Properties

Label 9025.2.a.bu.1.6
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,2,0,12,0,0,8,0,2,0,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.4227136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 7x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.407132\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.45620 q^{2} +1.56104 q^{3} +4.03293 q^{4} +3.83424 q^{6} +4.50527 q^{7} +4.99330 q^{8} -0.563139 q^{9} +2.19869 q^{11} +6.29559 q^{12} -3.75849 q^{13} +11.0659 q^{14} +4.19869 q^{16} +0.665886 q^{17} -1.38318 q^{18} +7.03293 q^{21} +5.40043 q^{22} -0.488026 q^{23} +7.79476 q^{24} -9.23163 q^{26} -5.56222 q^{27} +18.1695 q^{28} +3.59607 q^{29} +6.83424 q^{31} +0.326239 q^{32} +3.43226 q^{33} +1.63555 q^{34} -2.27110 q^{36} -3.01171 q^{37} -5.86718 q^{39} +0.0724126 q^{41} +17.2743 q^{42} +0.420541 q^{43} +8.86718 q^{44} -1.19869 q^{46} +5.02278 q^{47} +6.55434 q^{48} +13.2975 q^{49} +1.03948 q^{51} -15.1578 q^{52} +2.61799 q^{53} -13.6619 q^{54} +22.4962 q^{56} +8.83269 q^{58} +12.5357 q^{59} +7.06587 q^{61} +16.7863 q^{62} -2.53710 q^{63} -7.59607 q^{64} +8.43032 q^{66} +5.72667 q^{67} +2.68548 q^{68} -0.761831 q^{69} +6.97252 q^{71} -2.81192 q^{72} -2.95764 q^{73} -7.39738 q^{74} +9.90571 q^{77} -14.4110 q^{78} +11.3370 q^{79} -6.99346 q^{81} +0.177860 q^{82} -15.6999 q^{83} +28.3634 q^{84} +1.03293 q^{86} +5.61363 q^{87} +10.9787 q^{88} -1.33697 q^{89} -16.9330 q^{91} -1.96818 q^{92} +10.6686 q^{93} +12.3370 q^{94} +0.509273 q^{96} +4.38638 q^{97} +32.6613 q^{98} -1.23817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{4} + 12 q^{6} + 8 q^{9} + 2 q^{11} + 22 q^{14} + 14 q^{16} + 20 q^{21} + 2 q^{24} - 22 q^{26} - 12 q^{29} + 30 q^{31} + 10 q^{34} - 14 q^{36} - 2 q^{39} + 12 q^{41} + 20 q^{44} + 4 q^{46} + 2 q^{49}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45620 1.73680 0.868399 0.495866i \(-0.165149\pi\)
0.868399 + 0.495866i \(0.165149\pi\)
\(3\) 1.56104 0.901270 0.450635 0.892708i \(-0.351198\pi\)
0.450635 + 0.892708i \(0.351198\pi\)
\(4\) 4.03293 2.01647
\(5\) 0 0
\(6\) 3.83424 1.56532
\(7\) 4.50527 1.70283 0.851417 0.524490i \(-0.175744\pi\)
0.851417 + 0.524490i \(0.175744\pi\)
\(8\) 4.99330 1.76540
\(9\) −0.563139 −0.187713
\(10\) 0 0
\(11\) 2.19869 0.662930 0.331465 0.943467i \(-0.392457\pi\)
0.331465 + 0.943467i \(0.392457\pi\)
\(12\) 6.29559 1.81738
\(13\) −3.75849 −1.04242 −0.521209 0.853429i \(-0.674519\pi\)
−0.521209 + 0.853429i \(0.674519\pi\)
\(14\) 11.0659 2.95748
\(15\) 0 0
\(16\) 4.19869 1.04967
\(17\) 0.665886 0.161501 0.0807506 0.996734i \(-0.474268\pi\)
0.0807506 + 0.996734i \(0.474268\pi\)
\(18\) −1.38318 −0.326020
\(19\) 0 0
\(20\) 0 0
\(21\) 7.03293 1.53471
\(22\) 5.40043 1.15138
\(23\) −0.488026 −0.101760 −0.0508802 0.998705i \(-0.516203\pi\)
−0.0508802 + 0.998705i \(0.516203\pi\)
\(24\) 7.79476 1.59110
\(25\) 0 0
\(26\) −9.23163 −1.81047
\(27\) −5.56222 −1.07045
\(28\) 18.1695 3.43371
\(29\) 3.59607 0.667774 0.333887 0.942613i \(-0.391640\pi\)
0.333887 + 0.942613i \(0.391640\pi\)
\(30\) 0 0
\(31\) 6.83424 1.22747 0.613733 0.789514i \(-0.289667\pi\)
0.613733 + 0.789514i \(0.289667\pi\)
\(32\) 0.326239 0.0576714
\(33\) 3.43226 0.597479
\(34\) 1.63555 0.280495
\(35\) 0 0
\(36\) −2.27110 −0.378517
\(37\) −3.01171 −0.495123 −0.247561 0.968872i \(-0.579629\pi\)
−0.247561 + 0.968872i \(0.579629\pi\)
\(38\) 0 0
\(39\) −5.86718 −0.939500
\(40\) 0 0
\(41\) 0.0724126 0.0113090 0.00565448 0.999984i \(-0.498200\pi\)
0.00565448 + 0.999984i \(0.498200\pi\)
\(42\) 17.2743 2.66548
\(43\) 0.420541 0.0641319 0.0320660 0.999486i \(-0.489791\pi\)
0.0320660 + 0.999486i \(0.489791\pi\)
\(44\) 8.86718 1.33678
\(45\) 0 0
\(46\) −1.19869 −0.176737
\(47\) 5.02278 0.732648 0.366324 0.930487i \(-0.380616\pi\)
0.366324 + 0.930487i \(0.380616\pi\)
\(48\) 6.55434 0.946038
\(49\) 13.2975 1.89964
\(50\) 0 0
\(51\) 1.03948 0.145556
