51} -5.81566i q^{52} +1.64322i q^{53} +12.4977 q^{54} +(5.66495 + 2.74692i) q^{55} -0.467663 q^{56} +17.6010i q^{58} +5.36637 q^{59} +(-3.81429 + 7.86618i) q^{60} +10.1127 q^{61} -11.2671i q^{62} +0.240857i q^{63} +12.5224 q^{64} +(1.66688 - 3.43760i) q^{65} -7.51762 q^{66} -6.00805i q^{67} +12.1139i q^{68} -8.26281 q^{69} +(-0.670247 - 0.325001i) q^{70} +0.540979 q^{71} +5.48514i q^{72} +10.4674i q^{73} -22.0636 q^{74} +(-4.50920 + 3.55640i) q^{75} -0.403477i q^{77} +4.56183i q^{78} +11.6088 q^{79} +(-1.56657 - 0.759625i) q^{80} -1.13273 q^{81} +0.435449i q^{82} +7.59579i q^{83} +0.560257 q^{84} +(-3.47209 + 7.16046i) q^{85} +25.5576 q^{86} -8.69652i q^{87} -9.18856i q^{88} -1.44684 q^{89} +(-3.81188 + 7.86121i) q^{90} -0.244837 q^{91} -24.4873i q^{92} +5.56701i q^{93} +8.53210 q^{94} -5.41783 q^{96} -8.80212i q^{97} -16.2246i q^{98} -4.73232 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} - 6 q^{10} + 12 q^{11} - 24 q^{14} - 9 q^{15} + 6 q^{16} + 21 q^{20} + 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} - 36 q^{29} - 18 q^{30} + 42 q^{31} - 6 q^{34}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.32462i 1.64376i −0.569663 0.821878i \(-0.692926\pi\)
0.569663 0.821878i \(-0.307074\pi\)
\(3\) 1.14858i 0.663133i 0.943432 + 0.331566i \(0.107577\pi\)
−0.943432 + 0.331566i \(0.892423\pi\)
\(4\) −3.40387 −1.70194
\(5\) −2.01201 0.975617i −0.899797 0.436309i
\(6\) 2.67001 1.09003
\(7\) 0.143302i 0.0541631i 0.999633 + 0.0270816i \(0.00862138\pi\)
−0.999633 + 0.0270816i \(0.991379\pi\)
\(8\) 3.26348i 1.15381i
\(9\) 1.68077 0.560255
\(10\) −2.26794 + 4.67716i −0.717186 + 1.47905i
\(11\) −2.81557 −0.848927 −0.424463 0.905445i \(-0.639537\pi\)
−0.424463 + 0.905445i \(0.639537\pi\)
\(12\) 3.90962i 1.12861i
\(13\) 1.70854i 0.473864i 0.971526 + 0.236932i \(0.0761418\pi\)
−0.971526 + 0.236932i \(0.923858\pi\)
\(14\) 0.333123 0.0890310
\(15\) 1.12057 2.31095i 0.289331 0.596685i
\(16\) 0.778610 0.194653
\(17\) 3.55886i 0.863151i −0.902077 0.431576i \(-0.857958\pi\)
0.902077 0.431576i \(-0.142042\pi\)
\(18\) 3.90715i 0.920923i
\(19\) 0 0
\(20\) 6.84862 + 3.32088i 1.53140 + 0.742571i
\(21\) −0.164594 −0.0359173
\(22\) 6.54515i 1.39543i
\(23\) 7.19394i 1.50004i 0.661415 + 0.750020i \(0.269956\pi\)
−0.661415 + 0.750020i \(0.730044\pi\)
\(24\) −3.74836 −0.765132
\(25\) 3.09634 + 3.92590i 0.619269 + 0.785179i
\(26\) 3.97171 0.778917
\(27\) 5.37623i 1.03466i
\(28\) 0.487782i 0.0921822i
\(29\) −7.57154 −1.40600 −0.703000 0.711190i \(-0.748157\pi\)
−0.703000 + 0.711190i \(0.748157\pi\)
\(30\) −5.37209 2.60491i −0.980805 0.475589i
\(31\) 4.84686 0.870522 0.435261 0.900304i \(-0.356656\pi\)
0.435261 + 0.900304i \(0.356656\pi\)
\(32\) 4.71698i 0.833852i
\(33\) 3.23391i 0.562951i
\(34\) −8.27302 −1.41881
\(35\) 0.139808 0.288325i 0.0236319 0.0487358i
\(36\) −5.72111 −0.953519
\(37\) 9.49127i 1.56035i −0.625559 0.780177i \(-0.715129\pi\)
0.625559 0.780177i \(-0.284871\pi\)
\(38\) 0 0
\(39\) −1.96239 −0.314235
\(40\) 3.18390 6.56614i 0.503419 1.03820i
\(41\) −0.187320 −0.0292545 −0.0146272 0.999893i \(-0.504656\pi\)
−0.0146272 + 0.999893i \(0.504656\pi\)
\(42\) 0.382619i 0.0590393i
\(43\) 10.9943i 1.67662i 0.545196 + 0.838309i \(0.316455\pi\)
−0.545196 + 0.838309i \(0.683545\pi\)
\(44\) 9.58385 1.44482
\(45\) −3.38171 1.63978i −0.504116 0.244444i
\(46\) 16.7232 2.46570
\(47\) 3.67032i 0.535371i 0.963506 + 0.267685i \(0.0862587\pi\)
−0.963506 + 0.267685i \(0.913741\pi\)
\(48\) 0.894296i 0.129080i
\(49\) 6.97946 0.997066
\(50\) 9.12623 7.19783i 1.29064 1.01793i
\(51\) 4.08764 0.572384
\(52\) 5.81566i 0.806486i
\(53\) 1.64322i 0.225714i 0.993611 + 0.112857i \(0.0360002\pi\)
−0.993611 + 0.112857i \(0.964000\pi\)
\(54\) 12.4977 1.70072
\(55\) 5.66495 + 2.74692i 0.763862 + 0.370395i
\(56\) −0.467663 −0.0624941
\(57\) 0 0
\(58\) 17.6010i 2.31112i
\(59\) 5.36637 0.698642 0.349321 0.937003i \(-0.386412\pi\)
0.349321 + 0.937003i \(0.386412\pi\)
\(60\) −3.81429 + 7.86618i −0.492423 + 1.01552i
\(61\) 10.1127 1.29480 0.647402 0.762148i \(-0.275855\pi\)
0.647402 + 0.762148i \(0.275855\pi\)
\(62\) 11.2671i 1.43093i
\(63\) 0.240857i 0.0303452i
\(64\) 12.5224 1.56530
\(65\) 1.66688 3.43760i 0.206751 0.426381i
\(66\) −7.51762 −0.925355
\(67\) 6.00805i 0.734001i −0.930221 0.367000i \(-0.880385\pi\)
0.930221 0.367000i \(-0.119615\pi\)
\(68\) 12.1139i 1.46903i
\(69\) −8.26281 −0.994725
\(70\) −0.670247 0.325001i −0.0801098 0.0388450i
\(71\) 0.540979 0.0642024 0.0321012 0.999485i \(-0.489780\pi\)
0.0321012 + 0.999485i \(0.489780\pi\)
\(72\) 5.48514i 0.646430i
\(73\) 10.4674i 1.22512i 0.790425 + 0.612559i \(0.209860\pi\)
−0.790425 + 0.612559i \(0.790140\pi\)
\(74\) −22.0636 −2.56484
\(75\) −4.50920 + 3.55640i −0.520678 + 0.410657i
\(76\) 0 0
\(77\) 0.403477i 0.0459805i
\(78\) 4.56183i 0.516525i
\(79\) 11.6088 1.30610 0.653048 0.757317i \(-0.273490\pi\)
0.653048 + 0.757317i \(0.273490\pi\)
\(80\) −1.56657 0.759625i −0.175148 0.0849287i
\(81\) −1.13273 −0.125859
\(82\) 0.435449i 0.0480873i
\(83\) 7.59579i 0.833746i 0.908965 + 0.416873i \(0.136874\pi\)
−0.908965 + 0.416873i \(0.863126\pi\)
\(84\) 0.560257 0.0611290
\(85\) −3.47209 + 7.16046i −0.376601 + 0.776661i
\(86\) 25.5576 2.75595
\(87\) 8.69652i 0.932365i
\(88\) 9.18856i 0.979504i
\(89\) −1.44684 −0.153365 −0.0766823 0.997056i \(-0.524433\pi\)
−0.0766823 + 0.997056i \(0.524433\pi\)
\(90\) −3.81188 + 7.86121i −0.401807 + 0.828644i
\(91\) −0.244837 −0.0256659
\(92\) 24.4873i 2.55297i
\(93\) 5.56701i 0.577272i
\(94\) 8.53210 0.880019
\(95\) 0 0
\(96\) −5.41783 −0.552955
\(97\) 8.80212i 0.893720i −0.894604 0.446860i \(-0.852542\pi\)
