Properties

Label 475.2.l.f.176.7
Level $475$
Weight $2$
Character 475.176
Analytic conductor $3.793$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(101,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 176.7
Character \(\chi\) \(=\) 475.176
Dual form 475.2.l.f.251.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.18443 - 0.795068i) q^{2} +(-0.199449 + 1.13113i) q^{3} +(2.60752 - 2.18797i) q^{4} +(0.463643 + 2.62945i) q^{6} +(-0.0716510 - 0.124103i) q^{7} +(1.63174 - 2.82626i) q^{8} +(1.57940 + 0.574856i) q^{9} +(1.40779 - 2.43836i) q^{11} +(1.95481 + 3.38583i) q^{12} +(-0.296685 - 1.68258i) q^{13} +(-0.255187 - 0.214128i) q^{14} +(0.135204 - 0.766781i) q^{16} +(3.34424 - 1.21720i) q^{17} +3.90715 q^{18} +(2.82087 + 3.32305i) q^{19} +(0.154668 - 0.0562944i) q^{21} +(1.13655 - 6.44571i) q^{22} +(-5.51088 + 4.62417i) q^{23} +(2.87141 + 2.40940i) q^{24} +(-1.98586 - 3.43960i) q^{26} +(-2.68812 + 4.65595i) q^{27} +(-0.458365 - 0.166831i) q^{28} +(-7.11492 - 2.58962i) q^{29} +(-2.42343 - 4.19751i) q^{31} +(0.819095 + 4.64532i) q^{32} +(2.47732 + 2.07872i) q^{33} +(6.33750 - 5.31779i) q^{34} +(5.37609 - 1.95674i) q^{36} -9.49127 q^{37} +(8.80406 + 5.01619i) q^{38} +1.96239 q^{39} +(-0.0325278 + 0.184474i) q^{41} +(0.293103 - 0.245943i) q^{42} +(-8.42213 - 7.06701i) q^{43} +(-1.66422 - 9.43825i) q^{44} +(-8.36160 + 14.4827i) q^{46} +(-3.44897 - 1.25532i) q^{47} +(0.840363 + 0.305867i) q^{48} +(3.48973 - 6.04439i) q^{49} +(0.709811 + 4.02554i) q^{51} +(-4.45505 - 3.73823i) q^{52} +(-1.25878 + 1.05624i) q^{53} +(-2.17020 + 12.3078i) q^{54} -0.467663 q^{56} +(-4.32142 + 2.52800i) q^{57} -17.6010 q^{58} +(5.04274 - 1.83541i) q^{59} +(7.74681 - 6.50035i) q^{61} +(-8.63112 - 7.24237i) q^{62} +(-0.0418244 - 0.237198i) q^{63} +(6.26121 + 10.8447i) q^{64} +(7.06425 + 2.57118i) q^{66} +(5.64572 + 2.05488i) q^{67} +(6.05696 - 10.4910i) q^{68} +(-4.13141 - 7.15580i) q^{69} +(0.414414 + 0.347735i) q^{71} +(4.20186 - 3.52578i) q^{72} +(-1.81765 + 10.3084i) q^{73} +(-20.7330 + 7.54620i) q^{74} +(14.6262 + 2.49294i) q^{76} -0.403477 q^{77} +(4.28672 - 1.56024i) q^{78} +(-2.01585 + 11.4325i) q^{79} +(-0.867724 - 0.728107i) q^{81} +(0.0756149 + 0.428833i) q^{82} +(3.79789 + 6.57815i) q^{83} +(0.280128 - 0.485197i) q^{84} +(-24.0163 - 8.74123i) q^{86} +(4.34826 - 7.53141i) q^{87} +(-4.59428 - 7.95753i) q^{88} +(0.251241 + 1.42486i) q^{89} +(-0.187556 + 0.157378i) q^{91} +(-4.25217 + 24.1152i) q^{92} +(5.23127 - 1.90403i) q^{93} -8.53210 q^{94} -5.41783 q^{96} +(8.27128 - 3.01050i) q^{97} +(2.81738 - 15.9781i) q^{98} +(3.62516 - 3.04187i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 18 q^{4} - 6 q^{6} + 12 q^{9} - 12 q^{11} - 6 q^{14} - 42 q^{16} - 12 q^{19} - 54 q^{21} - 24 q^{24} + 12 q^{26} - 42 q^{31} + 36 q^{34} + 18 q^{36} + 48 q^{39} + 6 q^{41} + 6 q^{44} - 6 q^{46} - 12 q^{49}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18443 0.795068i 1.54463 0.562198i 0.577477 0.816407i \(-0.304037\pi\)
0.967149 + 0.254209i \(0.0818151\pi\)
\(3\) −0.199449 + 1.13113i −0.115152 + 0.653058i 0.871523 + 0.490354i \(0.163133\pi\)
−0.986675 + 0.162704i \(0.947978\pi\)
\(4\) 2.60752 2.18797i 1.30376 1.09398i
\(5\) 0 0
\(6\) 0.463643 + 2.62945i 0.189282 + 1.07347i
\(7\) −0.0716510 0.124103i −0.0270816 0.0469066i 0.852167 0.523270i \(-0.175288\pi\)
−0.879249 + 0.476363i \(0.841955\pi\)
\(8\) 1.63174 2.82626i 0.576907 0.999232i
\(9\) 1.57940 + 0.574856i 0.526468 + 0.191619i
\(10\) 0 0
\(11\) 1.40779 2.43836i 0.424463 0.735192i −0.571907 0.820319i \(-0.693796\pi\)
0.996370 + 0.0851264i \(0.0271294\pi\)
\(12\) 1.95481 + 3.38583i 0.564305 + 0.977405i
\(13\) −0.296685 1.68258i −0.0822856 0.466665i −0.997909 0.0646286i \(-0.979414\pi\)
0.915624 0.402036i \(-0.131697\pi\)
\(14\) −0.255187 0.214128i −0.0682017 0.0572280i
\(15\) 0 0
\(16\) 0.135204 0.766781i 0.0338011 0.191695i
\(17\) 3.34424 1.21720i 0.811097 0.295215i 0.0970200 0.995282i \(-0.469069\pi\)
0.714077 + 0.700067i \(0.246847\pi\)
\(18\) 3.90715 0.920923
\(19\) 2.82087 + 3.32305i 0.647153 + 0.762360i
\(20\) 0 0
\(21\) 0.154668 0.0562944i 0.0337512 0.0122844i
\(22\) 1.13655 6.44571i 0.242314 1.37423i
\(23\) −5.51088 + 4.62417i −1.14910 + 0.964207i −0.999698 0.0245699i \(-0.992178\pi\)
−0.149399 + 0.988777i \(0.547734\pi\)
\(24\) 2.87141 + 2.40940i 0.586125 + 0.491817i
\(25\) 0 0
\(26\) −1.98586 3.43960i −0.389459 0.674562i
\(27\) −2.68812 + 4.65595i −0.517328 + 0.896038i
\(28\) −0.458365 0.166831i −0.0866229 0.0315282i
\(29\) −7.11492 2.58962i −1.32121 0.480880i −0.417363 0.908740i \(-0.637046\pi\)
−0.903845 + 0.427860i \(0.859268\pi\)
\(30\) 0 0
\(31\) −2.42343 4.19751i −0.435261 0.753894i 0.562056 0.827099i \(-0.310011\pi\)
−0.997317 + 0.0732050i \(0.976677\pi\)
\(32\) 0.819095 + 4.64532i 0.144797 + 0.821184i
\(33\) 2.47732 + 2.07872i 0.431246 + 0.361858i
\(34\) 6.33750 5.31779i 1.08687 0.911994i
\(35\) 0 0
\(36\) 5.37609 1.95674i 0.896015 0.326123i
\(37\) −9.49127 −1.56035 −0.780177 0.625559i \(-0.784871\pi\)
−0.780177 + 0.625559i \(0.784871\pi\)
\(38\) 8.80406 + 5.01619i 1.42821 + 0.813734i
\(39\) 1.96239 0.314235
\(40\) 0 0
\(41\) −0.0325278 + 0.184474i −0.00507999 + 0.0288100i −0.987242 0.159225i \(-0.949101\pi\)
0.982162 + 0.188035i \(0.0602117\pi\)
\(42\) 0.293103 0.245943i 0.0452268 0.0379498i
\(43\) −8.42213 7.06701i −1.28436 1.07771i −0.992627 0.121210i \(-0.961323\pi\)
−0.291736 0.956499i \(-0.594233\pi\)
\(44\) −1.66422 9.43825i −0.250890 1.42287i
\(45\) 0 0
\(46\) −8.36160 + 14.4827i −1.23285 + 2.13536i
\(47\) −3.44897 1.25532i −0.503084 0.183108i 0.0779967 0.996954i \(-0.475148\pi\)
−0.581080 + 0.813846i \(0.697370\pi\)
\(48\) 0.840363 + 0.305867i 0.121296 + 0.0441481i
\(49\) 3.48973 6.04439i 0.498533 0.863485i
\(50\) 0 0
\(51\) 0.709811 + 4.02554i 0.0993934 + 0.563688i
\(52\) −4.45505 3.73823i −0.617804 0.518399i
\(53\) −1.25878 + 1.05624i −0.172907 + 0.145086i −0.725134 0.688607i \(-0.758222\pi\)
0.552228 + 0.833693i \(0.313778\pi\)
\(54\) −2.17020 + 12.3078i −0.295327 + 1.67489i
\(55\) 0 0
\(56\) −0.467663 −0.0624941
\(57\) −4.32142 + 2.52800i −0.572386 + 0.334841i
\(58\) −17.6010 −2.31112
\(59\) 5.04274 1.83541i 0.656509 0.238950i 0.00778043 0.999970i \(-0.497523\pi\)
0.648728 + 0.761020i \(0.275301\pi\)
\(60\) 0 0
\(61\) 7.74681 6.50035i 0.991878 0.832284i 0.00603938 0.999982i \(-0.498078\pi\)
0.985839 + 0.167697i \(0.0536331\pi\)
\(62\) −8.63112 7.24237i −1.09615 0.919782i
\(63\) −0.0418244 0.237198i −0.00526938 0.0298841i
\(64\) 6.26121 + 10.8447i 0.782652 + 1.35559i
\(65\) 0 0
\(66\) 7.06425 + 2.57118i 0.869549 + 0.316490i
\(67\) 5.64572 + 2.05488i 0.689735 + 0.251043i 0.663022 0.748600i \(-0.269274\pi\)
0.0267132 + 0.999643i \(0.491496\pi\)
\(68\) 6.05696 10.4910i 0.734514 1.27222i
\(69\) −4.13141 7.15580i −0.497363 0.861457i
\(70\) 0 0
\(71\) 0.414414 + 0.347735i 0.0491819 + 0.0412685i 0.667047 0.745015i \(-0.267558\pi\)
−0.617865 + 0.786284i \(0.712002\pi\)
\(72\) 4.20186 3.52578i 0.495194 0.415517i