\(52\) −15.1578 −2.10200
\(53\) 2.61799 0.359609 0.179804 0.983702i \(-0.442454\pi\)
0.179804 + 0.983702i \(0.442454\pi\)
\(54\) −13.6619 −1.85915
\(55\) 0 0
\(56\) 22.4962 3.00618
\(57\) 0 0
\(58\) 8.83269 1.15979
\(59\) 12.5357 1.63200 0.816002 0.578049i \(-0.196186\pi\)
0.816002 + 0.578049i \(0.196186\pi\)
\(60\) 0 0
\(61\) 7.06587 0.904692 0.452346 0.891843i \(-0.350587\pi\)
0.452346 + 0.891843i \(0.350587\pi\)
\(62\) 16.7863 2.13186
\(63\) −2.53710 −0.319644
\(64\) −7.59607 −0.949509
\(65\) 0 0
\(66\) 8.43032 1.03770
\(67\) 5.72667 0.699624 0.349812 0.936820i \(-0.386245\pi\)
0.349812 + 0.936820i \(0.386245\pi\)
\(68\) 2.68548 0.325662
\(69\) −0.761831 −0.0917136
\(70\) 0 0
\(71\) 6.97252 0.827486 0.413743 0.910394i \(-0.364221\pi\)
0.413743 + 0.910394i \(0.364221\pi\)
\(72\) −2.81192 −0.331388
\(73\) −2.95764 −0.346165 −0.173083 0.984907i \(-0.555373\pi\)
−0.173083 + 0.984907i \(0.555373\pi\)
\(74\) −7.39738 −0.859928
\(75\) 0 0
\(76\) 0 0
\(77\) 9.90571 1.12886
\(78\) −14.4110 −1.63172
\(79\) 11.3370 1.27551 0.637755 0.770240i \(-0.279863\pi\)
0.637755 + 0.770240i \(0.279863\pi\)
\(80\) 0 0
\(81\) −6.99346 −0.777051
\(82\) 0.177860 0.0196414
\(83\) −15.6999 −1.72328 −0.861642 0.507517i \(-0.830564\pi\)
−0.861642 + 0.507517i \(0.830564\pi\)
\(84\) 28.3634 3.09470
\(85\) 0 0
\(86\) 1.03293 0.111384
\(87\) 5.61363 0.601845
\(88\) 10.9787 1.17034
\(89\) −1.33697 −0.141719 −0.0708594 0.997486i \(-0.522574\pi\)
−0.0708594 + 0.997486i \(0.522574\pi\)
\(90\) 0 0
\(91\) −16.9330 −1.77507
\(92\) −1.96818 −0.205197
\(93\) 10.6686 1.10628
\(94\) 12.3370 1.27246
\(95\) 0 0
\(96\) 0.509273 0.0519775
\(97\) 4.38638 0.445369 0.222685 0.974891i \(-0.428518\pi\)
0.222685 + 0.974891i \(0.428518\pi\)
\(98\) 32.6613 3.29929
\(99\) −1.23817 −0.124441
\(100\) 0 0
\(101\) −10.5686 −1.05161 −0.525807 0.850604i \(-0.676237\pi\)
−0.525807 + 0.850604i \(0.676237\pi\)
\(102\) 2.55317 0.252801
\(103\) 5.75615 0.567171 0.283585 0.958947i \(-0.408476\pi\)
0.283585 + 0.958947i \(0.408476\pi\)
\(104\) −18.7673 −1.84028
\(105\) 0 0
\(106\) 6.43032 0.624568
\(107\) −1.30229 −0.125897 −0.0629486 0.998017i \(-0.520050\pi\)
−0.0629486 + 0.998017i \(0.520050\pi\)
\(108\) −22.4321 −2.15853
\(109\) −12.0329 −1.15255 −0.576273 0.817257i \(-0.695494\pi\)
−0.576273 + 0.817257i \(0.695494\pi\)
\(110\) 0 0
\(111\) −4.70142 −0.446239
\(112\) 18.9163 1.78742
\(113\) 7.74626 0.728707 0.364353 0.931261i \(-0.381290\pi\)
0.364353 + 0.931261i \(0.381290\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 14.5027 1.34654
\(117\) 2.11656 0.195676
\(118\) 30.7901 2.83446
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −6.16576 −0.560523
\(122\) 17.3552 1.57127
\(123\) 0.113039 0.0101924
\(124\) 27.5621 2.47515
\(125\) 0 0
\(126\) −6.23163 −0.555157
\(127\) −3.93635 −0.349295 −0.174647 0.984631i \(-0.555879\pi\)
−0.174647 + 0.984631i \(0.555879\pi\)
\(128\) −19.3100 −1.70678
\(129\) 0.656483 0.0578001
\(130\) 0 0
\(131\) −16.3250 −1.42632 −0.713160 0.701002i \(-0.752737\pi\)
−0.713160 + 0.701002i \(0.752737\pi\)
\(132\) 13.8421 1.20480
\(133\) 0 0
\(134\) 14.0659 1.21511
\(135\) 0 0
\(136\) 3.32497 0.285114
\(137\) −16.4306 −1.40376 −0.701879 0.712296i \(-0.747655\pi\)
−0.701879 + 0.712296i \(0.747655\pi\)
\(138\) −1.87121 −0.159288
\(139\) −2.66849 −0.226338 −0.113169 0.993576i \(-0.536100\pi\)
−0.113169 + 0.993576i \(0.536100\pi\)
\(140\) 0 0
\(141\) 7.84079 0.660313
\(142\) 17.1259 1.43718
\(143\) −8.26377 −0.691051
\(144\) −2.36445 −0.197037
\(145\) 0 0
\(146\) −7.26456 −0.601219
\(147\) 20.7580 1.71209
\(148\) −12.1460 −0.998399
\(149\) −17.9660 −1.47183 −0.735915 0.677074i \(-0.763248\pi\)
−0.735915 + 0.677074i \(0.763248\pi\)
\(150\) 0 0
\(151\) −12.7344 −1.03631 −0.518154 0.855288i \(-0.673380\pi\)
−0.518154 + 0.855288i \(0.673380\pi\)
\(152\) 0 0
\(153\) −0.374987 −0.0303159
\(154\) 24.3304 1.96060