0.894604 0.446860i \(-0.147458\pi\)
\(98\) 16.2246i 1.63893i
\(99\) −4.73232 −0.475616
\(100\) −10.5396 13.3633i −1.05396 1.33633i
\(101\) −2.87795 −0.286367 −0.143183 0.989696i \(-0.545734\pi\)
−0.143183 + 0.989696i \(0.545734\pi\)
\(102\) 9.50222i 0.940860i
\(103\) 1.19966i 0.118206i 0.998252 + 0.0591032i \(0.0188241\pi\)
−0.998252 + 0.0591032i \(0.981176\pi\)
\(104\) −5.57578 −0.546751
\(105\) 0.331164 + 0.160581i 0.0323183 + 0.0156711i
\(106\) 3.81987 0.371019
\(107\) 4.09536i 0.395913i 0.980211 + 0.197957i \(0.0634305\pi\)
−0.980211 + 0.197957i \(0.936570\pi\)
\(108\) 18.3000i 1.76092i
\(109\) 16.1941 1.55111 0.775555 0.631280i \(-0.217470\pi\)
0.775555 + 0.631280i \(0.217470\pi\)
\(110\) 6.38555 13.1689i 0.608839 1.25560i
\(111\) 10.9015 1.03472
\(112\) 0.111576i 0.0105430i
\(113\) 3.11845i 0.293359i 0.989184 + 0.146680i \(0.0468586\pi\)
−0.989184 + 0.146680i \(0.953141\pi\)
\(114\) 0 0
\(115\) 7.01853 14.4743i 0.654481 1.34973i
\(116\) 25.7726 2.39292
\(117\) 2.87166i 0.265485i
\(118\) 12.4748i 1.14840i
\(119\) 0.509993 0.0467509
\(120\) 7.54173 + 3.65697i 0.688463 + 0.333834i
\(121\) −3.07255 −0.279323
\(122\) 23.5083i 2.12834i
\(123\) 0.215152i 0.0193996i
\(124\) −16.4981 −1.48157
\(125\) −2.39970 10.9198i −0.214635 0.976694i
\(126\) 0.559902 0.0498801
\(127\) 8.16019i 0.724100i 0.932159 + 0.362050i \(0.117923\pi\)
−0.932159 + 0.362050i \(0.882077\pi\)
\(128\) 19.6760i 1.73913i
\(129\) −12.6278 −1.11182
\(130\) −7.99111 3.87487i −0.700867 0.339849i
\(131\) 2.61996 0.228907 0.114453 0.993429i \(-0.463488\pi\)
0.114453 + 0.993429i \(0.463488\pi\)
\(132\) 11.0078i 0.958108i
\(133\) 0 0
\(134\) −13.9665 −1.20652
\(135\) 5.24514 10.8170i 0.451430 0.930980i
\(136\) 11.6143 0.995916
\(137\) 12.3205i 1.05261i 0.850296 + 0.526305i \(0.176423\pi\)
−0.850296 + 0.526305i \(0.823577\pi\)
\(138\) 19.2079i 1.63509i
\(139\) −7.95376 −0.674629 −0.337314 0.941392i \(-0.609519\pi\)
−0.337314 + 0.941392i \(0.609519\pi\)
\(140\) −0.475889 + 0.981421i −0.0402199 + 0.0829452i
\(141\) −4.21565 −0.355022
\(142\) 1.25757i 0.105533i
\(143\) 4.81052i 0.402276i
\(144\) 1.30866 0.109055
\(145\) 15.2340 + 7.38692i 1.26511 + 0.613451i
\(146\) 24.3328 2.01380
\(147\) 8.01647i 0.661187i
\(148\) 32.3071i 2.65562i
\(149\) 4.19620 0.343766 0.171883 0.985117i \(-0.445015\pi\)
0.171883 + 0.985117i \(0.445015\pi\)
\(150\) 8.26728 + 10.4822i 0.675021 + 0.855868i
\(151\) −2.86140 −0.232857 −0.116429 0.993199i \(-0.537145\pi\)
−0.116429 + 0.993199i \(0.537145\pi\)
\(152\) 0 0
\(153\) 5.98161i 0.483585i
\(154\) −0.937933 −0.0755808
\(155\) −9.75192 4.72868i −0.783293 0.379817i
\(156\) 6.67974 0.534807
\(157\) 11.5244i 0.919744i 0.887985 + 0.459872i \(0.152105\pi\)
−0.887985 + 0.459872i \(0.847895\pi\)
\(158\) 26.9862i 2.14690i
\(159\) −1.88737 −0.149678
\(160\) 4.60197 9.49060i 0.363817 0.750298i
\(161\) −1.03091 −0.0812468
\(162\) 2.63318i 0.206882i
\(163\) 18.9195i 1.48189i 0.671567 + 0.740944i \(0.265621\pi\)
−0.671567 + 0.740944i \(0.734379\pi\)
\(164\) 0.637614 0.0497893
\(165\) −3.15506 + 6.50665i −0.245621 + 0.506542i
\(166\) 17.6573 1.37048
\(167\) 15.0690i 1.16607i −0.812447 0.583036i \(-0.801865\pi\)
0.812447 0.583036i \(-0.198135\pi\)
\(168\) 0.537148i 0.0414419i
\(169\) 10.0809 0.775453
\(170\) 16.6454 + 8.07129i 1.27664 + 0.619040i
\(171\) 0 0
\(172\) 37.4233i 2.85350i
\(173\) 21.6950i 1.64944i 0.565542 + 0.824719i \(0.308667\pi\)
−0.565542 + 0.824719i \(0.691333\pi\)
\(174\) −20.2161 −1.53258
\(175\) −0.562589 + 0.443713i −0.0425277 + 0.0335415i
\(176\) −2.19223 −0.165246
\(177\) 6.16370i 0.463292i
\(178\) 3.36336i 0.252094i
\(179\) −22.8790 −1.71006 −0.855028 0.518581i \(-0.826460\pi\)
−0.855028 + 0.518581i \(0.826460\pi\)
\(180\) 11.5109 + 5.58161i 0.857973 + 0.416029i
\(181\) −11.5660 −0.859693 −0.429847 0.902902i \(-0.641432\pi\)
−0.429847 + 0.902902i \(0.641432\pi\)
\(182\) 0.569155i 0.0421886i
\(183\) 11.6153i 0.858627i
\(184\) −23.4773 −1.73077
\(185\) −9.25984 + 19.0965i −0.680797 + 1.40400i
\(186\) 12.9412 0.948894
\(187\) 10.0202i 0.732752i
\(188\) 12.4933i 0.911167i
\(189\) −0.770425 −0.0560402
\(190\) 0 0
\(191\) 7.28958 0.527455 0.263728 0.964597i \(-0.415048\pi\)
0.263728 + 0.964597i \(0.415048\pi\)
\(192\) 14.3830i 1.03800i
\(193\) 26.1862i 1.88493i −0.334308 0.942464i \(-0.608503\pi\)
0.334308 0.942464i \(-0.391497\pi\)
\(194\) −20.4616 −1.46906
\(195\) 3.94835 + 1.91454i 0.282747 + 0.137103i
\(196\) −23.7572 −1.69694
\(197\) 2.28820i 0.163027i 0.996672 + 0.0815136i \(0.0259754\pi\)
−0.996672 + 0.0815136i \(0.974025\pi\)
\(198\) 11.0009i 0.781797i
\(199\) 12.2469 0.868159 0.434079 0.900875i \(-0.357074\pi\)
0.434079 + 0.900875i \(0.357074\pi\)
\(200\) −12.8121 + 10.1049i −0.905950 + 0.714521i
\(201\) 6.90073 0.486740
\(202\) 6.69015i 0.470717i
\(203\) 1.08502i 0.0761533i
\(204\) −13.9138 −0.974161
\(205\) 0.376889 + 0.182753i 0.0263231 + 0.0127640i
\(206\) 2.78877 0.194302
\(207\) 12.0913i 0.840405i
\(208\) 1.33029i 0.0922388i
\(209\) 0 0
\(210\) 0.373289 0.769832i 0.0257594 0.0531234i
\(211\) 3.00309 0.206741 0.103371 0.994643i \(-0.467037\pi\)
0.103371 + 0.994643i \(0.467037\pi\)
\(212\) 5.59332i 0.384151i
\(213\) 0.621357i 0.0425747i
\(214\) 9.52016 0.650785
\(215\) 10.7262 22.1206i 0.731523 1.50861i
\(216\) −17.5452 −1.19380
\(217\) 0.694565i 0.0471502i
\(218\) 37.6451i 2.54965i
\(219\) −12.0227 −0.812416
\(220\) −19.2828 9.35017i −1.30004 0.630388i
\(221\) 6.08046 0.409016
\(222\) 25.3418i 1.70083i
\(223\) 2.19363i 0.146897i 0.997299 + 0.0734483i \(0.0234004\pi\)
−0.997299 + 0.0734483i \(0.976600\pi\)
\(224\) −0.675953 −0.0451640