\(73\) −1.81765 + 10.3084i −0.212740 + 1.20651i 0.672047 + 0.740509i \(0.265415\pi\)
−0.884786 + 0.465997i \(0.845696\pi\)
\(74\) −20.7330 + 7.54620i −2.41016 + 0.877228i
\(75\) 0 0
\(76\) 14.6262 + 2.49294i 1.67774 + 0.285960i
\(77\) −0.403477 −0.0459805
\(78\) 4.28672 1.56024i 0.485375 0.176662i
\(79\) −2.01585 + 11.4325i −0.226801 + 1.28625i 0.632411 + 0.774633i \(0.282065\pi\)
−0.859212 + 0.511620i \(0.829046\pi\)
\(80\) 0 0
\(81\) −0.867724 0.728107i −0.0964137 0.0809007i
\(82\) 0.0756149 + 0.428833i 0.00835027 + 0.0473567i
\(83\) 3.79789 + 6.57815i 0.416873 + 0.722045i 0.995623 0.0934597i \(-0.0297926\pi\)
−0.578750 + 0.815505i \(0.696459\pi\)
\(84\) 0.280128 0.485197i 0.0305645 0.0529393i
\(85\) 0 0
\(86\) −24.0163 8.74123i −2.58975 0.942591i
\(87\) 4.34826 7.53141i 0.466182 0.807452i
\(88\) −4.59428 7.95753i −0.489752 0.848275i
\(89\) 0.251241 + 1.42486i 0.0266315 + 0.151035i 0.995224 0.0976195i \(-0.0311228\pi\)
−0.968592 + 0.248654i \(0.920012\pi\)
\(90\) 0 0
\(91\) −0.187556 + 0.157378i −0.0196612 + 0.0164977i
\(92\) −4.25217 + 24.1152i −0.443319 + 2.51419i
\(93\) 5.23127 1.90403i 0.542458 0.197439i
\(94\) −8.53210 −0.880019
\(95\) 0 0
\(96\) −5.41783 −0.552955
\(97\) 8.27128 3.01050i 0.839822 0.305670i 0.113938 0.993488i \(-0.463653\pi\)
0.725883 + 0.687818i \(0.241431\pi\)
\(98\) 2.81738 15.9781i 0.284598 1.61404i
\(99\) 3.62516 3.04187i 0.364343 0.305720i
\(100\) 0 0
\(101\) −0.499751 2.83423i −0.0497270 0.282016i 0.949797 0.312867i \(-0.101289\pi\)
−0.999524 + 0.0308509i \(0.990178\pi\)
\(102\) 4.75111 + 8.22916i 0.470430 + 0.814808i
\(103\) 0.599832 1.03894i 0.0591032 0.102370i −0.834960 0.550311i \(-0.814509\pi\)
0.894063 + 0.447941i \(0.147843\pi\)
\(104\) −5.23952 1.90703i −0.513778 0.187000i
\(105\) 0 0
\(106\) −1.90994 + 3.30811i −0.185509 + 0.321312i
\(107\) −2.04768 3.54668i −0.197957 0.342871i 0.749909 0.661541i \(-0.230097\pi\)
−0.947866 + 0.318670i \(0.896764\pi\)
\(108\) 3.17776 + 18.0220i 0.305780 + 1.73417i
\(109\) −12.4054 10.4093i −1.18822 0.997034i −0.999889 0.0149287i \(-0.995248\pi\)
−0.188331 0.982106i \(-0.560308\pi\)
\(110\) 0 0
\(111\) 1.89302 10.7359i 0.179678 1.01900i
\(112\) −0.104848 + 0.0381614i −0.00990716 + 0.00360591i
\(113\) −3.11845 −0.293359 −0.146680 0.989184i \(-0.546859\pi\)
−0.146680 + 0.989184i \(0.546859\pi\)
\(114\) −7.42992 + 8.95806i −0.695876 + 0.838999i
\(115\) 0 0
\(116\) −24.2183 + 8.81474i −2.24861 + 0.818428i
\(117\) 0.498658 2.82803i 0.0461009 0.261451i
\(118\) 9.55625 8.01864i 0.879724 0.738176i
\(119\) −0.390677 0.327817i −0.0358133 0.0300509i
\(120\) 0 0
\(121\) 1.53628 + 2.66091i 0.139661 + 0.241901i
\(122\) 11.7542 20.3588i 1.06417 1.84320i
\(123\) −0.202177 0.0735863i −0.0182297 0.00663506i
\(124\) −15.5031 5.64268i −1.39222 0.506728i
\(125\) 0 0
\(126\) −0.279951 0.484890i −0.0249400 0.0431974i
\(127\) 1.41700 + 8.03622i 0.125739 + 0.713099i 0.980866 + 0.194682i \(0.0623675\pi\)
−0.855128 + 0.518417i \(0.826521\pi\)
\(128\) 15.0727 + 12.6475i 1.33225 + 1.11789i
\(129\) 9.67349 8.11702i 0.851703 0.714664i
\(130\) 0 0
\(131\) −2.46196 + 0.896079i −0.215102 + 0.0782908i −0.447324 0.894372i \(-0.647623\pi\)
0.232222 + 0.972663i \(0.425401\pi\)
\(132\) 11.0078 0.958108
\(133\) 0.210283 0.588180i 0.0182338 0.0510017i
\(134\) 13.9665 1.20652
\(135\) 0 0
\(136\) 2.01680 11.4378i 0.172939 0.980786i
\(137\) 9.43805 7.91946i 0.806347 0.676605i −0.143386 0.989667i \(-0.545799\pi\)
0.949733 + 0.313062i \(0.101355\pi\)
\(138\) −14.7141 12.3466i −1.25255 1.05101i
\(139\) 1.38116 + 7.83292i 0.117148 + 0.664380i 0.985664 + 0.168719i \(0.0539630\pi\)
−0.868516 + 0.495661i \(0.834926\pi\)
\(140\) 0 0
\(141\) 2.10782 3.65086i 0.177511 0.307458i
\(142\) 1.18173 + 0.430115i 0.0991687 + 0.0360945i
\(143\) −4.52041 1.64529i −0.378016 0.137586i
\(144\) 0.654330 1.13333i 0.0545275 0.0944445i
\(145\) 0 0
\(146\) 4.22535 + 23.9631i 0.349692 + 1.98320i
\(147\) 6.14097 + 5.15289i 0.506499 + 0.425003i
\(148\) −24.7487 + 20.7666i −2.03433 + 1.70700i
\(149\) −0.728662 + 4.13245i −0.0596943 + 0.338543i −0.999998 0.00179219i \(-0.999430\pi\)
0.940304 + 0.340335i \(0.110541\pi\)
\(150\) 0 0
\(151\) −2.86140 −0.232857 −0.116429 0.993199i \(-0.537145\pi\)
−0.116429 + 0.993199i \(0.537145\pi\)
\(152\) 13.9947 2.55015i 1.13512 0.206845i
\(153\) 5.98161 0.483585
\(154\) −0.881369 + 0.320792i −0.0710227 + 0.0258502i
\(155\) 0 0
\(156\) 5.11698 4.29366i 0.409686 0.343768i
\(157\) 8.82817 + 7.40771i 0.704565 + 0.591200i 0.923068 0.384636i \(-0.125673\pi\)
−0.218504 + 0.975836i \(0.570118\pi\)
\(158\) 4.68610 + 26.5762i 0.372806 + 2.11429i
\(159\) −0.943685 1.63451i −0.0748391 0.129625i
\(160\) 0 0
\(161\) 0.968735 + 0.352591i 0.0763470 + 0.0277880i
\(162\) −2.47438 0.900600i −0.194405 0.0707578i
\(163\) 9.45974 16.3847i 0.740944 1.28335i −0.211122 0.977460i \(-0.567712\pi\)
0.952066 0.305892i \(-0.0989548\pi\)
\(164\) 0.318807 + 0.552190i 0.0248946 + 0.0431188i
\(165\) 0 0
\(166\) 13.5263 + 11.3499i 1.04985 + 0.880925i
\(167\) −11.5435 + 9.68614i −0.893262 + 0.749536i −0.968862 0.247602i \(-0.920357\pi\)
0.0755996 + 0.997138i \(0.475913\pi\)
\(168\) 0.0932748 0.528988i 0.00719631 0.0408123i
\(169\) 9.47294 3.44787i 0.728688 0.265221i
\(170\) 0 0
\(171\) 2.54502 + 6.87003i 0.194623 + 0.525364i
\(172\) −37.4233 −2.85350
\(173\) 20.3866 7.42012i 1.54997 0.564141i 0.581556 0.813506i \(-0.302444\pi\)
0.968410 + 0.249365i \(0.0802219\pi\)
\(174\) 3.51049 19.9090i 0.266130 1.50930i
\(175\) 0 0
\(176\) −1.67935 1.40914i −0.126586 0.106218i
\(177\) 1.07032 + 6.07006i 0.0804499 + 0.456254i
\(178\) 1.68168 + 2.91275i 0.126047 + 0.218320i
\(179\) −11.4395 + 19.8138i −0.855028 + 1.48095i 0.0215906 + 0.999767i \(0.493127\pi\)
−0.876619 + 0.481185i \(0.840206\pi\)
\(180\) 0 0
\(181\) 10.8685 + 3.95580i 0.807847 + 0.294032i 0.712734 0.701434i \(-0.247457\pi\)
0.0951131 + 0.995466i \(0.469679\pi\)
\(182\) −0.284577 + 0.492903i −0.0210943 + 0.0365364i
\(183\) 5.80765 + 10.0591i 0.429314 + 0.743593i
\(184\) 4.07678 + 23.1206i 0.300544 + 1.70447i
\(185\) 0 0
\(186\) 9.91353 8.31844i 0.726895 0.609937i
\(187\) 1.74000 9.86801i 0.127241 0.721620i
\(188\) −11.7399 + 4.27296i −0.856217 + 0.311637i
\(189\) 0.770425 0.0560402
\(190\) 0 0
\(191\) 7.28958 0.527455 0.263728 0.964597i \(-0.415048\pi\)
0.263728 + 0.964597i \(0.415048\pi\)
\(192\) −13.5156 + 4.91928i −0.975404 + 0.355018i
\(193\) 4.54719 25.7884i 0.327314 1.85629i −0.165572 0.986198i \(-0.552947\pi\)
0.492887 0.870094i \(-0.335942\pi\)
\(194\) 15.6745 13.1525i 1.12536 0.944292i
\(195\) 0 0
\(196\) −4.12540 23.3963i −0.294671 1.67116i
\(197\) −1.14410 1.98164i −0.0815136 0.141186i 0.822387 0.568929i \(-0.192642\pi\)
−0.903900 + 0.427743i \(0.859309\pi\)
\(198\) 5.50043 9.52702i 0.390898 0.677056i
\(199\) 11.5083 + 4.18868i 0.815802 + 0.296928i 0.716018 0.698081i \(-0.245963\pi\)
0.0997838 + 0.995009i \(0.468185\pi\)
\(200\) 0 0
\(201\) −3.45036 + 5.97621i −0.243370 + 0.421529i
\(202\) −3.34507 5.79384i −0.235359 0.407653i