\(155\) 0 0
\(156\) −23.6619 −1.89447
\(157\) −20.0541 −1.60049 −0.800245 0.599673i \(-0.795298\pi\)
−0.800245 + 0.599673i \(0.795298\pi\)
\(158\) 27.8459 2.21530
\(159\) 4.08680 0.324104
\(160\) 0 0
\(161\) −2.19869 −0.173281
\(162\) −17.1773 −1.34958
\(163\) −14.2331 −1.11482 −0.557412 0.830236i \(-0.688206\pi\)
−0.557412 + 0.830236i \(0.688206\pi\)
\(164\) 0.292035 0.0228041
\(165\) 0 0
\(166\) −38.5621 −2.99300
\(167\) 5.61630 0.434602 0.217301 0.976105i \(-0.430275\pi\)
0.217301 + 0.976105i \(0.430275\pi\)
\(168\) 35.1176 2.70938
\(169\) 1.12628 0.0866368
\(170\) 0 0
\(171\) 0 0
\(172\) 1.69601 0.129320
\(173\) −10.6905 −0.812783 −0.406391 0.913699i \(-0.633213\pi\)
−0.406391 + 0.913699i \(0.633213\pi\)
\(174\) 13.7882 1.04528
\(175\) 0 0
\(176\) 9.23163 0.695860
\(177\) 19.5687 1.47088
\(178\) −3.28388 −0.246137
\(179\) 7.68942 0.574734 0.287367 0.957821i \(-0.407220\pi\)
0.287367 + 0.957821i \(0.407220\pi\)
\(180\) 0 0
\(181\) −6.12628 −0.455363 −0.227681 0.973736i \(-0.573114\pi\)
−0.227681 + 0.973736i \(0.573114\pi\)
\(182\) −41.5910 −3.08293
\(183\) 11.0301 0.815371
\(184\) −2.43686 −0.179648
\(185\) 0 0
\(186\) 26.2042 1.92138
\(187\) 1.46408 0.107064
\(188\) 20.2565 1.47736
\(189\) −25.0593 −1.82280
\(190\) 0 0
\(191\) 5.85517 0.423666 0.211833 0.977306i \(-0.432057\pi\)
0.211833 + 0.977306i \(0.432057\pi\)
\(192\) −11.8578 −0.855764
\(193\) 2.59117 0.186517 0.0932584 0.995642i \(-0.470272\pi\)
0.0932584 + 0.995642i \(0.470272\pi\)
\(194\) 10.7738 0.773516
\(195\) 0 0
\(196\) 53.6279 3.83057
\(197\) −19.8628 −1.41517 −0.707584 0.706629i \(-0.750215\pi\)
−0.707584 + 0.706629i \(0.750215\pi\)
\(198\) −3.04120 −0.216128
\(199\) −12.7618 −0.904662 −0.452331 0.891850i \(-0.649407\pi\)
−0.452331 + 0.891850i \(0.649407\pi\)
\(200\) 0 0
\(201\) 8.93959 0.630550
\(202\) −25.9586 −1.82644
\(203\) 16.2013 1.13711
\(204\) 4.19215 0.293509
\(205\) 0 0
\(206\) 14.1383 0.985061
\(207\) 0.274827 0.0191018
\(208\) −15.7808 −1.09420
\(209\) 0 0
\(210\) 0 0
\(211\) 13.8552 0.953830 0.476915 0.878950i \(-0.341755\pi\)
0.476915 + 0.878950i \(0.341755\pi\)
\(212\) 10.5582 0.725139
\(213\) 10.8844 0.745788
\(214\) −3.19869 −0.218658
\(215\) 0 0
\(216\) −27.7738 −1.88977
\(217\) 30.7901 2.09017
\(218\) −29.5553 −2.00174
\(219\) −4.61701 −0.311988
\(220\) 0 0
\(221\) −2.50273 −0.168352
\(222\) −11.5476 −0.775027
\(223\) −21.6960 −1.45287 −0.726437 0.687233i \(-0.758825\pi\)
−0.726437 + 0.687233i \(0.758825\pi\)
\(224\) 1.46980 0.0982048
\(225\) 0 0
\(226\) 19.0264 1.26562
\(227\) −8.19628 −0.544006 −0.272003 0.962296i \(-0.587686\pi\)
−0.272003 + 0.962296i \(0.587686\pi\)
\(228\) 0 0
\(229\) −16.6619 −1.10105 −0.550526 0.834818i \(-0.685573\pi\)
−0.550526 + 0.834818i \(0.685573\pi\)
\(230\) 0 0
\(231\) 15.4633 1.01741
\(232\) 17.9563 1.17889
\(233\) −12.2135 −0.800135 −0.400068 0.916486i \(-0.631013\pi\)
−0.400068 + 0.916486i \(0.631013\pi\)
\(234\) 5.19869 0.339849
\(235\) 0 0
\(236\) 50.5555 3.29088
\(237\) 17.6975 1.14958
\(238\) 7.36861 0.477636
\(239\) 2.03948 0.131923 0.0659614 0.997822i \(-0.478989\pi\)
0.0659614 + 0.997822i \(0.478989\pi\)
\(240\) 0 0
\(241\) 17.5237 1.12880 0.564399 0.825502i \(-0.309108\pi\)
0.564399 + 0.825502i \(0.309108\pi\)
\(242\) −15.1444 −0.973516
\(243\) 5.76956 0.370118
\(244\) 28.4962 1.82428
\(245\) 0 0
\(246\) 0.277648 0.0177022
\(247\) 0 0
\(248\) 34.1254 2.16697
\(249\) −24.5082 −1.55314
\(250\) 0 0
\(251\) −3.33806 −0.210696 −0.105348 0.994435i \(-0.533596\pi\)
−0.105348 + 0.994435i \(0.533596\pi\)
\(252\) −10.2319 −0.644552
\(253\) −1.07302 −0.0674601
\(254\) −9.66849 −0.606655
\(255\) 0 0
\(256\) −32.2371 −2.01482
\(257\) 27.5845 1.72067 0.860337 0.509726i \(-0.170253\pi\)
0.860337 + 0.509726i \(0.170253\pi\)
\(258\) 1.61246 0.100387
\(259\) −13.5686 −0.843112
\(260\) 0 0
\(261\) −2.02509 −0.125350
\(262\) −40.0974 −2.47723