\(225\) 5.20423 + 6.59851i 0.346948 + 0.439901i
\(226\) 7.24922 0.482211
\(227\) 6.44357i 0.427675i 0.976869 + 0.213838i \(0.0685963\pi\)
−0.976869 + 0.213838i \(0.931404\pi\)
\(228\) 0 0
\(229\) 1.54321 0.101978 0.0509892 0.998699i \(-0.483763\pi\)
0.0509892 + 0.998699i \(0.483763\pi\)
\(230\) −33.6472 16.3154i −2.21863 1.07581i
\(231\) 0.463426 0.0304912
\(232\) 24.7096i 1.62226i
\(233\) 20.4612i 1.34046i 0.742155 + 0.670228i \(0.233804\pi\)
−0.742155 + 0.670228i \(0.766196\pi\)
\(234\) 6.67552 0.436392
\(235\) 3.58082 7.38470i 0.233587 0.481725i
\(236\) −18.2665 −1.18904
\(237\) 13.3337i 0.866115i
\(238\) 1.18554i 0.0768472i
\(239\) −6.24066 −0.403675 −0.201837 0.979419i \(-0.564691\pi\)
−0.201837 + 0.979419i \(0.564691\pi\)
\(240\) 0.872490 1.79933i 0.0563190 0.116146i
\(241\) −26.3148 −1.69508 −0.847542 0.530728i \(-0.821919\pi\)
−0.847542 + 0.530728i \(0.821919\pi\)
\(242\) 7.14253i 0.459139i
\(243\) 14.8277i 0.951195i
\(244\) −34.4225 −2.20368
\(245\) −14.0427 6.80928i −0.897157 0.435029i
\(246\) −0.500147 −0.0318882
\(247\) 0 0
\(248\) 15.8176i 1.00442i
\(249\) −8.72437 −0.552884
\(250\) −25.3844 + 5.57839i −1.60545 + 0.352808i
\(251\) −10.7064 −0.675779 −0.337889 0.941186i \(-0.609713\pi\)
−0.337889 + 0.941186i \(0.609713\pi\)
\(252\) 0.819847i 0.0516455i
\(253\) 20.2551i 1.27342i
\(254\) 18.9694 1.19024
\(255\) −8.22436 3.98797i −0.515029 0.249736i
\(256\) −20.6943 −1.29340
\(257\) 13.5240i 0.843603i 0.906688 + 0.421802i \(0.138602\pi\)
−0.906688 + 0.421802i \(0.861398\pi\)
\(258\) 29.3550i 1.82756i
\(259\) 1.36012 0.0845136
\(260\) −5.67385 + 11.7011i −0.351877 + 0.725674i
\(261\) −12.7260 −0.787719
\(262\) 6.09042i 0.376267i
\(263\) 6.54056i 0.403308i −0.979457 0.201654i \(-0.935368\pi\)
0.979457 0.201654i \(-0.0646317\pi\)
\(264\) 10.5538 0.649541
\(265\) 1.60315 3.30617i 0.0984810 0.203097i
\(266\) 0 0
\(267\) 1.66181i 0.101701i
\(268\) 20.4507i 1.24922i
\(269\) −14.4220 −0.879327 −0.439663 0.898163i \(-0.644902\pi\)
−0.439663 + 0.898163i \(0.644902\pi\)
\(270\) −25.1455 12.1930i −1.53031 0.742041i
\(271\) −2.18429 −0.132686 −0.0663431 0.997797i \(-0.521133\pi\)
−0.0663431 + 0.997797i \(0.521133\pi\)
\(272\) 2.77097i 0.168015i
\(273\) 0.281215i 0.0170199i
\(274\) 28.6405 1.73024
\(275\) −8.71798 11.0536i −0.525714 0.666560i
\(276\) 28.1256 1.69296
\(277\) 15.9746i 0.959823i −0.877317 0.479911i \(-0.840669\pi\)
0.877317 0.479911i \(-0.159331\pi\)
\(278\) 18.4895i 1.10893i
\(279\) 8.14644 0.487714
\(280\) 0.940942 + 0.456260i 0.0562320 + 0.0272668i
\(281\) −14.2569 −0.850496 −0.425248 0.905077i \(-0.639813\pi\)
−0.425248 + 0.905077i \(0.639813\pi\)
\(282\) 9.79980i 0.583569i
\(283\) 7.06732i 0.420108i 0.977690 + 0.210054i \(0.0673640\pi\)
−0.977690 + 0.210054i \(0.932636\pi\)
\(284\) −1.84142 −0.109268
\(285\) 0 0
\(286\) −11.1826 −0.661244
\(287\) 0.0268434i 0.00158451i
\(288\) 7.92814i 0.467170i
\(289\) 4.33449 0.254970
\(290\) 17.1718 35.4133i 1.00836 2.07954i
\(291\) 10.1099 0.592655
\(292\) 35.6298i 2.08507i
\(293\) 0.976745i 0.0570621i −0.999593 0.0285310i \(-0.990917\pi\)
0.999593 0.0285310i \(-0.00908294\pi\)
\(294\) 18.6353 1.08683
\(295\) −10.7972 5.23552i −0.628636 0.304824i
\(296\) 30.9745 1.80036
\(297\) 15.1372i 0.878347i
\(298\) 9.75458i 0.565068i
\(299\) −12.2911 −0.710815
\(300\) 15.3488 12.1055i 0.886161 0.698913i
\(301\) −1.57551 −0.0908108
\(302\) 6.65167i 0.382760i
\(303\) 3.30555i 0.189899i
\(304\) 0 0
\(305\) −20.3469 9.86617i −1.16506 0.564935i
\(306\) −13.9050 −0.794896
\(307\) 28.4670i 1.62470i 0.583171 + 0.812350i \(0.301812\pi\)
−0.583171 + 0.812350i \(0.698188\pi\)
\(308\) 1.37339i 0.0782559i
\(309\) −1.37791 −0.0783865
\(310\) −10.9924 + 22.6695i −0.624326 + 1.28754i
\(311\) −25.5461 −1.44858 −0.724292 0.689493i \(-0.757833\pi\)
−0.724292 + 0.689493i \(0.757833\pi\)
\(312\) 6.40423i 0.362568i
\(313\) 14.9513i 0.845098i 0.906340 + 0.422549i \(0.138865\pi\)
−0.906340 + 0.422549i \(0.861135\pi\)
\(314\) 26.7898 1.51184
\(315\) 0.234984 0.484606i 0.0132399 0.0273045i
\(316\) −39.5150 −2.22289
\(317\) 22.5401i 1.26598i 0.774160 + 0.632990i \(0.218173\pi\)
−0.774160 + 0.632990i \(0.781827\pi\)
\(318\) 4.38743i 0.246035i
\(319\) 21.3182 1.19359
\(320\) −25.1952 12.2171i −1.40845 0.682956i
\(321\) −4.70384 −0.262543
\(322\) 2.39647i 0.133550i
\(323\) 0 0
\(324\) 3.85568 0.214204
\(325\) −6.70755 + 5.29023i −0.372068 + 0.293449i
\(326\) 43.9806 2.43586
\(327\) 18.6002i 1.02859i
\(328\) 0.611315i 0.0337542i
\(329\) −0.525964 −0.0289973
\(330\) 15.1255 + 7.33432i 0.832632 + 0.403741i
\(331\) −10.8681 −0.597365 −0.298682 0.954353i \(-0.596547\pi\)
−0.298682 + 0.954353i \(0.596547\pi\)
\(332\) 25.8551i 1.41898i
\(333\) 15.9526i 0.874196i
\(334\) −35.0297 −1.91674
\(335\) −5.86156 + 12.0882i −0.320251 + 0.660451i
\(336\) −0.128154 −0.00699140
\(337\) 7.70906i 0.419939i −0.977708 0.209970i \(-0.932663\pi\)
0.977708 0.209970i \(-0.0673365\pi\)
\(338\) 23.4343i 1.27466i
\(339\) −3.58179 −0.194536
\(340\) 11.8185 24.3733i 0.640951 1.32183i
\(341\) −13.6467 −0.739010
\(342\) 0 0
\(343\) 2.00329i 0.108167i
\(344\) −35.8797 −1.93450
\(345\) 16.6248 + 8.06134i 0.895051 + 0.434008i
\(346\) 50.4327 2.71128
\(347\) 20.2699i 1.08814i −0.839039 0.544072i \(-0.816882\pi\)
0.839039 0.544072i \(-0.183118\pi\)
\(348\) 29.6019i 1.58683i
\(349\) −19.0503 −1.01974 −0.509870 0.860252i \(-0.670306\pi\)
−0.509870 + 0.860252i \(0.670306\pi\)
\(350\) 1.03146 + 1.30781i 0.0551341 + 0.0699053i
\(351\) −9.18551 −0.490286
\(352\) 13.2810i 0.707880i
\(353\) 18.1667i 0.966917i −0.875367 0.483459i \(-0.839380\pi\)
0.875367 0.483459i \(-0.160620\pi\)