\(203\) 0.188411 + 1.06853i 0.0132239 + 0.0749964i
\(204\) 10.6586 + 8.94362i 0.746251 + 0.626179i
\(205\) 0 0
\(206\) 0.484264 2.74640i 0.0337403 0.191351i
\(207\) −11.3621 + 4.13548i −0.789722 + 0.287435i
\(208\) −1.33029 −0.0922388
\(209\) 12.0740 2.20015i 0.835174 0.152188i
\(210\) 0 0
\(211\) −2.82198 + 1.02712i −0.194273 + 0.0707097i −0.437325 0.899304i \(-0.644074\pi\)
0.243051 + 0.970013i \(0.421852\pi\)
\(212\) −0.971270 + 5.50834i −0.0667071 + 0.378315i
\(213\) −0.475987 + 0.399401i −0.0326141 + 0.0273665i
\(214\) −7.29287 6.11944i −0.498530 0.418316i
\(215\) 0 0
\(216\) 8.77261 + 15.1946i 0.596900 + 1.03386i
\(217\) −0.347283 + 0.601511i −0.0235751 + 0.0408332i
\(218\) −35.3748 12.8754i −2.39589 0.872031i
\(219\) −11.2976 4.11199i −0.763421 0.277863i
\(220\) 0 0
\(221\) −3.04023 5.26583i −0.204508 0.354218i
\(222\) −4.40056 24.9568i −0.295346 1.67499i
\(223\) −1.68042 1.41004i −0.112529 0.0944233i 0.584787 0.811187i \(-0.301178\pi\)
−0.697316 + 0.716764i \(0.745623\pi\)
\(224\) 0.517810 0.434494i 0.0345977 0.0290309i
\(225\) 0 0
\(226\) −6.81204 + 2.47938i −0.453130 + 0.164926i
\(227\) 6.44357 0.427675 0.213838 0.976869i \(-0.431404\pi\)
0.213838 + 0.976869i \(0.431404\pi\)
\(228\) −5.73702 + 16.0469i −0.379943 + 1.06273i
\(229\) −1.54321 −0.101978 −0.0509892 0.998699i \(-0.516237\pi\)
−0.0509892 + 0.998699i \(0.516237\pi\)
\(230\) 0 0
\(231\) 0.0804731 0.456385i 0.00529474 0.0300280i
\(232\) −18.9286 + 15.8830i −1.24273 + 1.04277i
\(233\) −15.6742 13.1522i −1.02685 0.861629i −0.0363763 0.999338i \(-0.511581\pi\)
−0.990473 + 0.137710i \(0.956026\pi\)
\(234\) −1.15919 6.57410i −0.0757787 0.429762i
\(235\) 0 0
\(236\) 9.13323 15.8192i 0.594522 1.02974i
\(237\) −12.5295 4.56038i −0.813881 0.296229i
\(238\) −1.11404 0.405479i −0.0722127 0.0262833i
\(239\) −3.12033 + 5.40457i −0.201837 + 0.349592i −0.949120 0.314913i \(-0.898025\pi\)
0.747283 + 0.664506i \(0.231358\pi\)
\(240\) 0 0
\(241\) −4.56951 25.9150i −0.294348 1.66933i −0.669839 0.742506i \(-0.733637\pi\)
0.375491 0.926826i \(-0.377474\pi\)
\(242\) 5.47149 + 4.59113i 0.351721 + 0.295129i
\(243\) −11.3586 + 9.53104i −0.728657 + 0.611416i
\(244\) 5.97741 33.8996i 0.382664 2.17020i
\(245\) 0 0
\(246\) −0.500147 −0.0318882
\(247\) 4.75440 5.73226i 0.302515 0.364735i
\(248\) −15.8176 −1.00442
\(249\) −8.19822 + 2.98391i −0.519541 + 0.189098i
\(250\) 0 0
\(251\) −8.20154 + 6.88191i −0.517677 + 0.434382i −0.863821 0.503799i \(-0.831935\pi\)
0.346144 + 0.938181i \(0.387491\pi\)
\(252\) −0.628040 0.526988i −0.0395628 0.0331971i
\(253\) 3.51725 + 19.9473i 0.221128 + 1.25408i
\(254\) 9.48469 + 16.4280i 0.595122 + 1.03078i
\(255\) 0 0
\(256\) 19.4463 + 7.07788i 1.21540 + 0.442368i
\(257\) −12.7084 4.62548i −0.792728 0.288529i −0.0862582 0.996273i \(-0.527491\pi\)
−0.706469 + 0.707744i \(0.749713\pi\)
\(258\) 14.6775 25.4222i 0.913781 1.58271i
\(259\) 0.680059 + 1.17790i 0.0422568 + 0.0731910i
\(260\) 0 0
\(261\) −9.74867 8.18011i −0.603428 0.506336i
\(262\) −4.66553 + 3.91485i −0.288238 + 0.241860i
\(263\) 1.13576 6.44120i 0.0700337 0.397181i −0.929560 0.368671i \(-0.879813\pi\)
0.999594 0.0285097i \(-0.00907614\pi\)
\(264\) 9.91732 3.60961i 0.610369 0.222156i
\(265\) 0 0
\(266\) −0.00829414 1.45203i −0.000508546 0.0890295i
\(267\) −1.66181 −0.101701
\(268\) 19.2173 6.99454i 1.17389 0.427259i
\(269\) 2.50436 14.2029i 0.152693 0.865968i −0.808171 0.588948i \(-0.799542\pi\)
0.960864 0.277020i \(-0.0893467\pi\)
\(270\) 0 0
\(271\) −1.67326 1.40404i −0.101644 0.0852891i 0.590550 0.807001i \(-0.298911\pi\)
−0.692193 + 0.721712i \(0.743355\pi\)
\(272\) −0.481173 2.72887i −0.0291754 0.165462i
\(273\) −0.140608 0.243540i −0.00850996 0.0147397i
\(274\) 14.3203 24.8034i 0.865118 1.49843i
\(275\) 0 0
\(276\) −26.4294 9.61951i −1.59086 0.579026i
\(277\) 7.98732 13.8344i 0.479911 0.831231i −0.519823 0.854274i \(-0.674002\pi\)
0.999734 + 0.0230432i \(0.00733551\pi\)
\(278\) 9.24475 + 16.0124i 0.554463 + 0.960358i
\(279\) −1.41461 8.02267i −0.0846907 0.480305i
\(280\) 0 0
\(281\) −10.9214 + 9.16416i −0.651517 + 0.546688i −0.907531 0.419985i \(-0.862035\pi\)
0.256014 + 0.966673i \(0.417591\pi\)
\(282\) 1.70172 9.65092i 0.101336 0.574704i
\(283\) 6.64111 2.41716i 0.394773 0.143686i −0.137003 0.990571i \(-0.543747\pi\)
0.531776 + 0.846885i \(0.321525\pi\)
\(284\) 1.84142 0.109268
\(285\) 0 0
\(286\) −11.1826 −0.661244
\(287\) 0.0252245 0.00918097i 0.00148896 0.000541936i
\(288\) −1.37671 + 7.80769i −0.0811232 + 0.460073i
\(289\) −3.32041 + 2.78616i −0.195318 + 0.163892i
\(290\) 0 0
\(291\) 1.75557 + 9.95634i 0.102913 + 0.583651i
\(292\) 17.8149 + 30.8563i 1.04254 + 1.80573i
\(293\) −0.488373 + 0.845886i −0.0285310 + 0.0494172i −0.879938 0.475088i \(-0.842416\pi\)
0.851407 + 0.524505i \(0.175750\pi\)
\(294\) 17.5114 + 6.37364i 1.02129 + 0.371718i
\(295\) 0 0
\(296\) −15.4873 + 26.8247i −0.900179 + 1.55916i
\(297\) 7.56858 + 13.1092i 0.439174 + 0.760671i
\(298\) 1.69386 + 9.60638i 0.0981230 + 0.556483i
\(299\) 9.41556 + 7.90059i 0.544516 + 0.456903i
\(300\) 0 0
\(301\) −0.273584 + 1.55157i −0.0157691 + 0.0894312i
\(302\) −6.25052 + 2.27500i −0.359677 + 0.130912i
\(303\) 3.30555 0.189899
\(304\) 2.92945 1.71370i 0.168015 0.0982876i
\(305\) 0 0
\(306\) 13.0664 4.75579i 0.746958 0.271870i
\(307\) 4.94325 28.0346i 0.282126 1.60002i −0.433248 0.901275i \(-0.642633\pi\)
0.715374 0.698742i \(-0.246256\pi\)
\(308\) −1.05207 + 0.882796i −0.0599475 + 0.0503020i
\(309\) 1.05554 + 0.885703i 0.0600475 + 0.0503859i
\(310\) 0 0
\(311\) 12.7730 + 22.1235i 0.724292 + 1.25451i 0.959265 + 0.282509i \(0.0911668\pi\)
−0.234972 + 0.972002i \(0.575500\pi\)
\(312\) 3.20212 5.54623i 0.181284 0.313993i
\(313\) 14.0496 + 5.11365i 0.794133 + 0.289041i 0.707053 0.707161i \(-0.250024\pi\)
0.0870798 + 0.996201i \(0.472246\pi\)
\(314\) 25.1742 + 9.16265i 1.42066 + 0.517078i
\(315\) 0 0
\(316\) 19.7575 + 34.2210i 1.11145 + 1.92508i
\(317\) 3.91406 + 22.1977i 0.219835 + 1.24675i 0.872316 + 0.488943i \(0.162617\pi\)
−0.652481 + 0.757805i \(0.726272\pi\)
\(318\) −3.36096 2.82018i −0.188473 0.158148i
\(319\) −16.3307 + 13.7031i −0.914344 + 0.767226i
\(320\) 0 0
\(321\) 4.42017 1.60881i 0.246710 0.0897950i
\(322\) 2.39647 0.133550
\(323\) 13.4785 + 7.67950i 0.749964 + 0.427299i
\(324\) −3.85568 −0.214204
\(325\) 0 0
\(326\) 7.63716 43.3125i 0.422983 2.39886i
\(327\) 14.2486 11.9560i 0.787947 0.661166i
\(328\) 0.468295 + 0.392946i 0.0258572 + 0.0216968i
\(329\) 0.0913327 + 0.517973i 0.00503533 + 0.0285568i
\(330\) 0 0
\(331\) 5.43405 9.41205i 0.298682 0.517333i −0.677152 0.735843i \(-0.736786\pi\)
0.975835 + 0.218510i \(0.0701196\pi\)
\(332\) 24.2959 + 8.84297i 1.33341 + 0.485321i
\(333\) −14.9905 5.45611i −0.821476 0.298993i
\(334\) −17.5148 + 30.3366i −0.958369 + 1.65994i
\(335\) 0 0
\(336\) −0.0222538 0.126207i −0.00121404 0.00688518i
\(337\) −5.90548 4.95529i −0.321692 0.269932i 0.467612 0.883934i \(-0.345114\pi\)
−0.789305 + 0.614002i \(0.789559\pi\)
\(338\) 17.9517 15.0633i 0.976443 0.819333i