\(263\) 13.6262 0.840227 0.420114 0.907471i \(-0.361990\pi\)
0.420114 + 0.907471i \(0.361990\pi\)
\(264\) 17.1383 1.05479
\(265\) 0 0
\(266\) 0 0
\(267\) −2.08707 −0.127727
\(268\) 23.0953 1.41077
\(269\) −3.60808 −0.219988 −0.109994 0.993932i \(-0.535083\pi\)
−0.109994 + 0.993932i \(0.535083\pi\)
\(270\) 0 0
\(271\) 10.5631 0.641665 0.320833 0.947136i \(-0.396037\pi\)
0.320833 + 0.947136i \(0.396037\pi\)
\(272\) 2.79585 0.169523
\(273\) −26.4332 −1.59981
\(274\) −40.3568 −2.43804
\(275\) 0 0
\(276\) −3.07241 −0.184938
\(277\) 6.73487 0.404659 0.202330 0.979317i \(-0.435149\pi\)
0.202330 + 0.979317i \(0.435149\pi\)
\(278\) −6.55434 −0.393103
\(279\) −3.84863 −0.230412
\(280\) 0 0
\(281\) 23.4303 1.39774 0.698868 0.715251i \(-0.253688\pi\)
0.698868 + 0.715251i \(0.253688\pi\)
\(282\) 19.2586 1.14683
\(283\) 14.6831 0.872822 0.436411 0.899747i \(-0.356249\pi\)
0.436411 + 0.899747i \(0.356249\pi\)
\(284\) 28.1197 1.66860
\(285\) 0 0
\(286\) −20.2975 −1.20022
\(287\) 0.326239 0.0192573
\(288\) −0.183718 −0.0108257
\(289\) −16.5566 −0.973917
\(290\) 0 0
\(291\) 6.84733 0.401398
\(292\) −11.9280 −0.698031
\(293\) 18.1855 1.06241 0.531206 0.847243i \(-0.321739\pi\)
0.531206 + 0.847243i \(0.321739\pi\)
\(294\) 50.9858 2.97355
\(295\) 0 0
\(296\) −15.0384 −0.874089
\(297\) −12.2296 −0.709634
\(298\) −44.1281 −2.55627
\(299\) 1.83424 0.106077
\(300\) 0 0
\(301\) 1.89465 0.109206
\(302\) −31.2782 −1.79986
\(303\) −16.4981 −0.947788
\(304\) 0 0
\(305\) 0 0
\(306\) −0.921044 −0.0526526
\(307\) −29.3801 −1.67681 −0.838406 0.545045i \(-0.816512\pi\)
−0.838406 + 0.545045i \(0.816512\pi\)
\(308\) 39.9491 2.27631
\(309\) 8.98561 0.511174
\(310\) 0 0
\(311\) −0.193232 −0.0109572 −0.00547859 0.999985i \(-0.501744\pi\)
−0.00547859 + 0.999985i \(0.501744\pi\)
\(312\) −29.2966 −1.65859
\(313\) 21.2755 1.20256 0.601281 0.799038i \(-0.294657\pi\)
0.601281 + 0.799038i \(0.294657\pi\)
\(314\) −49.2569 −2.77973
\(315\) 0 0
\(316\) 45.7213 2.57202
\(317\) −19.1701 −1.07670 −0.538351 0.842721i \(-0.680952\pi\)
−0.538351 + 0.842721i \(0.680952\pi\)
\(318\) 10.0380 0.562904
\(319\) 7.90666 0.442688
\(320\) 0 0
\(321\) −2.03293 −0.113467
\(322\) −5.40043 −0.300954
\(323\) 0 0
\(324\) −28.2042 −1.56690
\(325\) 0 0
\(326\) −34.9594 −1.93622
\(327\) −18.7839 −1.03875
\(328\) 0.361578 0.0199648
\(329\) 22.6290 1.24758
\(330\) 0 0
\(331\) −20.6070 −1.13266 −0.566331 0.824178i \(-0.691638\pi\)
−0.566331 + 0.824178i \(0.691638\pi\)
\(332\) −63.3165 −3.47495
\(333\) 1.69601 0.0929410
\(334\) 13.7948 0.754816
\(335\) 0 0
\(336\) 29.5291 1.61095
\(337\) 10.2074 0.556030 0.278015 0.960577i \(-0.410324\pi\)
0.278015 + 0.960577i \(0.410324\pi\)
\(338\) 2.76637 0.150471
\(339\) 12.0923 0.656761
\(340\) 0 0
\(341\) 15.0264 0.813725
\(342\) 0 0
\(343\) 28.3719 1.53194
\(344\) 2.09989 0.113218
\(345\) 0 0
\(346\) −26.2580 −1.41164
\(347\) −5.44110 −0.292094 −0.146047 0.989278i \(-0.546655\pi\)
−0.146047 + 0.989278i \(0.546655\pi\)
\(348\) 22.6394 1.21360
\(349\) −1.55114 −0.0830304 −0.0415152 0.999138i \(-0.513219\pi\)
−0.0415152 + 0.999138i \(0.513219\pi\)
\(350\) 0 0
\(351\) 20.9056 1.11586
\(352\) 0.717298 0.0382321
\(353\) 32.9335 1.75287 0.876437 0.481517i \(-0.159914\pi\)
0.876437 + 0.481517i \(0.159914\pi\)
\(354\) 48.0648 2.55461
\(355\) 0 0
\(356\) −5.39192 −0.285771
\(357\) 4.68313 0.247858
\(358\) 18.8868 0.998197
\(359\) −3.49727 −0.184579 −0.0922894 0.995732i \(-0.529419\pi\)
−0.0922894 + 0.995732i \(0.529419\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −15.0474 −0.790873
\(363\) −9.62502 −0.505183
\(364\) −68.2899 −3.57936
\(365\) 0 0
\(366\) 27.0923 1.41614
\(367\) −19.5039 −1.01810 −0.509048 0.860738i \(-0.670002\pi\)
−0.509048 + 0.860738i \(0.670002\pi\)
\(368\) −2.04907 −0.106815
\(369\) −0.0407784 −0.00212284
\(370\) 0 0
\(371\) 11.7948 0.612354
\(372\) 43.0256 2.23077