\(354\) 14.3283 0.761540
\(355\) −1.08845 0.527788i −0.0577691 0.0280121i
\(356\) 4.92486 0.261017
\(357\) 0.585767i 0.0310021i
\(358\) 53.1851i 2.81092i
\(359\) 16.1318 0.851406 0.425703 0.904863i \(-0.360027\pi\)
0.425703 + 0.904863i \(0.360027\pi\)
\(360\) 5.35139 11.0361i 0.282043 0.581656i
\(361\) 0 0
\(362\) 26.8866i 1.41313i
\(363\) 3.52907i 0.185228i
\(364\) 0.833396 0.0436818
\(365\) 10.2122 21.0605i 0.534530 1.10236i
\(366\) 27.0012 1.41137
\(367\) 32.2616i 1.68404i 0.539445 + 0.842021i \(0.318634\pi\)
−0.539445 + 0.842021i \(0.681366\pi\)
\(368\) 5.60127i 0.291987i
\(369\) −0.314841 −0.0163900
\(370\) 44.3922 + 21.5256i 2.30784 + 1.11906i
\(371\) −0.235477 −0.0122254
\(372\) 18.9494i 0.982480i
\(373\) 2.38037i 0.123251i −0.998099 0.0616253i \(-0.980372\pi\)
0.998099 0.0616253i \(-0.0196284\pi\)
\(374\) 23.2933 1.20447
\(375\) 12.5422 2.75624i 0.647678 0.142332i
\(376\) −11.9780 −0.617718
\(377\) 12.9363i 0.666253i
\(378\) 1.79095i 0.0921164i
\(379\) −17.7215 −0.910291 −0.455145 0.890417i \(-0.650413\pi\)
−0.455145 + 0.890417i \(0.650413\pi\)
\(380\) 0 0
\(381\) −9.37263 −0.480174
\(382\) 16.9455i 0.867009i
\(383\) 10.6646i 0.544934i −0.962165 0.272467i \(-0.912160\pi\)
0.962165 0.272467i \(-0.0878395\pi\)
\(384\) 22.5994 1.15327
\(385\) −0.393639 + 0.811799i −0.0200617 + 0.0413731i
\(386\) −60.8732 −3.09836
\(387\) 18.4789i 0.939333i
\(388\) 29.9613i 1.52105i
\(389\) −22.7313 −1.15252 −0.576262 0.817265i \(-0.695489\pi\)
−0.576262 + 0.817265i \(0.695489\pi\)
\(390\) 4.45060 9.17843i 0.225365 0.464768i
\(391\) 25.6022 1.29476
\(392\) 22.7773i 1.15043i
\(393\) 3.00923i 0.151796i
\(394\) 5.31919 0.267977
\(395\) −23.3570 11.3258i −1.17522 0.569861i
\(396\) 16.1082 0.809468
\(397\) 20.4405i 1.02588i −0.858425 0.512939i \(-0.828557\pi\)
0.858425 0.512939i \(-0.171443\pi\)
\(398\) 28.4694i 1.42704i
\(399\) 0 0
\(400\) 2.41084 + 3.05674i 0.120542 + 0.152837i
\(401\) 16.6972 0.833817 0.416908 0.908949i \(-0.363114\pi\)
0.416908 + 0.908949i \(0.363114\pi\)
\(402\) 16.0416i 0.800082i
\(403\) 8.28106i 0.412509i
\(404\) 9.79618 0.487378
\(405\) 2.27907 + 1.10511i 0.113248 + 0.0549135i
\(406\) −2.52226 −0.125178
\(407\) 26.7233i 1.32463i
\(408\) 13.3399i 0.660424i
\(409\) 17.6846 0.874447 0.437224 0.899353i \(-0.355962\pi\)
0.437224 + 0.899353i \(0.355962\pi\)
\(410\) 0.424831 0.876126i 0.0209809 0.0432688i
\(411\) −14.1511 −0.698021
\(412\) 4.08350i 0.201180i
\(413\) 0.769012i 0.0378406i
\(414\) 28.1078 1.38142
\(415\) 7.41058 15.2828i 0.363771 0.750202i
\(416\) −8.05915 −0.395133
\(417\) 9.13552i 0.447369i
\(418\) 0 0
\(419\) 37.9339 1.85319 0.926596 0.376059i \(-0.122721\pi\)
0.926596 + 0.376059i \(0.122721\pi\)
\(420\) −1.12724 0.546596i −0.0550037 0.0266711i
\(421\) 11.5822 0.564481 0.282241 0.959344i \(-0.408922\pi\)
0.282241 + 0.959344i \(0.408922\pi\)
\(422\) 6.98106i 0.339833i
\(423\) 6.16894i 0.299944i
\(424\) −5.36262 −0.260432
\(425\) 13.9717 11.0195i 0.677728 0.534523i
\(426\) 1.44442 0.0699825
\(427\) 1.44918i 0.0701306i
\(428\) 13.9401i 0.673819i
\(429\) 5.52526 0.266762
\(430\) −51.4221 24.9345i −2.47980 1.20245i
\(431\) 31.7898 1.53126 0.765629 0.643282i \(-0.222428\pi\)
0.765629 + 0.643282i \(0.222428\pi\)
\(432\) 4.18599i 0.201398i
\(433\) 4.08848i 0.196480i 0.995163 + 0.0982399i \(0.0313212\pi\)
−0.995163 + 0.0982399i \(0.968679\pi\)
\(434\) 1.61460 0.0775034
\(435\) −8.48447 + 17.4975i −0.406799 + 0.838939i
\(436\) −55.1226 −2.63989
\(437\) 0 0
\(438\) 27.9481i 1.33541i
\(439\) 11.7557 0.561070 0.280535 0.959844i \(-0.409488\pi\)
0.280535 + 0.959844i \(0.409488\pi\)
\(440\) −8.96451 + 18.4874i −0.427366 + 0.881354i
\(441\) 11.7308 0.558611
\(442\) 14.1348i 0.672323i
\(443\) 7.88658i 0.374703i 0.982293 + 0.187351i \(0.0599903\pi\)
−0.982293 + 0.187351i \(0.940010\pi\)
\(444\) −37.1072 −1.76103
\(445\) 2.91105 + 1.41156i 0.137997 + 0.0669144i
\(446\) 5.09937 0.241462
\(447\) 4.81967i 0.227962i
\(448\) 1.79449i 0.0847817i
\(449\) 1.16079 0.0547812 0.0273906 0.999625i \(-0.491280\pi\)
0.0273906 + 0.999625i \(0.491280\pi\)
\(450\) 15.3390 12.0979i 0.723090 0.570299i
\(451\) 0.527413 0.0248349
\(452\) 10.6148i 0.499279i
\(453\) 3.28654i 0.154415i
\(454\) 14.9789 0.702994
\(455\) 0.492615 + 0.238867i 0.0230941 + 0.0111983i
\(456\) 0 0
\(457\) 38.6888i 1.80978i 0.425641 + 0.904892i \(0.360049\pi\)
−0.425641 + 0.904892i \(0.639951\pi\)
\(458\) 3.58739i 0.167628i
\(459\) 19.1333 0.893065
\(460\) −23.8902 + 49.2685i −1.11389 + 2.29716i
\(461\) −24.4994 −1.14105 −0.570525 0.821280i \(-0.693260\pi\)
−0.570525 + 0.821280i \(0.693260\pi\)
\(462\) 1.07729i 0.0501201i
\(463\) 32.4849i 1.50970i 0.655895 + 0.754852i \(0.272291\pi\)
−0.655895 + 0.754852i \(0.727709\pi\)
\(464\) −5.89528 −0.273681
\(465\) 5.43126 11.2009i 0.251869 0.519427i
\(466\) 47.5645 2.20338
\(467\) 14.7020i 0.680327i 0.940366 + 0.340163i \(0.110482\pi\)
−0.940366 + 0.340163i \(0.889518\pi\)
\(468\) 9.77475i 0.451838i
\(469\) 0.860967 0.0397558
\(470\) −17.1666 8.32406i −0.791838 0.383960i
\(471\) −13.2366 −0.609912
\(472\) 17.5130i 0.806103i
\(473\) 30.9553i 1.42333i
\(474\) 30.9957 1.42368
\(475\) 0 0
\(476\) −1.73595 −0.0795672
\(477\) 2.76187i 0.126457i
\(478\) 14.5072i 0.663543i
\(479\) 13.2196 0.604020 0.302010 0.953305i \(-0.402342\pi\)
0.302010 + 0.953305i \(0.402342\pi\)
\(480\) 10.9007 + 5.28572i 0.497547 + 0.241259i
\(481\) 16.2162 0.739396
\(482\) 61.1720i 2.78631i
\(483\) 1.18408i 0.0538774i
\(484\) 10.4586 0.475390
\(485\) −8.58749 + 17.7099i −0.389938 + 0.804166i
\(486\) 34.4687 1.56353
\(487\) 9.66071i 0.437769i −0.975751 0.218884i \(-0.929758\pi\)