\(339\) 0.621971 3.52737i 0.0337808 0.191581i
\(340\) 0 0
\(341\) −13.6467 −0.739010
\(342\) 11.0216 + 12.9836i 0.595978 + 0.702075i
\(343\) −2.00329 −0.108167
\(344\) −33.7159 + 12.2716i −1.81784 + 0.661639i
\(345\) 0 0
\(346\) 38.6337 32.4175i 2.07696 1.74278i
\(347\) −15.5276 13.0292i −0.833566 0.699445i 0.122540 0.992464i \(-0.460896\pi\)
−0.956107 + 0.293018i \(0.905340\pi\)
\(348\) −5.14031 29.1521i −0.275549 1.56272i
\(349\) −9.52515 16.4981i −0.509870 0.883120i −0.999935 0.0114345i \(-0.996360\pi\)
0.490065 0.871686i \(-0.336973\pi\)
\(350\) 0 0
\(351\) 8.63155 + 3.14163i 0.460718 + 0.167688i
\(352\) 12.4801 + 4.54237i 0.665189 + 0.242109i
\(353\) −9.08336 + 15.7328i −0.483459 + 0.837375i −0.999820 0.0189962i \(-0.993953\pi\)
0.516361 + 0.856371i \(0.327286\pi\)
\(354\) 7.16414 + 12.4087i 0.380770 + 0.659513i
\(355\) 0 0
\(356\) 3.77266 + 3.16564i 0.199951 + 0.167778i
\(357\) 0.448724 0.376524i 0.0237490 0.0199278i
\(358\) −9.23549 + 52.3771i −0.488111 + 2.76821i
\(359\) 15.1590 5.51741i 0.800060 0.291198i 0.0905485 0.995892i \(-0.471138\pi\)
0.709511 + 0.704694i \(0.248916\pi\)
\(360\) 0 0
\(361\) −3.08534 + 18.7478i −0.162387 + 0.986727i
\(362\) 26.8866 1.41313
\(363\) −3.31624 + 1.20701i −0.174058 + 0.0633518i
\(364\) −0.144718 + 0.820735i −0.00758527 + 0.0430182i
\(365\) 0 0
\(366\) 20.6841 + 17.3560i 1.08118 + 0.907214i
\(367\) 5.60217 + 31.7715i 0.292431 + 1.65846i 0.677465 + 0.735555i \(0.263079\pi\)
−0.385034 + 0.922902i \(0.625810\pi\)
\(368\) 2.80064 + 4.85084i 0.145993 + 0.252868i
\(369\) −0.157421 + 0.272660i −0.00819499 + 0.0141941i
\(370\) 0 0
\(371\) 0.221276 + 0.0805379i 0.0114881 + 0.00418132i
\(372\) 9.47469 16.4106i 0.491240 0.850853i
\(373\) −1.19018 2.06146i −0.0616253 0.106738i 0.833567 0.552419i \(-0.186295\pi\)
−0.895192 + 0.445681i \(0.852962\pi\)
\(374\) −4.04484 22.9394i −0.209153 1.18617i
\(375\) 0 0
\(376\) −9.17568 + 7.69931i −0.473199 + 0.397061i
\(377\) −2.24636 + 12.7398i −0.115694 + 0.656131i
\(378\) 1.68294 0.612540i 0.0865611 0.0315057i
\(379\) 17.7215 0.910291 0.455145 0.890417i \(-0.349587\pi\)
0.455145 + 0.890417i \(0.349587\pi\)
\(380\) 0 0
\(381\) −9.37263 −0.480174
\(382\) 15.9236 5.79571i 0.814722 0.296534i
\(383\) 1.85188 10.5025i 0.0946268 0.536655i −0.900234 0.435406i \(-0.856605\pi\)
0.994861 0.101249i \(-0.0322840\pi\)
\(384\) −17.3121 + 14.5266i −0.883457 + 0.741308i
\(385\) 0 0
\(386\) −10.5705 59.9484i −0.538025 3.05129i
\(387\) −9.23943 16.0032i −0.469667 0.813486i
\(388\) 14.9806 25.9472i 0.760527 1.31727i
\(389\) −21.3605 7.77458i −1.08302 0.394187i −0.261989 0.965071i \(-0.584378\pi\)
−0.821031 + 0.570884i \(0.806600\pi\)
\(390\) 0 0
\(391\) −12.8011 + 22.1722i −0.647381 + 1.12130i
\(392\) −11.3887 19.7257i −0.575214 0.996301i
\(393\) −0.522548 2.96351i −0.0263590 0.149490i
\(394\) −4.07474 3.41911i −0.205282 0.172252i
\(395\) 0 0
\(396\) 2.79716 15.8635i 0.140563 0.797170i
\(397\) 19.2078 6.99106i 0.964011 0.350871i 0.188407 0.982091i \(-0.439668\pi\)
0.775604 + 0.631220i \(0.217445\pi\)
\(398\) 28.4694 1.42704
\(399\) 0.623367 + 0.355169i 0.0312074 + 0.0177807i
\(400\) 0 0
\(401\) −15.6902 + 5.71077i −0.783531 + 0.285182i −0.702644 0.711541i \(-0.747998\pi\)
−0.0808870 + 0.996723i \(0.525775\pi\)
\(402\) −2.78559 + 15.7979i −0.138933 + 0.787927i
\(403\) −6.34366 + 5.32296i −0.316000 + 0.265156i
\(404\) −7.50431 6.29686i −0.373353 0.313281i
\(405\) 0 0
\(406\) 1.26113 + 2.18434i 0.0625888 + 0.108407i
\(407\) −13.3617 + 23.1431i −0.662313 + 1.14716i
\(408\) 12.5354 + 4.56252i 0.620596 + 0.225878i
\(409\) 16.6181 + 6.04849i 0.821712 + 0.299079i 0.718453 0.695576i \(-0.244851\pi\)
0.103259 + 0.994655i \(0.467073\pi\)
\(410\) 0 0
\(411\) 7.07553 + 12.2552i 0.349010 + 0.604504i
\(412\) −0.709093 4.02147i −0.0349345 0.198123i
\(413\) −0.589098 0.494312i −0.0289876 0.0243235i
\(414\) −21.5318 + 18.0673i −1.05823 + 0.887961i
\(415\) 0 0
\(416\) 7.57313 2.75639i 0.371303 0.135143i
\(417\) −9.13552 −0.447369
\(418\) 24.6255 14.4057i 1.20447 0.704606i
\(419\) −37.9339 −1.85319 −0.926596 0.376059i \(-0.877279\pi\)
−0.926596 + 0.376059i \(0.877279\pi\)
\(420\) 0 0
\(421\) 2.01122 11.4062i 0.0980211 0.555905i −0.895759 0.444541i \(-0.853367\pi\)
0.993780 0.111364i \(-0.0355221\pi\)
\(422\) −5.34780 + 4.48734i −0.260327 + 0.218440i
\(423\) −4.72568 3.96532i −0.229770 0.192800i
\(424\) 0.931209 + 5.28115i 0.0452235 + 0.256475i
\(425\) 0 0
\(426\) −0.722211 + 1.25091i −0.0349912 + 0.0606066i
\(427\) −1.36178 0.495648i −0.0659012 0.0239861i
\(428\) −13.0994 4.76779i −0.633183 0.230460i
\(429\) 2.76263 4.78502i 0.133381 0.231023i
\(430\) 0 0
\(431\) 5.52023 + 31.3068i 0.265900 + 1.50800i 0.766459 + 0.642293i \(0.222017\pi\)
−0.500559 + 0.865702i \(0.666872\pi\)
\(432\) 3.20665 + 2.69070i 0.154280 + 0.129456i
\(433\) −3.13196 + 2.62802i −0.150512 + 0.126295i −0.714934 0.699192i \(-0.753543\pi\)
0.564422 + 0.825486i \(0.309099\pi\)
\(434\) −0.280373 + 1.59007i −0.0134583 + 0.0763260i
\(435\) 0 0
\(436\) −55.1226 −2.63989
\(437\) −30.9119 5.26872i −1.47871 0.252037i
\(438\) −27.9481 −1.33541
\(439\) 11.0468 4.02069i 0.527233 0.191897i −0.0646692 0.997907i \(-0.520599\pi\)
0.591903 + 0.806009i \(0.298377\pi\)
\(440\) 0 0
\(441\) 8.98635 7.54044i 0.427921 0.359069i
\(442\) −10.8279 9.08566i −0.515029 0.432161i
\(443\) −1.36949 7.76677i −0.0650665 0.369010i −0.999903 0.0139318i \(-0.995565\pi\)
0.934836 0.355079i \(-0.115546\pi\)
\(444\) −18.5536 32.1358i −0.880516 1.52510i
\(445\) 0 0
\(446\) −4.79184 1.74409i −0.226900 0.0825850i
\(447\) −4.52900 1.64842i −0.214215 0.0779677i
\(448\) 0.897245 1.55407i 0.0423908 0.0734231i
\(449\) 0.580397 + 1.00528i 0.0273906 + 0.0474419i 0.879396 0.476091i \(-0.157947\pi\)
−0.852005 + 0.523533i \(0.824614\pi\)
\(450\) 0 0
\(451\) 0.404022 + 0.339015i 0.0190247 + 0.0159636i
\(452\) −8.13142 + 6.82307i −0.382470 + 0.320930i
\(453\) 0.570702 3.23661i 0.0268139 0.152069i
\(454\) 14.0755 5.12308i 0.660598 0.240438i
\(455\) 0 0
\(456\) 0.0933272 + 16.3385i 0.00437045 + 0.765119i
\(457\) 38.6888 1.80978 0.904892 0.425641i \(-0.139951\pi\)
0.904892 + 0.425641i \(0.139951\pi\)
\(458\) −3.37105 + 1.22696i −0.157519 + 0.0573321i
\(459\) −3.32246 + 18.8426i −0.155079 + 0.879497i
\(460\) 0 0
\(461\) −18.7676 15.7479i −0.874096 0.733453i 0.0908609 0.995864i \(-0.471038\pi\)
−0.964956 + 0.262410i \(0.915483\pi\)
\(462\) −0.187070 1.06092i −0.00870326 0.0493587i
\(463\) 16.2425 + 28.1328i 0.754852 + 1.30744i 0.945448 + 0.325773i \(0.105625\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(464\) −2.94764 + 5.10546i −0.136841 + 0.237015i
\(465\) 0 0
\(466\) −44.6960 16.2680i −2.07050 0.753602i
\(467\) −7.35099 + 12.7323i −0.340163 + 0.589180i −0.984463 0.175593i \(-0.943816\pi\)
0.644299 + 0.764773i \(0.277149\pi\)
\(468\) −4.88738 8.46518i −0.225919 0.391303i
\(469\) −0.149505 0.847887i −0.00690351 0.0391518i
\(470\) 0 0
\(471\) −10.1399 + 8.50835i −0.467220 + 0.392044i
\(472\) 3.04111 17.2470i 0.139978 0.793856i