\(373\) −23.5158 −1.21760 −0.608802 0.793322i \(-0.708350\pi\)
−0.608802 + 0.793322i \(0.708350\pi\)
\(374\) 3.59607 0.185949
\(375\) 0 0
\(376\) 25.0803 1.29342
\(377\) −13.5158 −0.696100
\(378\) −61.5508 −3.16583
\(379\) −7.05148 −0.362210 −0.181105 0.983464i \(-0.557967\pi\)
−0.181105 + 0.983464i \(0.557967\pi\)
\(380\) 0 0
\(381\) −6.14483 −0.314809
\(382\) 14.3815 0.735822
\(383\) −3.08409 −0.157589 −0.0787947 0.996891i \(-0.525107\pi\)
−0.0787947 + 0.996891i \(0.525107\pi\)
\(384\) −30.1437 −1.53827
\(385\) 0 0
\(386\) 6.36445 0.323942
\(387\) −0.236823 −0.0120384
\(388\) 17.6900 0.898072
\(389\) 9.39084 0.476134 0.238067 0.971249i \(-0.423486\pi\)
0.238067 + 0.971249i \(0.423486\pi\)
\(390\) 0 0
\(391\) −0.324970 −0.0164344
\(392\) 66.3984 3.35362
\(393\) −25.4840 −1.28550
\(394\) −48.7871 −2.45786
\(395\) 0 0
\(396\) −4.99346 −0.250931
\(397\) 26.7595 1.34302 0.671510 0.740996i \(-0.265646\pi\)
0.671510 + 0.740996i \(0.265646\pi\)
\(398\) −31.3456 −1.57122
\(399\) 0 0
\(400\) 0 0
\(401\) −25.1701 −1.25694 −0.628468 0.777835i \(-0.716318\pi\)
−0.628468 + 0.777835i \(0.716318\pi\)
\(402\) 21.9575 1.09514
\(403\) −25.6865 −1.27953
\(404\) −42.6225 −2.12055
\(405\) 0 0
\(406\) 39.7937 1.97493
\(407\) −6.62183 −0.328232
\(408\) 5.19043 0.256964
\(409\) −28.3215 −1.40041 −0.700204 0.713943i \(-0.746908\pi\)
−0.700204 + 0.713943i \(0.746908\pi\)
\(410\) 0 0
\(411\) −25.6489 −1.26516
\(412\) 23.2142 1.14368
\(413\) 56.4766 2.77903
\(414\) 0.675030 0.0331759
\(415\) 0 0
\(416\) −1.22617 −0.0601178
\(417\) −4.16563 −0.203992
\(418\) 0 0
\(419\) 13.0449 0.637287 0.318643 0.947875i \(-0.396773\pi\)
0.318643 + 0.947875i \(0.396773\pi\)
\(420\) 0 0
\(421\) 3.32497 0.162049 0.0810246 0.996712i \(-0.474181\pi\)
0.0810246 + 0.996712i \(0.474181\pi\)
\(422\) 34.0311 1.65661
\(423\) −2.82853 −0.137528
\(424\) 13.0724 0.634852
\(425\) 0 0
\(426\) 26.7344 1.29528
\(427\) 31.8337 1.54054
\(428\) −5.25205 −0.253868
\(429\) −12.9001 −0.622823
\(430\) 0 0
\(431\) 0.0484069 0.00233168 0.00116584 0.999999i \(-0.499629\pi\)
0.00116584 + 0.999999i \(0.499629\pi\)
\(432\) −23.3540 −1.12362
\(433\) 9.56872 0.459844 0.229922 0.973209i \(-0.426153\pi\)
0.229922 + 0.973209i \(0.426153\pi\)
\(434\) 75.6268 3.63020
\(435\) 0 0
\(436\) −48.5280 −2.32407
\(437\) 0 0
\(438\) −11.3403 −0.541861
\(439\) −22.2515 −1.06200 −0.531002 0.847370i \(-0.678184\pi\)
−0.531002 + 0.847370i \(0.678184\pi\)
\(440\) 0 0
\(441\) −7.48834 −0.356588
\(442\) −6.14721 −0.292393
\(443\) −20.1157 −0.955727 −0.477863 0.878434i \(-0.658589\pi\)
−0.477863 + 0.878434i \(0.658589\pi\)
\(444\) −18.9605 −0.899827
\(445\) 0 0
\(446\) −53.2899 −2.52335
\(447\) −28.0457 −1.32652
\(448\) −34.2224 −1.61686
\(449\) −12.4973 −0.589783 −0.294891 0.955531i \(-0.595283\pi\)
−0.294891 + 0.955531i \(0.595283\pi\)
\(450\) 0 0
\(451\) 0.159213 0.00749705
\(452\) 31.2402 1.46941
\(453\) −19.8789 −0.933992
\(454\) −20.1317 −0.944829
\(455\) 0 0
\(456\) 0 0
\(457\) 28.3179 1.32465 0.662327 0.749215i \(-0.269569\pi\)
0.662327 + 0.749215i \(0.269569\pi\)
\(458\) −40.9251 −1.91231
\(459\) −3.70381 −0.172879
\(460\) 0 0
\(461\) 5.31951 0.247754 0.123877 0.992298i \(-0.460467\pi\)
0.123877 + 0.992298i \(0.460467\pi\)
\(462\) 37.9809 1.76703
\(463\) 17.9327 0.833401 0.416701 0.909044i \(-0.363186\pi\)
0.416701 + 0.909044i \(0.363186\pi\)
\(464\) 15.0988 0.700944
\(465\) 0 0
\(466\) −29.9989 −1.38967
\(467\) −28.7791 −1.33174 −0.665868 0.746069i \(-0.731939\pi\)
−0.665868 + 0.746069i \(0.731939\pi\)
\(468\) 8.53593 0.394574
\(469\) 25.8002 1.19134
\(470\) 0 0
\(471\) −31.3053 −1.44247
\(472\) 62.5943 2.88114
\(473\) 0.924640 0.0425150
\(474\) 43.4687 1.99658
\(475\) 0 0
\(476\) 12.0988 0.554548
\(477\) −1.47429 −0.0675033
\(478\) 5.00937 0.229123
\(479\) −8.05148 −0.367882 −0.183941 0.982937i \(-0.558885\pi\)
−0.183941 + 0.982937i \(0.558885\pi\)
\(480\) 0 0
\(481\) 11.3195 0.516125