0.975751 0.218884i \(-0.0702417\pi\)
\(488\) 33.0027i 1.49396i
\(489\) −21.7305 −0.982688
\(490\) −15.8290 + 32.6441i −0.715082 + 1.47471i
\(491\) 2.68634 0.121233 0.0606165 0.998161i \(-0.480693\pi\)
0.0606165 + 0.998161i \(0.480693\pi\)
\(492\) 0.732350i 0.0330169i
\(493\) 26.9461i 1.21359i
\(494\) 0 0
\(495\) 9.52145 + 4.61693i 0.427957 + 0.207515i
\(496\) 3.77382 0.169449
\(497\) 0.0775234i 0.00347740i
\(498\) 20.2809i 0.908807i
\(499\) −2.35546 −0.105445 −0.0527224 0.998609i \(-0.516790\pi\)
−0.0527224 + 0.998609i \(0.516790\pi\)
\(500\) 8.16827 + 37.1695i 0.365296 + 1.66227i
\(501\) 17.3079 0.773260
\(502\) 24.8882i 1.11082i
\(503\) 13.7390i 0.612590i −0.951937 0.306295i \(-0.900911\pi\)
0.951937 0.306295i \(-0.0990894\pi\)
\(504\) −0.786032 −0.0350127
\(505\) 5.79045 + 2.80778i 0.257672 + 0.124944i
\(506\) −47.0854 −2.09320
\(507\) 11.5787i 0.514228i
\(508\) 27.7763i 1.23237i
\(509\) 36.3796 1.61250 0.806249 0.591577i \(-0.201494\pi\)
0.806249 + 0.591577i \(0.201494\pi\)
\(510\) −9.27052 + 19.1185i −0.410506 + 0.846583i
\(511\) −1.50000 −0.0663562
\(512\) 8.75464i 0.386904i
\(513\) 0 0
\(514\) 31.4382 1.38668
\(515\) 1.17041 2.41373i 0.0515745 0.106362i
\(516\) 42.9836 1.89225
\(517\) 10.3340i 0.454491i
\(518\) 3.16176i 0.138920i
\(519\) −24.9184 −1.09380
\(520\) 11.2185 + 5.43983i 0.491965 + 0.238552i
\(521\) 0.580423 0.0254288 0.0127144 0.999919i \(-0.495953\pi\)
0.0127144 + 0.999919i \(0.495953\pi\)
\(522\) 29.5831i 1.29482i
\(523\) 19.2463i 0.841582i 0.907158 + 0.420791i \(0.138247\pi\)
−0.907158 + 0.420791i \(0.861753\pi\)
\(524\) −8.91801 −0.389585
\(525\) −0.509639 0.646178i −0.0222425 0.0282015i
\(526\) −15.2043 −0.662941
\(527\) 17.2493i 0.751392i
\(528\) 2.51795i 0.109580i
\(529\) −28.7528 −1.25012
\(530\) −7.68561 3.72673i −0.333841 0.161879i
\(531\) 9.01961 0.391418
\(532\) 0 0
\(533\) 0.320044i 0.0138626i
\(534\) −3.86308 −0.167172
\(535\) 3.99550 8.23989i 0.172740 0.356241i
\(536\) 19.6072 0.846900
\(537\) 26.2783i 1.13399i
\(538\) 33.5258i 1.44540i
\(539\) −19.6512 −0.846437
\(540\) −17.8538 + 36.8198i −0.768305 + 1.58447i
\(541\) −31.9066 −1.37177 −0.685886 0.727709i \(-0.740585\pi\)
−0.685886 + 0.727709i \(0.740585\pi\)
\(542\) 5.07765i 0.218104i
\(543\) 13.2845i 0.570091i
\(544\) 16.7871 0.719741
\(545\) −32.5826 15.7992i −1.39568 0.676763i
\(546\) −0.653720 −0.0279766
\(547\) 3.43452i 0.146849i 0.997301 + 0.0734246i \(0.0233928\pi\)
−0.997301 + 0.0734246i \(0.976607\pi\)
\(548\) 41.9374i 1.79148i
\(549\) 16.9972 0.725421
\(550\) −25.6956 + 20.2660i −1.09566 + 0.864146i
\(551\) 0 0
\(552\) 26.9655i 1.14773i
\(553\) 1.66357i 0.0707422i
\(554\) −37.1350 −1.57772
\(555\) −21.9338 10.6357i −0.931040 0.451459i
\(556\) 27.0736 1.14818
\(557\) 6.83010i 0.289401i −0.989476 0.144700i \(-0.953778\pi\)
0.989476 0.144700i \(-0.0462218\pi\)
\(558\) 18.9374i 0.801684i
\(559\) −18.7842 −0.794488
\(560\) 0.108856 0.224493i 0.00460000 0.00948654i
\(561\) −11.5090 −0.485912
\(562\) 33.1419i 1.39801i
\(563\) 12.5628i 0.529460i −0.964323 0.264730i \(-0.914717\pi\)
0.964323 0.264730i \(-0.0852828\pi\)
\(564\) 14.3495 0.604225
\(565\) 3.04241 6.27434i 0.127995 0.263964i
\(566\) 16.4289 0.690556
\(567\) 0.162323i 0.00681692i
\(568\) 1.76547i 0.0740776i
\(569\) −3.47978 −0.145880 −0.0729400 0.997336i \(-0.523238\pi\)
−0.0729400 + 0.997336i \(0.523238\pi\)
\(570\) 0 0
\(571\) −0.621524 −0.0260100 −0.0130050 0.999915i \(-0.504140\pi\)
−0.0130050 + 0.999915i \(0.504140\pi\)
\(572\) 16.3744i 0.684648i
\(573\) 8.37266i 0.349773i
\(574\) −0.0624007 −0.00260456
\(575\) −28.2426 + 22.2749i −1.17780 + 0.928928i
\(576\) 21.0473 0.876969
\(577\) 3.85170i 0.160348i −0.996781 0.0801742i \(-0.974452\pi\)
0.996781 0.0801742i \(-0.0255477\pi\)
\(578\) 10.0761i 0.419109i
\(579\) 30.0770 1.24996
\(580\) −51.8546 25.1442i −2.15315 1.04405i
\(581\) −1.08849 −0.0451583
\(582\) 23.5018i 0.974180i
\(583\) 4.62661i 0.191615i
\(584\) −34.1602 −1.41356
\(585\) 2.80163 5.77779i 0.115833 0.238882i
\(586\) −2.27056 −0.0937961
\(587\) 40.4333i 1.66886i −0.551113 0.834431i \(-0.685797\pi\)
0.551113 0.834431i \(-0.314203\pi\)
\(588\) 27.2871i 1.12530i
\(589\) 0 0
\(590\) −12.1706 + 25.0994i −0.501056 + 1.03332i
\(591\) −2.62817 −0.108109
\(592\) 7.38999i 0.303727i
\(593\) 5.87362i 0.241201i −0.992701 0.120600i \(-0.961518\pi\)
0.992701 0.120600i \(-0.0384820\pi\)
\(594\) −35.1882 −1.44379
\(595\) −1.02611 0.497557i −0.0420664 0.0203979i
\(596\) −14.2833 −0.585068
\(597\) 14.0665i 0.575704i
\(598\) 28.5723i 1.16841i
\(599\) 13.3107 0.543862 0.271931 0.962317i \(-0.412338\pi\)
0.271931 + 0.962317i \(0.412338\pi\)
\(600\) −11.6062 14.7157i −0.473822 0.600765i
\(601\) 5.16016 0.210487 0.105244 0.994446i \(-0.466438\pi\)
0.105244 + 0.994446i \(0.466438\pi\)
\(602\) 3.66246i 0.149271i
\(603\) 10.0981i 0.411228i
\(604\) 9.73983 0.396308
\(605\) 6.18200 + 2.99763i 0.251334 + 0.121871i
\(606\) −7.68417 −0.312148
\(607\) 30.5069i 1.23824i −0.785297 0.619119i \(-0.787490\pi\)
0.785297 0.619119i \(-0.212510\pi\)
\(608\) 0 0
\(609\) 1.24623 0.0504998
\(610\) −22.9351 + 47.2989i −0.928616 + 1.91508i
\(611\) −6.27088 −0.253693
\(612\) 20.3607i 0.823031i
\(613\) 45.5007i 1.83776i −0.394540 0.918879i \(-0.629096\pi\)
0.394540 0.918879i \(-0.370904\pi\)
\(614\) 66.1751 2.67061
\(615\) −0.209906 + 0.432887i −0.00846422 + 0.0174557i
\(616\) 1.31674 0.0530530
\(617\) 2.48247i 0.0999403i −0.998751 0.0499701i \(-0.984087\pi\)
0.998751 0.0499701i \(-0.0159126\pi\)
\(618\) 3.20312i 0.128848i
\(619\) −23.4945 −0.944325 −0.472162 0.881512i \(-0.656526\pi\)
−0.472162 + 0.881512i \(0.656526\pi\)