\(473\) −29.0885 + 10.5873i −1.33749 + 0.486806i
\(474\) −30.9957 −1.42368
\(475\) 0 0
\(476\) −1.73595 −0.0795672
\(477\) −2.59531 + 0.944615i −0.118831 + 0.0432510i
\(478\) −2.51915 + 14.2868i −0.115223 + 0.653462i
\(479\) −10.1268 + 8.49741i −0.462706 + 0.388256i −0.844125 0.536146i \(-0.819880\pi\)
0.381420 + 0.924402i \(0.375435\pi\)
\(480\) 0 0
\(481\) 2.81592 + 15.9699i 0.128395 + 0.728162i
\(482\) −30.5860 52.9765i −1.39315 2.41301i
\(483\) −0.592039 + 1.02544i −0.0269387 + 0.0466592i
\(484\) 9.82785 + 3.57705i 0.446721 + 0.162593i
\(485\) 0 0
\(486\) −17.2344 + 29.8508i −0.781767 + 1.35406i
\(487\) 4.83036 + 8.36642i 0.218884 + 0.379119i 0.954467 0.298316i \(-0.0964249\pi\)
−0.735583 + 0.677435i \(0.763092\pi\)
\(488\) −5.73086 32.5013i −0.259424 1.47127i
\(489\) 16.6465 + 13.9681i 0.752783 + 0.631660i
\(490\) 0 0
\(491\) 0.466479 2.64553i 0.0210519 0.119391i −0.972471 0.233024i \(-0.925138\pi\)
0.993523 + 0.113633i \(0.0362489\pi\)
\(492\) −0.688184 + 0.250479i −0.0310257 + 0.0112924i
\(493\) −26.9461 −1.21359
\(494\) 5.82813 16.3018i 0.262220 0.733452i
\(495\) 0 0
\(496\) −3.54623 + 1.29072i −0.159230 + 0.0579551i
\(497\) 0.0134618 0.0763457i 0.000603844 0.00342457i
\(498\) −15.5360 + 13.0363i −0.696187 + 0.584170i
\(499\) 1.80438 + 1.51406i 0.0807753 + 0.0677786i 0.682281 0.731090i \(-0.260988\pi\)
−0.601506 + 0.798868i \(0.705432\pi\)
\(500\) 0 0
\(501\) −8.65395 14.9891i −0.386630 0.669663i
\(502\) −12.4441 + 21.5538i −0.555408 + 0.961995i
\(503\) −12.9104 4.69900i −0.575646 0.209518i 0.0377584 0.999287i \(-0.487978\pi\)
−0.613405 + 0.789769i \(0.710201\pi\)
\(504\) −0.738629 0.268839i −0.0329011 0.0119750i
\(505\) 0 0
\(506\) 23.5427 + 40.7771i 1.04660 + 1.81276i
\(507\) 2.01062 + 11.4028i 0.0892948 + 0.506416i
\(508\) 21.2779 + 17.8542i 0.944052 + 0.792154i
\(509\) −27.8684 + 23.3844i −1.23524 + 1.03649i −0.237364 + 0.971421i \(0.576283\pi\)
−0.997881 + 0.0650727i \(0.979272\pi\)
\(510\) 0 0
\(511\) 1.40954 0.513031i 0.0623544 0.0226952i
\(512\) 8.75464 0.386904
\(513\) −23.0548 + 4.20111i −1.01789 + 0.185483i
\(514\) −31.4382 −1.38668
\(515\) 0 0
\(516\) 7.46402 42.3306i 0.328585 1.86350i
\(517\) −7.91633 + 6.64259i −0.348160 + 0.292141i
\(518\) 2.42205 + 2.03234i 0.106419 + 0.0892960i
\(519\) 4.32704 + 24.5398i 0.189936 + 1.07718i
\(520\) 0 0
\(521\) −0.290212 + 0.502661i −0.0127144 + 0.0220220i −0.872313 0.488949i \(-0.837381\pi\)
0.859598 + 0.510971i \(0.170714\pi\)
\(522\) −27.7990 10.1180i −1.21673 0.442854i
\(523\) 18.0856 + 6.58262i 0.790828 + 0.287838i 0.705680 0.708530i \(-0.250642\pi\)
0.0851478 + 0.996368i \(0.472864\pi\)
\(524\) −4.45901 + 7.72322i −0.194793 + 0.337391i
\(525\) 0 0
\(526\) −2.64021 14.9734i −0.115118 0.652869i
\(527\) −13.2137 11.0876i −0.575600 0.482986i
\(528\) 1.92886 1.61851i 0.0839431 0.0704366i
\(529\) 4.99286 28.3159i 0.217081 1.23113i
\(530\) 0 0
\(531\) 9.01961 0.391418
\(532\) −0.738602 1.99378i −0.0320224 0.0864414i
\(533\) 0.320044 0.0138626
\(534\) −3.63011 + 1.32125i −0.157090 + 0.0571762i
\(535\) 0 0
\(536\) 15.0200 12.6032i 0.648763 0.544377i
\(537\) −20.1304 16.8914i −0.868690 0.728918i
\(538\) −5.82169 33.0165i −0.250991 1.42344i
\(539\) −9.82559 17.0184i −0.423218 0.733036i
\(540\) 0 0
\(541\) 29.9824 + 10.9127i 1.28904 + 0.469174i 0.893413 0.449236i \(-0.148304\pi\)
0.395631 + 0.918410i \(0.370526\pi\)
\(542\) −4.77143 1.73666i −0.204951 0.0745959i
\(543\) −6.64223 + 11.5047i −0.285045 + 0.493713i
\(544\) 8.39355 + 14.5380i 0.359870 + 0.623314i
\(545\) 0 0
\(546\) −0.500778 0.420203i −0.0214313 0.0179830i
\(547\) 2.63099 2.20766i 0.112493 0.0943929i −0.584806 0.811173i \(-0.698829\pi\)
0.697299 + 0.716780i \(0.254385\pi\)
\(548\) 7.28235 41.3003i 0.311087 1.76426i
\(549\) 15.9721 5.81337i 0.681673 0.248109i
\(550\) 0 0
\(551\) −11.4649 30.9482i −0.488419 1.31844i
\(552\) −26.9655 −1.14773
\(553\) 1.56324 0.568974i 0.0664759 0.0241952i
\(554\) 6.44843 36.5708i 0.273967 1.55375i
\(555\) 0 0
\(556\) 20.7396 + 17.4026i 0.879554 + 0.738033i
\(557\) −1.18604 6.72634i −0.0502539 0.285004i 0.949316 0.314323i \(-0.101777\pi\)
−0.999570 + 0.0293185i \(0.990666\pi\)
\(558\) −9.46870 16.4003i −0.400842 0.694279i
\(559\) −9.39211 + 16.2676i −0.397244 + 0.688047i
\(560\) 0 0
\(561\) 10.8150 + 3.93632i 0.456608 + 0.166192i
\(562\) −16.5710 + 28.7018i −0.699004 + 1.21071i
\(563\) −6.28141 10.8797i −0.264730 0.458526i 0.702763 0.711424i \(-0.251949\pi\)
−0.967493 + 0.252898i \(0.918616\pi\)
\(564\) −2.49177 14.1315i −0.104922 0.595045i
\(565\) 0 0
\(566\) 12.5852 10.5603i 0.528997 0.443881i
\(567\) −0.0281871 + 0.159857i −0.00118375 + 0.00671336i
\(568\) 1.65900 0.603827i 0.0696102 0.0253360i
\(569\) 3.47978 0.145880 0.0729400 0.997336i \(-0.476762\pi\)
0.0729400 + 0.997336i \(0.476762\pi\)
\(570\) 0 0
\(571\) −0.621524 −0.0260100 −0.0130050 0.999915i \(-0.504140\pi\)
−0.0130050 + 0.999915i \(0.504140\pi\)
\(572\) −15.3869 + 5.60037i −0.643359 + 0.234163i
\(573\) −1.45390 + 8.24546i −0.0607374 + 0.344459i
\(574\) 0.0478017 0.0401104i 0.00199521 0.00167418i
\(575\) 0 0
\(576\) 3.65482 + 20.7275i 0.152284 + 0.863646i
\(577\) 1.92585 + 3.33567i 0.0801742 + 0.138866i 0.903325 0.428958i \(-0.141119\pi\)
−0.823150 + 0.567823i \(0.807786\pi\)
\(578\) −5.03803 + 8.72612i −0.209554 + 0.362959i
\(579\) 28.2631 + 10.2869i 1.17458 + 0.427510i
\(580\) 0 0
\(581\) 0.544246 0.942662i 0.0225791 0.0391082i
\(582\) 11.7509 + 20.3531i 0.487090 + 0.843665i
\(583\) 0.803402 + 4.55632i 0.0332735 + 0.188704i
\(584\) 26.1682 + 21.9577i 1.08285 + 0.908618i
\(585\) 0 0
\(586\) −0.394279 + 2.23607i −0.0162875 + 0.0923712i
\(587\) 37.9949 13.8290i 1.56822 0.570784i 0.595616 0.803269i \(-0.296908\pi\)
0.972600 + 0.232485i \(0.0746856\pi\)
\(588\) 27.2871 1.12530
\(589\) 7.11233 19.8938i 0.293059 0.819710i
\(590\) 0 0
\(591\) 2.46968 0.898889i 0.101589 0.0369753i
\(592\) −1.28326 + 7.27772i −0.0527416 + 0.299113i
\(593\) 4.49946 3.77549i 0.184771 0.155041i −0.545711 0.837974i \(-0.683740\pi\)
0.730481 + 0.682933i \(0.239296\pi\)
\(594\) 26.9557 + 22.6185i 1.10601 + 0.928050i
\(595\) 0 0
\(596\) 7.14166 + 12.3697i 0.292534 + 0.506684i
\(597\) −7.03326 + 12.1820i −0.287852 + 0.498575i
\(598\) 26.8491 + 9.77229i 1.09794 + 0.399619i
\(599\) 12.5080 + 4.55254i 0.511063 + 0.186012i 0.584663 0.811276i \(-0.301227\pi\)
−0.0736001 + 0.997288i \(0.523449\pi\)
\(600\) 0 0
\(601\) −2.58008 4.46883i −0.105244 0.182287i 0.808594 0.588367i \(-0.200229\pi\)
−0.913838 + 0.406079i \(0.866896\pi\)
\(602\) 0.635980 + 3.60682i 0.0259206 + 0.147003i
\(603\) 7.73561 + 6.49095i 0.315019 + 0.264332i
\(604\) −7.46114 + 6.26064i −0.303590 + 0.254742i
\(605\) 0 0
\(606\) 7.22076 2.62814i 0.293323 0.106761i
\(607\) −30.5069 −1.23824 −0.619119 0.785297i \(-0.712510\pi\)
−0.619119 + 0.785297i \(0.712510\pi\)
\(608\) −13.1261 + 15.8258i −0.532333 + 0.641819i
\(609\) −1.24623 −0.0504998
\(610\) 0 0
\(611\) −1.08893 + 6.17561i −0.0440533 + 0.249839i