\(482\) 43.0417 1.96049
\(483\) −3.43226 −0.156173
\(484\) −24.8661 −1.13028
\(485\) 0 0
\(486\) 14.1712 0.642819
\(487\) −1.09761 −0.0497376 −0.0248688 0.999691i \(-0.507917\pi\)
−0.0248688 + 0.999691i \(0.507917\pi\)
\(488\) 35.2820 1.59714
\(489\) −22.2185 −1.00476
\(490\) 0 0
\(491\) 13.1053 0.591436 0.295718 0.955275i \(-0.404441\pi\)
0.295718 + 0.955275i \(0.404441\pi\)
\(492\) 0.455880 0.0205527
\(493\) 2.39458 0.107846
\(494\) 0 0
\(495\) 0 0
\(496\) 28.6949 1.28844
\(497\) 31.4131 1.40907
\(498\) −60.1971 −2.69750
\(499\) 24.1407 1.08068 0.540342 0.841445i \(-0.318295\pi\)
0.540342 + 0.841445i \(0.318295\pi\)
\(500\) 0 0
\(501\) 8.76729 0.391694
\(502\) −8.19895 −0.365937
\(503\) 18.9618 0.845465 0.422733 0.906254i \(-0.361071\pi\)
0.422733 + 0.906254i \(0.361071\pi\)
\(504\) −12.6685 −0.564299
\(505\) 0 0
\(506\) −2.63555 −0.117165
\(507\) 1.75817 0.0780831
\(508\) −15.8751 −0.704342
\(509\) 21.9605 0.973383 0.486692 0.873574i \(-0.338204\pi\)
0.486692 + 0.873574i \(0.338204\pi\)
\(510\) 0 0
\(511\) −13.3250 −0.589462
\(512\) −40.5609 −1.79255
\(513\) 0 0
\(514\) 67.7531 2.98846
\(515\) 0 0
\(516\) 2.64755 0.116552
\(517\) 11.0435 0.485695
\(518\) −33.3272 −1.46431
\(519\) −16.6883 −0.732537
\(520\) 0 0
\(521\) 6.56968 0.287823 0.143912 0.989591i \(-0.454032\pi\)
0.143912 + 0.989591i \(0.454032\pi\)
\(522\) −4.97403 −0.217708
\(523\) −4.19777 −0.183556 −0.0917779 0.995780i \(-0.529255\pi\)
−0.0917779 + 0.995780i \(0.529255\pi\)
\(524\) −65.8375 −2.87613
\(525\) 0 0
\(526\) 33.4687 1.45931
\(527\) 4.55083 0.198237
\(528\) 14.4110 0.627157
\(529\) −22.7618 −0.989645
\(530\) 0 0
\(531\) −7.05933 −0.306349
\(532\) 0 0
\(533\) −0.272162 −0.0117887
\(534\) −5.12628 −0.221836
\(535\) 0 0
\(536\) 28.5950 1.23512
\(537\) 12.0035 0.517990
\(538\) −8.86217 −0.382075
\(539\) 29.2371 1.25933
\(540\) 0 0
\(541\) −4.63009 −0.199063 −0.0995316 0.995034i \(-0.531734\pi\)
−0.0995316 + 0.995034i \(0.531734\pi\)
\(542\) 25.9452 1.11444
\(543\) −9.56340 −0.410405
\(544\) 0.217238 0.00931400
\(545\) 0 0
\(546\) −64.9254 −2.77855
\(547\) 38.0399 1.62647 0.813233 0.581938i \(-0.197705\pi\)
0.813233 + 0.581938i \(0.197705\pi\)
\(548\) −66.2634 −2.83063
\(549\) −3.97907 −0.169823
\(550\) 0 0
\(551\) 0 0
\(552\) −3.80405 −0.161911
\(553\) 51.0762 2.17198
\(554\) 16.5422 0.702811
\(555\) 0 0
\(556\) −10.7618 −0.456403
\(557\) −36.4306 −1.54361 −0.771807 0.635857i \(-0.780647\pi\)
−0.771807 + 0.635857i \(0.780647\pi\)
\(558\) −9.45302 −0.400178
\(559\) −1.58060 −0.0668523
\(560\) 0 0
\(561\) 2.28549 0.0964935
\(562\) 57.5496 2.42758
\(563\) −20.6856 −0.871795 −0.435897 0.899996i \(-0.643569\pi\)
−0.435897 + 0.899996i \(0.643569\pi\)
\(564\) 31.6214 1.33150
\(565\) 0 0
\(566\) 36.0648 1.51592
\(567\) −31.5074 −1.32319
\(568\) 34.8159 1.46084
\(569\) −27.1132 −1.13664 −0.568322 0.822806i \(-0.692407\pi\)
−0.568322 + 0.822806i \(0.692407\pi\)
\(570\) 0 0
\(571\) 46.4687 1.94466 0.972328 0.233622i \(-0.0750578\pi\)
0.972328 + 0.233622i \(0.0750578\pi\)
\(572\) −33.3272 −1.39348
\(573\) 9.14019 0.381837
\(574\) 0.801309 0.0334460
\(575\) 0 0
\(576\) 4.27765 0.178235
\(577\) −18.0398 −0.751008 −0.375504 0.926821i \(-0.622530\pi\)
−0.375504 + 0.926821i \(0.622530\pi\)
\(578\) −40.6664 −1.69150
\(579\) 4.04494 0.168102
\(580\) 0 0
\(581\) −70.7322 −2.93447
\(582\) 16.8184 0.697147
\(583\) 5.75615 0.238395
\(584\) −14.7684 −0.611120
\(585\) 0 0
\(586\) 44.6674 1.84519
\(587\) −26.0337 −1.07452 −0.537262 0.843415i \(-0.680541\pi\)
−0.537262 + 0.843415i \(0.680541\pi\)
\(588\) 83.7156 3.45237
\(589\) 0 0
\(590\) 0 0
\(591\) −31.0068 −1.27545
\(592\) −12.6453 −0.519717
\(593\) 18.1561 0.745580 0.372790 0.927916i \(-0.378401\pi\)
0.372790 + 0.927916i \(0.378401\pi\)
\(594\) −30.0384 −1.23249
\(595\) 0 0
\(596\) −72.4556 −2.96790
\(597\) −19.9218 −0.815345
\(598\) 4.50527 0.184234