\(620\) 33.1943 + 16.0958i 1.33312 + 0.646424i
\(621\) −38.6763 −1.55203
\(622\) 59.3850i 2.38112i
\(623\) 0.207335i 0.00830670i
\(624\) −1.52794 −0.0611666
\(625\) −5.82531 + 24.3118i −0.233012 + 0.972474i
\(626\) 34.7562 1.38914
\(627\) 0 0
\(628\) 39.2275i 1.56535i
\(629\) −33.7781 −1.34682
\(630\) −1.12653 0.546250i −0.0448819 0.0217631i
\(631\) −17.8197 −0.709392 −0.354696 0.934982i \(-0.615416\pi\)
−0.354696 + 0.934982i \(0.615416\pi\)
\(632\) 37.8852i 1.50699i
\(633\) 3.44929i 0.137097i
\(634\) 52.3974 2.08096
\(635\) 7.96122 16.4184i 0.315931 0.651543i
\(636\) 6.42437 0.254743
\(637\) 11.9247i 0.472474i
\(638\) 49.5568i 1.96197i
\(639\) 0.909259 0.0359697
\(640\) −19.1962 + 39.5882i −0.758796 + 1.56486i
\(641\) 37.4631 1.47970 0.739852 0.672770i \(-0.234896\pi\)
0.739852 + 0.672770i \(0.234896\pi\)
\(642\) 10.9347i 0.431557i
\(643\) 19.8886i 0.784331i −0.919895 0.392165i \(-0.871726\pi\)
0.919895 0.392165i \(-0.128274\pi\)
\(644\) 3.50908 0.138277
\(645\) 25.4073 + 12.3199i 1.00041 + 0.485097i
\(646\) 0 0
\(647\) 23.0645i 0.906759i 0.891318 + 0.453380i \(0.149782\pi\)
−0.891318 + 0.453380i \(0.850218\pi\)
\(648\) 3.69665i 0.145218i
\(649\) −15.1094 −0.593096
\(650\) 12.2978 + 15.5925i 0.482359 + 0.611589i
\(651\) −0.797764 −0.0312668
\(652\) 64.3995i 2.52208i
\(653\) 26.9839i 1.05596i −0.849256 0.527981i \(-0.822949\pi\)
0.849256 0.527981i \(-0.177051\pi\)
\(654\) 43.2384 1.69075
\(655\) −5.27138 2.55608i −0.205970 0.0998742i
\(656\) −0.145849 −0.00569446
\(657\) 17.5933i 0.686379i
\(658\) 1.22267i 0.0476646i
\(659\) −13.4880 −0.525418 −0.262709 0.964875i \(-0.584616\pi\)
−0.262709 + 0.964875i \(0.584616\pi\)
\(660\) 10.7394 22.1478i 0.418031 0.862102i
\(661\) −21.9777 −0.854835 −0.427417 0.904054i \(-0.640577\pi\)
−0.427417 + 0.904054i \(0.640577\pi\)
\(662\) 25.2642i 0.981922i
\(663\) 6.98389i 0.271232i
\(664\) −24.7887 −0.961988
\(665\) 0 0
\(666\) −37.0838 −1.43697
\(667\) 54.4692i 2.10906i
\(668\) 51.2928i 1.98458i
\(669\) −2.51956 −0.0974119
\(670\) 28.1006 + 13.6259i 1.08562 + 0.526415i
\(671\) −28.4732 −1.09919
\(672\) 0.776386i 0.0299497i
\(673\) 23.1998i 0.894286i −0.894462 0.447143i \(-0.852441\pi\)
0.894462 0.447143i \(-0.147559\pi\)
\(674\) −17.9207 −0.690278
\(675\) −21.1065 + 16.6467i −0.812390 + 0.640730i
\(676\) −34.3141 −1.31977
\(677\) 28.7294i 1.10416i −0.833791 0.552081i \(-0.813834\pi\)
0.833791 0.552081i \(-0.186166\pi\)
\(678\) 8.32631i 0.319770i
\(679\) 1.26136 0.0484066
\(680\) −23.3680 11.3311i −0.896122 0.434527i
\(681\) −7.40096 −0.283605
\(682\) 31.7234i 1.21475i
\(683\) 24.0010i 0.918374i 0.888340 + 0.459187i \(0.151859\pi\)
−0.888340 + 0.459187i \(0.848141\pi\)
\(684\) 0 0
\(685\) 12.0201 24.7889i 0.459264 0.947136i
\(686\) 4.65689 0.177801
\(687\) 1.77250i 0.0676252i
\(688\) 8.56028i 0.326358i
\(689\) −2.80751 −0.106958
\(690\) 18.7396 38.6465i 0.713403 1.47125i
\(691\) 37.3866 1.42226 0.711128 0.703063i \(-0.248185\pi\)
0.711128 + 0.703063i \(0.248185\pi\)
\(692\) 73.8470i 2.80724i
\(693\) 0.678151i 0.0257608i
\(694\) −47.1198 −1.78864
\(695\) 16.0030 + 7.75982i 0.607029 + 0.294347i
\(696\) 28.3809 1.07578
\(697\) 0.666647i 0.0252510i
\(698\) 44.2848i 1.67620i
\(699\) −23.5013 −0.888900
\(700\) 1.91498 1.51034i 0.0723795 0.0570856i
\(701\) −2.32624 −0.0878609 −0.0439304 0.999035i \(-0.513988\pi\)
−0.0439304 + 0.999035i \(0.513988\pi\)
\(702\) 21.3528i 0.805911i
\(703\) 0 0
\(704\) −35.2578 −1.32883
\(705\) 8.48192 + 4.11286i 0.319447 + 0.154899i
\(706\) −42.2308 −1.58938
\(707\) 0.412416i 0.0155105i
\(708\) 20.9805i 0.788494i
\(709\) 24.3523 0.914568 0.457284 0.889321i \(-0.348822\pi\)
0.457284 + 0.889321i \(0.348822\pi\)
\(710\) −1.22691 + 2.53024i −0.0460451 + 0.0949584i
\(711\) 19.5117 0.731747
\(712\) 4.72173i 0.176954i
\(713\) 34.8680i 1.30582i
\(714\) 1.36169 0.0509599
\(715\) −4.69322 + 9.67880i −0.175517 + 0.361967i
\(716\) 77.8772 2.91041
\(717\) 7.16789i 0.267690i
\(718\) 37.5004i 1.39950i
\(719\) −17.0622 −0.636311 −0.318155 0.948039i \(-0.603063\pi\)
−0.318155 + 0.948039i \(0.603063\pi\)
\(720\) −2.63303 1.27675i −0.0981274 0.0475817i
\(721\) −0.171914 −0.00640242
\(722\) 0 0
\(723\) 30.2246i 1.12407i
\(724\) 39.3692 1.46314
\(725\) −23.4441 29.7251i −0.870692 1.10396i
\(726\) −8.20376 −0.304470
\(727\) 14.6251i 0.542415i 0.962521 + 0.271207i \(0.0874229\pi\)
−0.962521 + 0.271207i \(0.912577\pi\)
\(728\) 0.799022i 0.0296137i
\(729\) −20.4289 −0.756628
\(730\) −48.9577 23.7395i −1.81201 0.878638i
\(731\) 39.1273 1.44717
\(732\) 39.5370i 1.46133i
\(733\) 33.5260i 1.23831i 0.785268 + 0.619156i \(0.212525\pi\)
−0.785268 + 0.619156i \(0.787475\pi\)
\(734\) 74.9961 2.76816
\(735\) 7.82100 16.1292i 0.288482 0.594934i
\(736\) −33.9337 −1.25081
\(737\) 16.9161i 0.623113i
\(738\) 0.731887i 0.0269411i
\(739\) 15.2098 0.559501 0.279751 0.960073i \(-0.409748\pi\)
0.279751 + 0.960073i \(0.409748\pi\)
\(740\) 31.5193 65.0021i 1.15867 2.38952i
\(741\) 0 0
\(742\) 0.547396i 0.0200955i
\(743\) 6.65799i 0.244258i 0.992514 + 0.122129i \(0.0389722\pi\)
−0.992514 + 0.122129i \(0.961028\pi\)
\(744\) −18.1678 −0.666064
\(745\) −8.44278 4.09388i −0.309319 0.149988i
\(746\) −5.53345 −0.202594
\(747\) 12.7667i 0.467110i
\(748\) 34.1076i 1.24710i
\(749\) −0.586873 −0.0214439
\(750\) −6.40723 29.1560i −0.233959 1.06462i
\(751\) 7.81110 0.285031 0.142516 0.989793i \(-0.454481\pi\)
0.142516 + 0.989793i \(0.454481\pi\)
\(752\) 2.85774i 0.104211i
\(753\) 12.2971i 0.448131i
\(754\) −30.0720 −1.09516
\(755\) 5.75715 + 2.79163i 0.209524 + 0.101598i
\(756\) 2.62243 0.0953769
\(757\) 18.3846i 0.668201i 0.942537 + 0.334100i \(0.108432\pi\)