\(612\) 15.5972 13.0876i 0.630478 0.529034i
\(613\) 34.8556 + 29.2473i 1.40780 + 1.18129i 0.957507 + 0.288409i \(0.0931263\pi\)
0.450297 + 0.892879i \(0.351318\pi\)
\(614\) −11.4912 65.1698i −0.463747 2.63004i
\(615\) 0 0
\(616\) −0.658370 + 1.14033i −0.0265265 + 0.0459452i
\(617\) 2.33275 + 0.849053i 0.0939131 + 0.0341816i 0.388549 0.921428i \(-0.372976\pi\)
−0.294636 + 0.955609i \(0.595198\pi\)
\(618\) 3.00995 + 1.09553i 0.121078 + 0.0440687i
\(619\) −11.7473 + 20.3469i −0.472162 + 0.817809i −0.999493 0.0318512i \(-0.989860\pi\)
0.527330 + 0.849660i \(0.323193\pi\)
\(620\) 0 0
\(621\) −6.71606 38.0887i −0.269506 1.52845i
\(622\) 45.4915 + 38.1719i 1.82404 + 1.53056i
\(623\) 0.158828 0.133272i 0.00636330 0.00533945i
\(624\) 0.265324 1.50473i 0.0106215 0.0602373i
\(625\) 0 0
\(626\) 34.7562 1.38914
\(627\) 0.0805182 + 14.0961i 0.00321559 + 0.562942i
\(628\) 39.2275 1.56535
\(629\) −31.7410 + 11.5528i −1.26560 + 0.460640i
\(630\) 0 0
\(631\) −13.6507 + 11.4543i −0.543426 + 0.455989i −0.872708 0.488243i \(-0.837638\pi\)
0.329282 + 0.944232i \(0.393193\pi\)
\(632\) 29.0217 + 24.3521i 1.15442 + 0.968675i
\(633\) −0.598963 3.39689i −0.0238066 0.135014i
\(634\) 26.1987 + 45.3774i 1.04048 + 1.80217i
\(635\) 0 0
\(636\) −6.03693 2.19726i −0.239380 0.0871272i
\(637\) −11.2056 4.07849i −0.443980 0.161596i
\(638\) −24.7784 + 42.9175i −0.980987 + 1.69912i
\(639\) 0.454629 + 0.787441i 0.0179849 + 0.0311507i
\(640\) 0 0
\(641\) 28.6984 + 24.0808i 1.13352 + 0.951135i 0.999207 0.0398045i \(-0.0126735\pi\)
0.134311 + 0.990939i \(0.457118\pi\)
\(642\) 8.37644 7.02867i 0.330592 0.277399i
\(643\) 3.45362 19.5865i 0.136198 0.772415i −0.837821 0.545946i \(-0.816171\pi\)
0.974018 0.226469i \(-0.0727184\pi\)
\(644\) 3.29745 1.20017i 0.129938 0.0472935i
\(645\) 0 0
\(646\) 35.5486 + 6.05901i 1.39864 + 0.238389i
\(647\) 23.0645 0.906759 0.453380 0.891318i \(-0.350218\pi\)
0.453380 + 0.891318i \(0.350218\pi\)
\(648\) −3.47371 + 1.26433i −0.136460 + 0.0496675i
\(649\) 2.62372 14.8799i 0.102990 0.584086i
\(650\) 0 0
\(651\) −0.611122 0.512793i −0.0239518 0.0200979i
\(652\) −11.1829 63.4211i −0.437954 2.48376i
\(653\) −13.4919 23.3687i −0.527981 0.914489i −0.999468 0.0326165i \(-0.989616\pi\)
0.471487 0.881873i \(-0.343717\pi\)
\(654\) 21.6192 37.4455i 0.845377 1.46424i
\(655\) 0 0
\(656\) 0.137054 + 0.0498834i 0.00535104 + 0.00194762i
\(657\) −8.79663 + 15.2362i −0.343189 + 0.594421i
\(658\) 0.611334 + 1.05886i 0.0238323 + 0.0412787i
\(659\) 2.34217 + 13.2831i 0.0912379 + 0.517436i 0.995835 + 0.0911691i \(0.0290604\pi\)
−0.904598 + 0.426267i \(0.859829\pi\)
\(660\) 0 0
\(661\) −16.8359 + 14.1270i −0.654842 + 0.549477i −0.908536 0.417807i \(-0.862799\pi\)
0.253694 + 0.967284i \(0.418354\pi\)
\(662\) 4.38709 24.8804i 0.170509 0.967005i
\(663\) 6.56271 2.38863i 0.254875 0.0927668i
\(664\) 24.7887 0.961988
\(665\) 0 0
\(666\) −37.0838 −1.43697
\(667\) 51.1843 18.6296i 1.98186 0.721340i
\(668\) −8.90691 + 50.5136i −0.344619 + 1.95443i
\(669\) 1.93010 1.61954i 0.0746219 0.0626152i
\(670\) 0 0
\(671\) −4.94431 28.0406i −0.190873 1.08250i
\(672\) 0.388193 + 0.672370i 0.0149749 + 0.0259372i
\(673\) −11.5999 + 20.0916i −0.447143 + 0.774475i −0.998199 0.0599940i \(-0.980892\pi\)
0.551056 + 0.834468i \(0.314225\pi\)
\(674\) −16.8399 6.12923i −0.648649 0.236089i
\(675\) 0 0
\(676\) 17.1570 29.7169i 0.659886 1.14296i
\(677\) 14.3647 + 24.8804i 0.552081 + 0.956232i 0.998124 + 0.0612208i \(0.0194994\pi\)
−0.446043 + 0.895011i \(0.647167\pi\)
\(678\) −1.44585 8.19981i −0.0555275 0.314912i
\(679\) −0.966259 0.810788i −0.0370816 0.0311152i
\(680\) 0 0
\(681\) −1.28516 + 7.28852i −0.0492475 + 0.279297i
\(682\) −29.8103 + 10.8500i −1.14149 + 0.415470i
\(683\) −24.0010 −0.918374 −0.459187 0.888340i \(-0.651859\pi\)
−0.459187 + 0.888340i \(0.651859\pi\)
\(684\) 21.6676 + 12.3453i 0.828481 + 0.472035i
\(685\) 0 0
\(686\) −4.37604 + 1.59275i −0.167078 + 0.0608114i
\(687\) 0.307792 1.74558i 0.0117430 0.0665979i
\(688\) −6.55756 + 5.50244i −0.250005 + 0.209779i
\(689\) 2.15068 + 1.80463i 0.0819343 + 0.0687510i
\(690\) 0 0
\(691\) −18.6933 32.3778i −0.711128 1.23171i −0.964434 0.264323i \(-0.914851\pi\)
0.253307 0.967386i \(-0.418482\pi\)
\(692\) 36.9235 63.9534i 1.40362 2.43114i
\(693\) −0.637253 0.231941i −0.0242073 0.00881072i
\(694\) −44.2781 16.1159i −1.68078 0.611752i
\(695\) 0 0
\(696\) −14.1905 24.5786i −0.537888 0.931649i
\(697\) 0.115762 + 0.656519i 0.00438480 + 0.0248674i
\(698\) −33.9241 28.4657i −1.28405 1.07744i
\(699\) 18.0030 15.1063i 0.680937 0.571374i
\(700\) 0 0
\(701\) 2.18595 0.795621i 0.0825622 0.0300502i −0.300409 0.953811i \(-0.597123\pi\)
0.382971 + 0.923760i \(0.374901\pi\)
\(702\) 21.3528 0.805911
\(703\) −26.7737 31.5400i −1.00979 1.18955i
\(704\) 35.2578 1.32883
\(705\) 0 0
\(706\) −7.33330 + 41.5892i −0.275992 + 1.56523i
\(707\) −0.315929 + 0.265096i −0.0118817 + 0.00996996i
\(708\) 16.0720 + 13.4860i 0.604022 + 0.506834i
\(709\) −4.22872 23.9823i −0.158813 0.900674i −0.955216 0.295908i \(-0.904378\pi\)
0.796403 0.604766i \(-0.206733\pi\)
\(710\) 0 0
\(711\) −9.75586 + 16.8976i −0.365873 + 0.633711i
\(712\) 4.43697 + 1.61493i 0.166283 + 0.0605219i
\(713\) 32.7652 + 11.9256i 1.22707 + 0.446616i
\(714\) 0.680844 1.17926i 0.0254799 0.0441326i
\(715\) 0 0
\(716\) 13.5232 + 76.6941i 0.505387 + 2.86619i
\(717\) −5.49092 4.60743i −0.205062 0.172068i
\(718\) 28.7270 24.1048i 1.07208 0.899584i
\(719\) 2.96281 16.8029i 0.110494 0.626644i −0.878389 0.477947i \(-0.841381\pi\)
0.988883 0.148697i \(-0.0475078\pi\)
\(720\) 0 0
\(721\) −0.171914 −0.00640242
\(722\) 8.16607 + 43.4064i 0.303910 + 1.61542i
\(723\) 30.2246 1.12407
\(724\) 36.9949 13.4650i 1.37491 0.500425i
\(725\) 0 0
\(726\) −6.28445 + 5.27328i −0.233238 + 0.195710i
\(727\) 11.2035 + 9.40083i 0.415514 + 0.348657i 0.826453 0.563005i \(-0.190355\pi\)
−0.410940 + 0.911663i \(0.634799\pi\)
\(728\) 0.138749 + 0.786883i 0.00514237 + 0.0291638i
\(729\) −10.2145 17.6920i −0.378314 0.655259i
\(730\) 0 0
\(731\) −36.7676 13.3823i −1.35990 0.494963i
\(732\) 37.1526 + 13.5224i 1.37320 + 0.499804i
\(733\) 16.7630 29.0344i 0.619156 1.07241i −0.370484 0.928839i \(-0.620808\pi\)
0.989640 0.143570i \(-0.0458584\pi\)
\(734\) 37.4980 + 64.9485i 1.38408 + 2.39729i
\(735\) 0 0
\(736\) −25.9947 21.8121i −0.958177 0.804006i
\(737\) 12.9585 10.8735i 0.477332 0.400529i
\(738\) −0.127091 + 0.720768i −0.00467828 + 0.0265318i
\(739\) 14.2925 5.20205i 0.525759 0.191361i −0.0654847 0.997854i \(-0.520859\pi\)
0.591244 + 0.806493i \(0.298637\pi\)
\(740\) 0 0
\(741\) 5.53567 + 6.52114i 0.203358 + 0.239560i
\(742\) 0.547396 0.0200955
\(743\) 6.25647 2.27717i 0.229528 0.0835412i −0.224696 0.974429i \(-0.572139\pi\)
0.454224 + 0.890888i \(0.349917\pi\)
\(744\) 3.15481 17.8918i 0.115661 0.655945i
\(745\) 0 0
\(746\) −4.23887 3.55684i −0.155196 0.130225i
\(747\) 2.21692 + 12.5728i 0.0811129 + 0.460014i
\(748\) −17.0538 29.5381i −0.623549 1.08002i
\(749\) −0.293437 + 0.508247i −0.0107219 + 0.0185709i
\(750\) 0 0