\(599\) 40.0713 1.63727 0.818635 0.574314i \(-0.194731\pi\)
0.818635 + 0.574314i \(0.194731\pi\)
\(600\) 0 0
\(601\) 15.0473 0.613793 0.306897 0.951743i \(-0.400709\pi\)
0.306897 + 0.951743i \(0.400709\pi\)
\(602\) 4.65365 0.189669
\(603\) −3.22491 −0.131329
\(604\) −51.3568 −2.08968
\(605\) 0 0
\(606\) −40.5226 −1.64612
\(607\) 29.3860 1.19274 0.596370 0.802709i \(-0.296609\pi\)
0.596370 + 0.802709i \(0.296609\pi\)
\(608\) 0 0
\(609\) 25.2910 1.02484
\(610\) 0 0
\(611\) −18.8781 −0.763726
\(612\) −1.51230 −0.0611310
\(613\) 34.7078 1.40183 0.700917 0.713243i \(-0.252775\pi\)
0.700917 + 0.713243i \(0.252775\pi\)
\(614\) −72.1636 −2.91229
\(615\) 0 0
\(616\) 49.4622 1.99289
\(617\) −10.7275 −0.431874 −0.215937 0.976407i \(-0.569281\pi\)
−0.215937 + 0.976407i \(0.569281\pi\)
\(618\) 22.0705 0.887805
\(619\) −36.1437 −1.45274 −0.726370 0.687304i \(-0.758794\pi\)
−0.726370 + 0.687304i \(0.758794\pi\)
\(620\) 0 0
\(621\) 2.71451 0.108929
\(622\) −0.474617 −0.0190304
\(623\) −6.02343 −0.241324
\(624\) −24.6345 −0.986168
\(625\) 0 0
\(626\) 52.2569 2.08861
\(627\) 0 0
\(628\) −80.8768 −3.22734
\(629\) −2.00546 −0.0799629
\(630\) 0 0
\(631\) −31.5764 −1.25704 −0.628519 0.777794i \(-0.716339\pi\)
−0.628519 + 0.777794i \(0.716339\pi\)
\(632\) 56.6089 2.25178
\(633\) 21.6285 0.859658
\(634\) −47.0857 −1.87001
\(635\) 0 0
\(636\) 16.4818 0.653546
\(637\) −49.9786 −1.98022
\(638\) 19.4204 0.768859
\(639\) −3.92650 −0.155330
\(640\) 0 0
\(641\) 19.8266 0.783104 0.391552 0.920156i \(-0.371938\pi\)
0.391552 + 0.920156i \(0.371938\pi\)
\(642\) −4.99330 −0.197070
\(643\) −13.4569 −0.530687 −0.265343 0.964154i \(-0.585485\pi\)
−0.265343 + 0.964154i \(0.585485\pi\)
\(644\) −8.86718 −0.349416
\(645\) 0 0
\(646\) 0 0
\(647\) −4.19511 −0.164927 −0.0824634 0.996594i \(-0.526279\pi\)
−0.0824634 + 0.996594i \(0.526279\pi\)
\(648\) −34.9204 −1.37180
\(649\) 27.5621 1.08191
\(650\) 0 0
\(651\) 48.0648 1.88381
\(652\) −57.4012 −2.24801
\(653\) 12.1680 0.476170 0.238085 0.971244i \(-0.423480\pi\)
0.238085 + 0.971244i \(0.423480\pi\)
\(654\) −46.1372 −1.80411
\(655\) 0 0
\(656\) 0.304038 0.0118707
\(657\) 1.66556 0.0649798
\(658\) 55.5814 2.16679
\(659\) 8.24471 0.321168 0.160584 0.987022i \(-0.448662\pi\)
0.160584 + 0.987022i \(0.448662\pi\)
\(660\) 0 0
\(661\) 21.1197 0.821462 0.410731 0.911756i \(-0.365273\pi\)
0.410731 + 0.911756i \(0.365273\pi\)
\(662\) −50.6150 −1.96721
\(663\) −3.90687 −0.151730
\(664\) −78.3941 −3.04228
\(665\) 0 0
\(666\) 4.16576 0.161420
\(667\) −1.75498 −0.0679530
\(668\) 22.6502 0.876361
\(669\) −33.8685 −1.30943
\(670\) 0 0
\(671\) 15.5357 0.599748
\(672\) 2.29442 0.0885090
\(673\) 30.2802 1.16722 0.583608 0.812036i \(-0.301641\pi\)
0.583608 + 0.812036i \(0.301641\pi\)
\(674\) 25.0713 0.965711
\(675\) 0 0
\(676\) 4.54221 0.174700
\(677\) −49.9003 −1.91783 −0.958913 0.283701i \(-0.908438\pi\)
−0.958913 + 0.283701i \(0.908438\pi\)
\(678\) 29.7010 1.14066
\(679\) 19.7618 0.758389
\(680\) 0 0
\(681\) −12.7948 −0.490296
\(682\) 36.9079 1.41328
\(683\) −3.11357 −0.119137 −0.0595687 0.998224i \(-0.518973\pi\)
−0.0595687 + 0.998224i \(0.518973\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 69.6872 2.66067
\(687\) −26.0100 −0.992345
\(688\) 1.76572 0.0673175
\(689\) −9.83970 −0.374863
\(690\) 0 0
\(691\) −30.2831 −1.15202 −0.576012 0.817441i \(-0.695392\pi\)
−0.576012 + 0.817441i \(0.695392\pi\)
\(692\) −43.1140 −1.63895
\(693\) −5.57829 −0.211902
\(694\) −13.3644 −0.507308
\(695\) 0 0
\(696\) 28.0305 1.06250
\(697\) 0.0482186 0.00182641
\(698\) −3.80991 −0.144207
\(699\) −19.0659 −0.721137
\(700\) 0 0
\(701\) 44.5699 1.68338 0.841691 0.539960i \(-0.181561\pi\)
0.841691 + 0.539960i \(0.181561\pi\)
\(702\) 51.3483 1.93802
\(703\) 0 0
\(704\) −16.7014 −0.629458
\(705\) 0 0
\(706\) 80.8914 3.04439
\(707\) −47.6144 −1.79073
\(708\) 78.9194 2.96597
\(709\) 9.34352 0.350903 0.175452 0.984488i \(-0.443861\pi\)