−0.942537 + 0.334100i \(0.891568\pi\)
\(758\) 41.1958i 1.49630i
\(759\) 23.2645 0.844449
\(760\) 0 0
\(761\) 22.4779 0.814822 0.407411 0.913245i \(-0.366432\pi\)
0.407411 + 0.913245i \(0.366432\pi\)
\(762\) 21.7878i 0.789290i
\(763\) 2.32064i 0.0840129i
\(764\) −24.8128 −0.897696
\(765\) −5.83576 + 12.0350i −0.210992 + 0.435128i
\(766\) −24.7911 −0.895739
\(767\) 9.16866i 0.331061i
\(768\) 23.7691i 0.857694i
\(769\) −5.51880 −0.199013 −0.0995065 0.995037i \(-0.531726\pi\)
−0.0995065 + 0.995037i \(0.531726\pi\)
\(770\) 1.88713 + 0.915063i 0.0680074 + 0.0329766i
\(771\) −15.5334 −0.559421
\(772\) 89.1347i 3.20803i
\(773\) 33.1881i 1.19369i −0.802356 0.596846i \(-0.796420\pi\)
0.802356 0.596846i \(-0.203580\pi\)
\(774\) 42.9564 1.54404
\(775\) 15.0076 + 19.0283i 0.539087 + 0.683516i
\(776\) 28.7255 1.03119
\(777\) 1.56220i 0.0560438i
\(778\) 52.8418i 1.89447i
\(779\) 0 0
\(780\) −13.4397 6.51687i −0.481218 0.233341i
\(781\) −1.52317 −0.0545031
\(782\) 59.5156i 2.12827i
\(783\) 40.7064i 1.45473i
\(784\) 5.43428 0.194081
\(785\) 11.2434 23.1871i 0.401293 0.827583i
\(786\) 6.99533 0.249515
\(787\) 48.6451i 1.73401i 0.498300 + 0.867005i \(0.333958\pi\)
−0.498300 + 0.867005i \(0.666042\pi\)
\(788\) 7.78873i 0.277462i
\(789\) 7.51235 0.267447
\(790\) −26.3281 + 54.2963i −0.936713 + 1.93178i
\(791\) −0.446881 −0.0158892
\(792\) 15.4438i 0.548772i
\(793\) 17.2780i 0.613561i
\(794\) −47.5164 −1.68630
\(795\) 3.79740 + 1.84135i 0.134680 + 0.0653060i
\(796\) −41.6869 −1.47755
\(797\) 1.06027i 0.0375567i 0.999824 + 0.0187784i \(0.00597769\pi\)
−0.999824 + 0.0187784i \(0.994022\pi\)
\(798\) 0 0
\(799\) 13.0622 0.462106
\(800\) −18.5184 + 14.6054i −0.654723 + 0.516379i
\(801\) −2.43180 −0.0859233
\(802\) 38.8146i 1.37059i
\(803\) 29.4718i 1.04004i
\(804\) −23.4892 −0.828400
\(805\) 2.07419 + 1.00577i 0.0731056 + 0.0354487i
\(806\) 19.2503 0.678064
\(807\) 16.5648i 0.583110i
\(808\) 9.39213i 0.330414i
\(809\) 13.6192 0.478826 0.239413 0.970918i \(-0.423045\pi\)
0.239413 + 0.970918i \(0.423045\pi\)
\(810\) 2.56897 5.29797i 0.0902645 0.186152i
\(811\) 22.3947 0.786385 0.393192 0.919456i \(-0.371371\pi\)
0.393192 + 0.919456i \(0.371371\pi\)
\(812\) 3.69326i 0.129608i
\(813\) 2.50883i 0.0879886i
\(814\) 62.1217 2.17736
\(815\) 18.4582 38.0661i 0.646561 1.33340i
\(816\) 3.18268 0.111416
\(817\) 0 0
\(818\) 41.1100i 1.43738i
\(819\) −0.411514 −0.0143795
\(820\) −1.28288 0.622067i −0.0448002 0.0217235i
\(821\) −5.51937 −0.192627 −0.0963137 0.995351i \(-0.530705\pi\)
−0.0963137 + 0.995351i \(0.530705\pi\)
\(822\) 32.8959i 1.14738i
\(823\) 22.3523i 0.779154i −0.920994 0.389577i \(-0.872621\pi\)
0.920994 0.389577i \(-0.127379\pi\)
\(824\) −3.91508 −0.136388
\(825\) 12.6960 10.0133i 0.442017 0.348618i
\(826\) 1.78766 0.0622008
\(827\) 4.48687i 0.156024i 0.996952 + 0.0780118i \(0.0248572\pi\)
−0.996952 + 0.0780118i \(0.975143\pi\)
\(828\) 41.1573i 1.43032i
\(829\) −27.0312 −0.938832 −0.469416 0.882977i \(-0.655535\pi\)
−0.469416 + 0.882977i \(0.655535\pi\)
\(830\) −35.5267 17.2268i −1.23315 0.597951i
\(831\) 18.3481 0.636490
\(832\) 21.3951i 0.741741i
\(833\) 24.8390i 0.860619i
\(834\) −21.2367 −0.735365
\(835\) −14.7015 + 30.3188i −0.508767 + 1.04923i
\(836\) 0 0
\(837\) 26.0578i 0.900691i
\(838\) 88.1820i 3.04620i
\(839\) 10.1152 0.349214 0.174607 0.984638i \(-0.444135\pi\)
0.174607 + 0.984638i \(0.444135\pi\)
\(840\) −0.524051 + 1.08075i −0.0180815 + 0.0372893i
\(841\) 28.3283 0.976837
\(842\) 26.9242i 0.927870i
\(843\) 16.3752i 0.563991i
\(844\) −10.2221 −0.351861
\(845\) −20.2828 9.83508i −0.697750 0.338337i
\(846\) 14.3405 0.493035
\(847\) 0.440303i 0.0151290i
\(848\) 1.27943i 0.0439358i
\(849\) −8.11738 −0.278588
\(850\) −25.6161 32.4790i −0.878625 1.11402i
\(851\) 68.2796 2.34059
\(852\) 2.11502i 0.0724595i
\(853\) 27.6102i 0.945356i 0.881235 + 0.472678i \(0.156713\pi\)
−0.881235 + 0.472678i \(0.843287\pi\)
\(854\) 3.36879 0.115278
\(855\) 0 0
\(856\) −13.3651 −0.456810
\(857\) 38.6174i 1.31915i 0.751640 + 0.659573i \(0.229263\pi\)
−0.751640 + 0.659573i \(0.770737\pi\)
\(858\) 12.8442i 0.438492i
\(859\) −57.1723 −1.95069 −0.975346 0.220681i \(-0.929172\pi\)
−0.975346 + 0.220681i \(0.929172\pi\)
\(860\) −36.5108 + 75.2959i −1.24501 + 2.56757i
\(861\) 0.0308317 0.00105074
\(862\) 73.8992i 2.51702i
\(863\) 28.4419i 0.968173i −0.875020 0.484087i \(-0.839152\pi\)
0.875020 0.484087i \(-0.160848\pi\)
\(864\) −25.3596 −0.862750
\(865\) 21.1660 43.6505i 0.719665 1.48416i
\(866\) 9.50417 0.322965
\(867\) 4.97851i 0.169079i
\(868\) 2.36421i 0.0802466i
\(869\) −32.6855 −1.10878
\(870\) 40.6750 + 19.7232i 1.37901 + 0.668679i
\(871\) 10.2650 0.347816
\(872\) 52.8490i 1.78969i
\(873\) 14.7943i 0.500711i
\(874\) 0 0
\(875\) 1.56483 0.343882i 0.0529008 0.0116253i
\(876\) 40.9236 1.38268
\(877\) 13.3300i 0.450121i 0.974345 + 0.225060i \(0.0722579\pi\)
−0.974345 + 0.225060i \(0.927742\pi\)
\(878\) 27.3276i 0.922263i
\(879\) 1.12187 0.0378397
\(880\) 4.41079 + 2.13878i 0.148688 + 0.0720982i
\(881\) −28.1384 −0.948007 −0.474004 0.880523i \(-0.657192\pi\)
−0.474004 + 0.880523i \(0.657192\pi\)
\(882\) 27.2698i 0.918222i
\(883\) 35.6238i 1.19884i −0.800436 0.599418i \(-0.795399\pi\)
0.800436 0.599418i \(-0.204601\pi\)
\(884\) −20.6971 −0.696120
\(885\) 6.01341 12.4014i 0.202139 0.416869i
\(886\) 18.3333 0.615920
\(887\) 59.1722i 1.98681i −0.114672 0.993403i \(-0.536582\pi\)
0.114672 0.993403i \(-0.463418\pi\)
\(888\) 35.5767i 1.19388i
\(889\) −1.16937 −0.0392195
\(890\) 3.28135 6.76710i 0.109991 0.226834i
\(891\) 3.18929 0.106845
\(892\) 7.46685i 0.250009i
\(893\) 0 0
\(894\) 11.2039 0.374715