\(751\) −7.34004 2.67155i −0.267842 0.0974864i 0.204608 0.978844i \(-0.434408\pi\)
−0.472450 + 0.881358i \(0.656630\pi\)
\(752\) −1.42887 + 2.47488i −0.0521056 + 0.0902496i
\(753\) −6.14855 10.6496i −0.224066 0.388093i
\(754\) 5.22195 + 29.6151i 0.190172 + 1.07852i
\(755\) 0 0
\(756\) 2.00890 1.68567i 0.0730629 0.0613071i
\(757\) 3.19246 18.1053i 0.116032 0.658049i −0.870202 0.492695i \(-0.836012\pi\)
0.986234 0.165355i \(-0.0528769\pi\)
\(758\) 38.7113 14.0898i 1.40606 0.511764i
\(759\) −23.2645 −0.844449
\(760\) 0 0
\(761\) 22.4779 0.814822 0.407411 0.913245i \(-0.366432\pi\)
0.407411 + 0.913245i \(0.366432\pi\)
\(762\) −20.4739 + 7.45188i −0.741690 + 0.269953i
\(763\) −0.402976 + 2.28539i −0.0145887 + 0.0827366i
\(764\) 19.0077 15.9494i 0.687675 0.577028i
\(765\) 0 0
\(766\) −4.30493 24.4145i −0.155543 0.882131i
\(767\) −4.58433 7.94029i −0.165531 0.286707i
\(768\) −11.8846 + 20.5846i −0.428847 + 0.742784i
\(769\) −5.18597 1.88754i −0.187011 0.0680664i 0.246817 0.969062i \(-0.420615\pi\)
−0.433828 + 0.900996i \(0.642838\pi\)
\(770\) 0 0
\(771\) 7.76669 13.4523i 0.279710 0.484473i
\(772\) −44.5673 77.1929i −1.60401 2.77823i
\(773\) 5.76305 + 32.6839i 0.207283 + 1.17556i 0.893807 + 0.448451i \(0.148024\pi\)
−0.686525 + 0.727106i \(0.740865\pi\)
\(774\) −32.9065 27.6118i −1.18280 0.992487i
\(775\) 0 0
\(776\) 4.98813 28.2891i 0.179064 1.01552i
\(777\) −1.46799 + 0.534305i −0.0526639 + 0.0191681i
\(778\) −52.8418 −1.89447
\(779\) −0.704774 + 0.412287i −0.0252512 + 0.0147717i
\(780\) 0 0
\(781\) 1.43131 0.520953i 0.0512162 0.0186412i
\(782\) −10.3348 + 58.6114i −0.369571 + 2.09594i
\(783\) 31.1829 26.1655i 1.11439 0.935080i
\(784\) −4.16290 3.49309i −0.148675 0.124753i
\(785\) 0 0
\(786\) −3.49767 6.05813i −0.124758 0.216086i
\(787\) −24.3225 + 42.1279i −0.867005 + 1.50170i −0.00196163 + 0.999998i \(0.500624\pi\)
−0.865043 + 0.501698i \(0.832709\pi\)
\(788\) −7.31901 2.66390i −0.260729 0.0948976i
\(789\) 7.05930 + 2.56938i 0.251318 + 0.0914722i
\(790\) 0 0
\(791\) 0.223440 + 0.387010i 0.00794462 + 0.0137605i
\(792\) −2.68179 15.2092i −0.0952932 0.540435i
\(793\) −13.2357 11.1061i −0.470015 0.394389i
\(794\) 36.3997 30.5430i 1.29178 1.08393i
\(795\) 0 0
\(796\) 39.1728 14.2577i 1.38844 0.505352i
\(797\) 1.06027 0.0375567 0.0187784 0.999824i \(-0.494022\pi\)
0.0187784 + 0.999824i \(0.494022\pi\)
\(798\) 1.64409 + 0.280223i 0.0582000 + 0.00991980i
\(799\) −13.0622 −0.462106
\(800\) 0 0
\(801\) −0.422277 + 2.39485i −0.0149204 + 0.0846179i
\(802\) −29.7337 + 24.9496i −1.04993 + 0.881000i
\(803\) 22.5767 + 18.9441i 0.796714 + 0.668522i
\(804\) 4.07886 + 23.1324i 0.143850 + 0.815815i
\(805\) 0 0
\(806\) −9.62517 + 16.6713i −0.339032 + 0.587221i
\(807\) 15.5659 + 5.66551i 0.547944 + 0.199435i
\(808\) −8.82571 3.21230i −0.310487 0.113008i
\(809\) 6.80960 11.7946i 0.239413 0.414675i −0.721133 0.692797i \(-0.756378\pi\)
0.960546 + 0.278121i \(0.0897117\pi\)
\(810\) 0 0
\(811\) 3.88880 + 22.0545i 0.136554 + 0.774438i 0.973765 + 0.227557i \(0.0730738\pi\)
−0.837210 + 0.546881i \(0.815815\pi\)
\(812\) 2.82920 + 2.37398i 0.0992856 + 0.0833105i
\(813\) 1.92188 1.61265i 0.0674032 0.0565580i
\(814\) −10.7873 + 61.1779i −0.378095 + 2.14429i
\(815\) 0 0
\(816\) 3.18268 0.111416
\(817\) −0.273738 47.9223i −0.00957687 1.67659i
\(818\) 41.1100 1.43738
\(819\) −0.386697 + 0.140746i −0.0135123 + 0.00491807i
\(820\) 0 0
\(821\) −4.22809 + 3.54778i −0.147561 + 0.123819i −0.713580 0.700574i \(-0.752927\pi\)
0.566019 + 0.824392i \(0.308483\pi\)
\(822\) 25.1997 + 21.1451i 0.878941 + 0.737519i
\(823\) 3.88144 + 22.0128i 0.135299 + 0.767317i 0.974651 + 0.223729i \(0.0718232\pi\)
−0.839353 + 0.543587i \(0.817066\pi\)
\(824\) −1.95754 3.39055i −0.0681941 0.118116i
\(825\) 0 0
\(826\) −1.67985 0.611417i −0.0584496 0.0212739i
\(827\) −4.21627 1.53460i −0.146614 0.0533632i 0.267671 0.963510i \(-0.413746\pi\)
−0.414285 + 0.910147i \(0.635968\pi\)
\(828\) −20.5787 + 35.6433i −0.715158 + 1.23869i
\(829\) −13.5156 23.4097i −0.469416 0.813052i 0.529973 0.848015i \(-0.322202\pi\)
−0.999389 + 0.0349625i \(0.988869\pi\)
\(830\) 0 0
\(831\) 14.0555 + 11.7940i 0.487579 + 0.409128i
\(832\) 16.3896 13.7525i 0.568206 0.476782i
\(833\) 4.31324 24.4616i 0.149445 0.847544i
\(834\) −19.9559 + 7.26336i −0.691017 + 0.251510i
\(835\) 0 0
\(836\) 26.6693 32.1544i 0.922375 1.11208i
\(837\) 26.0578 0.900691
\(838\) −82.8640 + 30.1600i −2.86249 + 1.04186i
\(839\) −1.75648 + 9.96148i −0.0606404 + 0.343909i 0.939359 + 0.342935i \(0.111421\pi\)
−1.00000 0.000973662i \(0.999690\pi\)
\(840\) 0 0
\(841\) 21.7007 + 18.2091i 0.748300 + 0.627898i
\(842\) −4.67534 26.5152i −0.161123 0.913773i
\(843\) −8.18759 14.1813i −0.281996 0.488431i
\(844\) −5.11107 + 8.85264i −0.175930 + 0.304720i
\(845\) 0 0
\(846\) −13.4756 4.90473i −0.463301 0.168628i
\(847\) 0.220152 0.381314i 0.00756450 0.0131021i
\(848\) 0.639714 + 1.10802i 0.0219679 + 0.0380495i
\(849\) 1.40957 + 7.99405i 0.0483762 + 0.274355i
\(850\) 0 0
\(851\) 52.3052 43.8893i 1.79300 1.50450i
\(852\) −0.367270 + 2.08289i −0.0125825 + 0.0713586i
\(853\) 25.9451 9.44325i 0.888344 0.323331i 0.142772 0.989756i \(-0.454399\pi\)
0.745572 + 0.666425i \(0.232176\pi\)
\(854\) −3.36879 −0.115278
\(855\) 0 0
\(856\) −13.3651 −0.456810
\(857\) −36.2885 + 13.2079i −1.23959 + 0.451175i −0.876872 0.480723i \(-0.840374\pi\)
−0.362720 + 0.931898i \(0.618152\pi\)
\(858\) 2.23036 12.6490i 0.0761434 0.431831i
\(859\) 43.7965 36.7496i 1.49432 1.25388i 0.605307 0.795992i \(-0.293050\pi\)
0.889009 0.457889i \(-0.151394\pi\)
\(860\) 0 0
\(861\) 0.00535387 + 0.0303633i 0.000182460 + 0.00103478i
\(862\) 36.9496 + 63.9986i 1.25851 + 2.17980i
\(863\) −14.2209 + 24.6314i −0.484087 + 0.838463i −0.999833 0.0182787i \(-0.994181\pi\)
0.515746 + 0.856741i \(0.327515\pi\)
\(864\) −23.8302 8.67349i −0.810720 0.295078i
\(865\) 0 0
\(866\) −4.75209 + 8.23085i −0.161482 + 0.279696i
\(867\) −2.48925 4.31151i −0.0845395 0.146427i
\(868\) 0.410541 + 2.32830i 0.0139347 + 0.0790275i
\(869\) 25.0385 + 21.0098i 0.849374 + 0.712710i
\(870\) 0 0
\(871\) 1.78250 10.1091i 0.0603977 0.342532i
\(872\) −49.6618 + 18.0754i −1.68176 + 0.612111i
\(873\) 14.7943 0.500711
\(874\) −71.7138 + 13.0679i −2.42576 + 0.442028i
\(875\) 0 0
\(876\) −38.4556 + 13.9967i −1.29929 + 0.472905i
\(877\) 2.31472 13.1274i 0.0781626 0.443282i −0.920461 0.390834i \(-0.872187\pi\)
0.998624 0.0524480i \(-0.0167024\pi\)
\(878\) 20.9342 17.5659i 0.706494 0.592819i
\(879\) −0.859402 0.721124i −0.0289869 0.0243229i
\(880\) 0 0
\(881\) 14.0692 + 24.3686i 0.474004 + 0.820999i 0.999557 0.0297621i \(-0.00947498\pi\)
−0.525553 + 0.850761i \(0.676142\pi\)
\(882\) 13.6349 23.6163i 0.459111 0.795203i
\(883\) −33.4754 12.1840i −1.12654 0.410026i −0.289503 0.957177i \(-0.593490\pi\)
−0.837034 + 0.547151i \(0.815712\pi\)
\(884\) −19.4489 7.07883i −0.654139 0.238087i
\(885\) 0 0
\(886\) −9.16667 15.8771i −0.307960 0.533403i
\(887\) −10.2751 58.2732i −0.345005 1.95662i −0.285433 0.958399i \(-0.592137\pi\)