\(895\) 46.0327 + 22.3211i 1.53870 + 0.746113i
\(896\) 2.81961 0.0941964
\(897\) 14.1173i 0.471364i
\(898\) 2.69841i 0.0900470i
\(899\) −36.6982 −1.22395
\(900\) −17.7145 22.4605i −0.590484 0.748683i
\(901\) 5.84800 0.194825
\(902\) 1.22604i 0.0408226i
\(903\) 1.80960i 0.0602196i
\(904\) −10.1770 −0.338482
\(905\) 23.2709 + 11.2840i 0.773549 + 0.375092i
\(906\) −7.63997 −0.253821
\(907\) 46.2445i 1.53552i −0.640735 0.767762i \(-0.721370\pi\)
0.640735 0.767762i \(-0.278630\pi\)
\(908\) 21.9331i 0.727876i
\(909\) −4.83716 −0.160438
\(910\) 0.555277 1.14514i 0.0184073 0.0379611i
\(911\) 48.8276 1.61773 0.808866 0.587994i \(-0.200082\pi\)
0.808866 + 0.587994i \(0.200082\pi\)
\(912\) 0 0
\(913\) 21.3865i 0.707790i
\(914\) 89.9368 2.97485
\(915\) 11.3321 23.3701i 0.374627 0.772590i
\(916\) −5.25291 −0.173561
\(917\) 0.375446i 0.0123983i
\(918\) 44.4777i 1.46798i
\(919\) 9.60929 0.316981 0.158491 0.987360i \(-0.449337\pi\)
0.158491 + 0.987360i \(0.449337\pi\)
\(920\) 47.2364 + 22.9048i 1.55734 + 0.755149i
\(921\) −32.6967 −1.07739
\(922\) 56.9519i 1.87561i
\(923\) 0.924285i 0.0304232i
\(924\) −1.57744 −0.0518941
\(925\) 37.2617 29.3882i 1.22516 0.966279i
\(926\) 75.5153 2.48159
\(927\) 2.01635i 0.0662257i
\(928\) 35.7148i 1.17240i
\(929\) −51.7174 −1.69679 −0.848396 0.529362i \(-0.822431\pi\)
−0.848396 + 0.529362i \(0.822431\pi\)
\(930\) −26.0378 12.6256i −0.853812 0.414011i
\(931\) 0 0
\(932\) 69.6473i 2.28137i
\(933\) 29.3417i 0.960604i
\(934\) 34.1766 1.11829
\(935\) 9.77591 20.1608i 0.319706 0.659328i
\(936\) −9.37158 −0.306320
\(937\) 11.4894i 0.375341i 0.982232 + 0.187671i \(0.0600938\pi\)
−0.982232 + 0.187671i \(0.939906\pi\)
\(938\) 2.00142i 0.0653488i
\(939\) −17.1728 −0.560412
\(940\) −12.1887 + 25.1366i −0.397550 + 0.819865i
\(941\) 26.4897 0.863540 0.431770 0.901984i \(-0.357889\pi\)
0.431770 + 0.901984i \(0.357889\pi\)
\(942\) 30.7702i 1.00255i
\(943\) 1.34757i 0.0438829i
\(944\) 4.17831 0.135992
\(945\) 1.55010 + 0.751640i 0.0504248 + 0.0244508i
\(946\) −71.9594 −2.33960
\(947\) 14.7018i 0.477745i −0.971051 0.238873i \(-0.923222\pi\)
0.971051 0.238873i \(-0.0767778\pi\)
\(948\) 45.3861i 1.47407i
\(949\) −17.8840 −0.580539
\(950\) 0 0
\(951\) −25.8892 −0.839513
\(952\) 1.66435i 0.0539419i
\(953\) 5.85051i 0.189517i 0.995500 + 0.0947583i \(0.0302078\pi\)
−0.995500 + 0.0947583i \(0.969792\pi\)
\(954\) 6.42031 0.207865
\(955\) −14.6667 7.11184i −0.474603 0.230134i
\(956\) 21.2424 0.687029
\(957\) 24.4857i 0.791510i
\(958\) 30.7306i 0.992862i
\(959\) −1.76555 −0.0570127
\(960\) 14.0323 28.9387i 0.452890 0.933992i
\(961\) −7.50793 −0.242191
\(962\) 37.6966i 1.21539i
\(963\) 6.88333i 0.221812i
\(964\) 89.5722 2.88493
\(965\) −25.5477 + 52.6869i −0.822411 + 1.69605i
\(966\) −2.75254 −0.0885614
\(967\) 24.0705i 0.774054i 0.922068 + 0.387027i \(0.126498\pi\)
−0.922068 + 0.387027i \(0.873502\pi\)
\(968\) 10.0272i 0.322287i
\(969\) 0 0
\(970\) 41.1689 + 19.9627i 1.32185 + 0.640963i
\(971\) 52.6618 1.69000 0.844999 0.534768i \(-0.179601\pi\)
0.844999 + 0.534768i \(0.179601\pi\)
\(972\) 50.4715i 1.61887i
\(973\) 1.13979i 0.0365400i
\(974\) −22.4575 −0.719585
\(975\) −6.07625 7.70416i −0.194596 0.246730i
\(976\) 7.87389 0.252037
\(977\) 6.50872i 0.208232i 0.994565 + 0.104116i \(0.0332014\pi\)
−0.994565 + 0.104116i \(0.966799\pi\)
\(978\) 50.5153i 1.61530i
\(979\) 4.07368 0.130195
\(980\) 47.7997 + 23.1779i 1.52691 + 0.740392i
\(981\) 27.2184 0.869017
\(982\) 6.24474i 0.199278i
\(983\) 1.24935i 0.0398480i −0.999801 0.0199240i \(-0.993658\pi\)
0.999801 0.0199240i \(-0.00634243\pi\)
\(984\) 0.702144 0.0223835
\(985\) 2.23240 4.60387i 0.0711302 0.146691i
\(986\) 62.6395 1.99485
\(987\) 0.604111i 0.0192291i
\(988\) 0 0
\(989\) −79.0924 −2.51499
\(990\) 10.7326 22.1338i 0.341105 0.703458i
\(991\) 37.5958 1.19427 0.597134 0.802141i \(-0.296306\pi\)
0.597134 + 0.802141i \(0.296306\pi\)
\(992\) 22.8626i 0.725887i
\(993\) 12.4829i 0.396132i
\(994\) 0.180213 0.00571600
\(995\) −24.6408 11.9483i −0.781166 0.378785i
\(996\) 29.6966 0.940974
\(997\) 29.9308i 0.947918i −0.880547 0.473959i \(-0.842825\pi\)
0.880547 0.473959i \(-0.157175\pi\)
\(998\) 5.47555i 0.173325i
\(999\) 51.0272 1.61443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.k.1084.3 24
5.2 odd 4 9025.2.a.cu.1.22 24
5.3 odd 4 9025.2.a.cu.1.3 24
5.4 even 2 inner 1805.2.b.k.1084.22 24
19.9 even 9 95.2.p.a.24.7 yes 48
19.17 even 9 95.2.p.a.4.2 48
19.18 odd 2 1805.2.b.l.1084.22 24
57.17 odd 18 855.2.da.b.289.7 48
57.47 odd 18 855.2.da.b.784.2 48
95.9 even 18 95.2.p.a.24.2 yes 48
95.17 odd 36 475.2.l.f.251.2 48
95.18 even 4 9025.2.a.ct.1.22 24
95.28 odd 36 475.2.l.f.176.7 48
95.37 even 4 9025.2.a.ct.1.3 24
95.47 odd 36 475.2.l.f.176.2 48
95.74 even 18 95.2.p.a.4.7 yes 48
95.93 odd 36 475.2.l.f.251.7 48
95.94 odd 2 1805.2.b.l.1084.3 24
285.74 odd 18 855.2.da.b.289.2 48
285.104 odd 18 855.2.da.b.784.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.4.2 48 19.17 even 9
95.2.p.a.4.7 yes 48 95.74 even 18
95.2.p.a.24.2 yes 48 95.9 even 18
95.2.p.a.24.7 yes 48 19.9 even 9
475.2.l.f.176.2 48 95.47 odd 36
475.2.l.f.176.7 48 95.28 odd 36
475.2.l.f.251.2 48 95.17 odd 36
475.2.l.f.251.7 48 95.93 odd 36
855.2.da.b.289.2 48 285.74 odd 18
855.2.da.b.289.7 48 57.17 odd 18
855.2.da.b.784.2 48 57.47 odd 18
855.2.da.b.784.7 48 285.104 odd 18
1805.2.b.k.1084.3 24 1.1 even 1 trivial
1805.2.b.k.1084.22 24 5.4 even 2 inner
1805.2.b.l.1084.3 24 95.94 odd 2
1805.2.b.l.1084.22 24 19.18 odd 2
9025.2.a.ct.1.3 24 95.37 even 4
9025.2.a.ct.1.22 24 95.18 even 4
9025.2.a.cu.1.3 24 5.3 odd 4
9025.2.a.cu.1.22 24 5.2 odd 4