−0.0595725 0.998224i \(-0.518974\pi\)
\(888\) −27.2533 22.8683i −0.914562 0.767409i
\(889\) 0.895791 0.751658i 0.0300439 0.0252098i
\(890\) 0 0
\(891\) −2.99695 + 1.09080i −0.100402 + 0.0365432i
\(892\) −7.46685 −0.250009
\(893\) −5.55760 15.0022i −0.185978 0.502030i
\(894\) −11.2039 −0.374715
\(895\) 0 0
\(896\) 0.489620 2.77677i 0.0163570 0.0927654i
\(897\) −10.8145 + 9.07445i −0.361086 + 0.302987i
\(898\) 2.06710 + 1.73450i 0.0689800 + 0.0578811i
\(899\) 6.37258 + 36.1407i 0.212537 + 1.20536i
\(900\) 0 0
\(901\) −2.92400 + 5.06452i −0.0974126 + 0.168724i
\(902\) 1.15210 + 0.419329i 0.0383607 + 0.0139621i
\(903\) −1.70046 0.618918i −0.0565879 0.0205963i
\(904\) −5.08850 + 8.81354i −0.169241 + 0.293134i
\(905\) 0 0
\(906\) −1.32667 7.52390i −0.0440755 0.249965i
\(907\) −35.4253 29.7254i −1.17628 0.987016i −0.999996 0.00267604i \(-0.999148\pi\)
−0.176283 0.984340i \(-0.556407\pi\)
\(908\) 16.8017 14.0983i 0.557585 0.467870i
\(909\) 0.839964 4.76367i 0.0278598 0.158001i
\(910\) 0 0
\(911\) 48.8276 1.61773 0.808866 0.587994i \(-0.200082\pi\)
0.808866 + 0.587994i \(0.200082\pi\)
\(912\) 1.35415 + 3.65538i 0.0448402 + 0.121042i
\(913\) 21.3865 0.707790
\(914\) 84.5130 30.7602i 2.79544 1.01746i
\(915\) 0 0
\(916\) −4.02396 + 3.37650i −0.132955 + 0.111563i
\(917\) 0.287608 + 0.241332i 0.00949766 + 0.00796948i
\(918\) 7.72346 + 43.8019i 0.254912 + 1.44568i
\(919\) 4.80464 + 8.32189i 0.158491 + 0.274514i 0.934325 0.356423i \(-0.116004\pi\)
−0.775834 + 0.630937i \(0.782671\pi\)
\(920\) 0 0
\(921\) 30.7248 + 11.1829i 1.01242 + 0.368490i
\(922\) −53.5173 19.4787i −1.76250 0.641496i
\(923\) 0.462142 0.800454i 0.0152116 0.0263473i
\(924\) −0.788722 1.36611i −0.0259470 0.0449416i
\(925\) 0 0
\(926\) 57.8481 + 48.5403i 1.90100 + 1.59513i
\(927\) 1.54462 1.29609i 0.0507318 0.0425691i
\(928\) 6.20181 35.1722i 0.203585 1.15459i
\(929\) −48.5984 + 17.6884i −1.59446 + 0.580337i −0.978284 0.207269i \(-0.933542\pi\)
−0.616179 + 0.787606i \(0.711320\pi\)
\(930\) 0 0
\(931\) 29.9299 5.45391i 0.980914 0.178745i
\(932\) −69.6473 −2.28137
\(933\) −27.5722 + 10.0355i −0.902672 + 0.328546i
\(934\) −5.93470 + 33.6574i −0.194189 + 1.10130i
\(935\) 0 0
\(936\) −7.17905 6.02394i −0.234655 0.196899i
\(937\) 1.99511 + 11.3148i 0.0651773 + 0.369639i 0.999898 + 0.0142567i \(0.00453821\pi\)
−0.934721 + 0.355382i \(0.884351\pi\)
\(938\) −1.00071 1.73328i −0.0326744 0.0565937i
\(939\) −8.58639 + 14.8721i −0.280206 + 0.485331i
\(940\) 0 0
\(941\) −24.8922 9.06002i −0.811462 0.295348i −0.0972346 0.995261i \(-0.531000\pi\)
−0.714228 + 0.699913i \(0.753222\pi\)
\(942\) −15.3851 + 26.6478i −0.501274 + 0.868232i
\(943\) −0.673785 1.16703i −0.0219414 0.0380037i
\(944\) −0.725556 4.11483i −0.0236148 0.133926i
\(945\) 0 0
\(946\) −55.1241 + 46.2546i −1.79224 + 1.50387i
\(947\) −2.55295 + 14.4785i −0.0829596 + 0.470487i 0.914819 + 0.403865i \(0.132333\pi\)
−0.997778 + 0.0666224i \(0.978778\pi\)
\(948\) −42.6490 + 15.5230i −1.38517 + 0.504162i
\(949\) 17.8840 0.580539
\(950\) 0 0
\(951\) −25.8892 −0.839513
\(952\) −1.56398 + 0.569241i −0.0506888 + 0.0184492i
\(953\) −1.01593 + 5.76163i −0.0329092 + 0.186637i −0.996831 0.0795481i \(-0.974652\pi\)
0.963922 + 0.266186i \(0.0857634\pi\)
\(954\) −4.91824 + 4.12689i −0.159234 + 0.133613i
\(955\) 0 0
\(956\) 3.68871 + 20.9197i 0.119301 + 0.676591i
\(957\) −12.2428 21.2052i −0.395755 0.685467i
\(958\) −15.3653 + 26.6135i −0.496431 + 0.859843i
\(959\) −1.65908 0.603855i −0.0535744 0.0194995i
\(960\) 0 0
\(961\) 3.75397 6.50206i 0.121096 0.209744i
\(962\) 18.8483 + 32.6462i 0.607693 + 1.05256i
\(963\) −1.19528 6.77876i −0.0385173 0.218442i
\(964\) −68.6163 57.5759i −2.20998 1.85440i
\(965\) 0 0
\(966\) −0.477973 + 2.71072i −0.0153785 + 0.0872159i
\(967\) −22.6188 + 8.23258i −0.727373 + 0.264742i −0.679052 0.734090i \(-0.737609\pi\)
−0.0483204 + 0.998832i \(0.515387\pi\)
\(968\) 10.0272 0.322287
\(969\) −11.3748 + 13.7143i −0.365411 + 0.440566i
\(970\) 0 0
\(971\) −49.4859 + 18.0114i −1.58808 + 0.578013i −0.976941 0.213511i \(-0.931510\pi\)
−0.611137 + 0.791524i \(0.709288\pi\)
\(972\) −8.76428 + 49.7047i −0.281114 + 1.59428i
\(973\) 0.873130 0.732643i 0.0279913 0.0234875i
\(974\) 17.2035 + 14.4354i 0.551234 + 0.462540i
\(975\) 0 0
\(976\) −3.93694 6.81899i −0.126018 0.218270i
\(977\) −3.25436 + 5.63672i −0.104116 + 0.180335i −0.913377 0.407115i \(-0.866535\pi\)
0.809261 + 0.587450i \(0.199868\pi\)
\(978\) 47.4688 + 17.2772i 1.51789 + 0.552465i
\(979\) 3.82801 + 1.39328i 0.122344 + 0.0445294i
\(980\) 0 0
\(981\) −13.6092 23.5718i −0.434509 0.752591i
\(982\) −1.08439 6.14987i −0.0346042 0.196250i
\(983\) 0.957057 + 0.803066i 0.0305254 + 0.0256138i 0.657923 0.753085i \(-0.271435\pi\)
−0.627397 + 0.778699i \(0.715880\pi\)
\(984\) −0.537873 + 0.451329i −0.0171468 + 0.0143879i
\(985\) 0 0
\(986\) −58.8619 + 21.4240i −1.87454 + 0.682278i
\(987\) −0.604111 −0.0192291
\(988\) −0.144799 25.3494i −0.00460666 0.806473i
\(989\) 79.0924 2.51499
\(990\) 0 0
\(991\) 6.52844 37.0246i 0.207383 1.17613i −0.686264 0.727353i \(-0.740750\pi\)
0.893646 0.448772i \(-0.148139\pi\)
\(992\) 17.5137 14.6958i 0.556062 0.466591i
\(993\) 9.56244 + 8.02384i 0.303455 + 0.254629i
\(994\) −0.0312936 0.177475i −0.000992573 0.00562916i
\(995\) 0 0
\(996\) −14.8483 + 25.7181i −0.470487 + 0.814908i
\(997\) 28.1257 + 10.2369i 0.890751 + 0.324207i 0.746540 0.665340i \(-0.231713\pi\)
0.144211 + 0.989547i \(0.453936\pi\)
\(998\) 5.14533 + 1.87275i 0.162873 + 0.0592808i
\(999\) 25.5136 44.1909i 0.807215 1.39814i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.l.f.176.7 48
5.2 odd 4 95.2.p.a.24.7 yes 48
5.3 odd 4 95.2.p.a.24.2 yes 48
5.4 even 2 inner 475.2.l.f.176.2 48
15.2 even 4 855.2.da.b.784.2 48
15.8 even 4 855.2.da.b.784.7 48
19.2 odd 18 9025.2.a.ct.1.22 24
19.4 even 9 inner 475.2.l.f.251.7 48
19.17 even 9 9025.2.a.cu.1.3 24
95.2 even 36 1805.2.b.l.1084.22 24
95.4 even 18 inner 475.2.l.f.251.2 48
95.17 odd 36 1805.2.b.k.1084.3 24
95.23 odd 36 95.2.p.a.4.7 yes 48
95.42 odd 36 95.2.p.a.4.2 48
95.59 odd 18 9025.2.a.ct.1.3 24
95.74 even 18 9025.2.a.cu.1.22 24
95.78 even 36 1805.2.b.l.1084.3 24
95.93 odd 36 1805.2.b.k.1084.22 24
285.23 even 36 855.2.da.b.289.2 48
285.137 even 36 855.2.da.b.289.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.4.2 48 95.42 odd 36
95.2.p.a.4.7 yes 48 95.23 odd 36
95.2.p.a.24.2 yes 48 5.3 odd 4
95.2.p.a.24.7 yes 48 5.2 odd 4
475.2.l.f.176.2 48 5.4 even 2 inner
475.2.l.f.176.7 48 1.1 even 1 trivial
475.2.l.f.251.2 48 95.4 even 18 inner
475.2.l.f.251.7 48 19.4 even 9 inner
855.2.da.b.289.2 48 285.23 even 36
855.2.da.b.289.7 48 285.137 even 36
855.2.da.b.784.2 48 15.2 even 4
855.2.da.b.784.7 48 15.8 even 4
1805.2.b.k.1084.3 24 95.17 odd 36
1805.2.b.k.1084.22 24 95.93 odd 36
1805.2.b.l.1084.3 24 95.78 even 36
1805.2.b.l.1084.22 24 95.2 even 36
9025.2.a.ct.1.3 24 95.59 odd 18
9025.2.a.ct.1.22 24 19.2 odd 18
9025.2.a.cu.1.3 24 19.17 even 9
9025.2.a.cu.1.22 24 95.74 even 18