0.175452 + 0.984488i \(0.443861\pi\)
\(710\) 0 0
\(711\) −6.38429 −0.239430
\(712\) −6.67591 −0.250190
\(713\) −3.33529 −0.124908
\(714\) 11.5027 0.430479
\(715\) 0 0
\(716\) 31.0109 1.15893
\(717\) 3.18372 0.118898
\(718\) −8.59001 −0.320576
\(719\) 25.3974 0.947163 0.473581 0.880750i \(-0.342961\pi\)
0.473581 + 0.880750i \(0.342961\pi\)
\(720\) 0 0
\(721\) 25.9330 0.965797
\(722\) 0 0
\(723\) 27.3552 1.01735
\(724\) −24.7069 −0.918224
\(725\) 0 0
\(726\) −23.6410 −0.877400
\(727\) 31.4377 1.16596 0.582980 0.812486i \(-0.301886\pi\)
0.582980 + 0.812486i \(0.301886\pi\)
\(728\) −84.5518 −3.13370
\(729\) 29.9869 1.11063
\(730\) 0 0
\(731\) 0.280033 0.0103574
\(732\) 44.4838 1.64417
\(733\) 25.3946 0.937971 0.468985 0.883206i \(-0.344620\pi\)
0.468985 + 0.883206i \(0.344620\pi\)
\(734\) −47.9056 −1.76823
\(735\) 0 0
\(736\) −0.159213 −0.00586867
\(737\) 12.5912 0.463802
\(738\) −0.100160 −0.00368694
\(739\) 35.5082 1.30619 0.653095 0.757276i \(-0.273470\pi\)
0.653095 + 0.757276i \(0.273470\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 28.9703 1.06353
\(743\) −17.1099 −0.627700 −0.313850 0.949473i \(-0.601619\pi\)
−0.313850 + 0.949473i \(0.601619\pi\)
\(744\) 53.2713 1.95302
\(745\) 0 0
\(746\) −57.7597 −2.11473
\(747\) 8.84121 0.323483
\(748\) 5.90453 0.215891
\(749\) −5.86718 −0.214382
\(750\) 0 0
\(751\) −7.45125 −0.271900 −0.135950 0.990716i \(-0.543409\pi\)
−0.135950 + 0.990716i \(0.543409\pi\)
\(752\) 21.0891 0.769041
\(753\) −5.21086 −0.189894
\(754\) −33.1976 −1.20899
\(755\) 0 0
\(756\) −101.063 −3.67561
\(757\) −53.7675 −1.95421 −0.977107 0.212750i \(-0.931758\pi\)
−0.977107 + 0.212750i \(0.931758\pi\)
\(758\) −17.3199 −0.629086
\(759\) −1.67503 −0.0607997
\(760\) 0 0
\(761\) 23.3939 0.848029 0.424014 0.905655i \(-0.360621\pi\)
0.424014 + 0.905655i \(0.360621\pi\)
\(762\) −15.0929 −0.546760
\(763\) −54.2117 −1.96259
\(764\) 23.6135 0.854308
\(765\) 0 0
\(766\) −7.57514 −0.273701
\(767\) −47.1152 −1.70123
\(768\) −50.3235 −1.81589
\(769\) −13.2447 −0.477617 −0.238808 0.971067i \(-0.576757\pi\)
−0.238808 + 0.971067i \(0.576757\pi\)
\(770\) 0 0
\(771\) 43.0606 1.55079
\(772\) 10.4500 0.376105
\(773\) 17.8052 0.640410 0.320205 0.947348i \(-0.396248\pi\)
0.320205 + 0.947348i \(0.396248\pi\)
\(774\) −0.581686 −0.0209083
\(775\) 0 0
\(776\) 21.9025 0.786254
\(777\) −21.1812 −0.759871
\(778\) 23.0658 0.826949
\(779\) 0 0
\(780\) 0 0
\(781\) 15.3304 0.548566
\(782\) −0.798192 −0.0285433
\(783\) −20.0022 −0.714819
\(784\) 55.8321 1.99400
\(785\) 0 0
\(786\) −62.5939 −2.23265
\(787\) 43.5779 1.55339 0.776693 0.629880i \(-0.216896\pi\)
0.776693 + 0.629880i \(0.216896\pi\)
\(788\) −80.1055 −2.85364
\(789\) 21.2711 0.757271
\(790\) 0 0
\(791\) 34.8990 1.24087
\(792\) −6.18255 −0.219687
\(793\) −26.5570 −0.943068
\(794\) 65.7267 2.33255
\(795\) 0 0
\(796\) −51.4676 −1.82422
\(797\) 16.1311 0.571395 0.285697 0.958320i \(-0.407775\pi\)
0.285697 + 0.958320i \(0.407775\pi\)
\(798\) 0 0
\(799\) 3.34460 0.118323
\(800\) 0 0
\(801\) 0.752902 0.0266025
\(802\) −61.8230 −2.18304
\(803\) −6.50293 −0.229484
\(804\) 36.0528 1.27148
\(805\) 0 0
\(806\) −63.0912 −2.22229
\(807\) −5.63237 −0.198269
\(808\) −52.7722 −1.85652
\(809\) 28.7134 1.00951 0.504755 0.863263i \(-0.331583\pi\)
0.504755 + 0.863263i \(0.331583\pi\)
\(810\) 0 0
\(811\) 21.5422 0.756449 0.378225 0.925714i \(-0.376535\pi\)
0.378225 + 0.925714i \(0.376535\pi\)
\(812\) 65.3388 2.29294
\(813\) 16.4895 0.578313
\(814\) −16.2646 −0.570073
\(815\) 0 0
\(816\) 4.36445 0.152786
\(817\) 0 0
\(818\) −69.5634 −2.43223
\(819\) 9.53566 0.333203
\(820\) 0 0
\(821\) 33.3204 1.16289 0.581445 0.813586i \(-0.302487\pi\)
0.581445 + 0.813586i \(0.302487\pi\)
\(822\) −62.9988 −2.19734
\(823\) −37.2390 −1.29807 −0.649035 0.760759i \(-0.724827\pi\)
−0.649035 + 0.760759i \(0.724827\pi\)
\(824\) 28.7422 1.00128
\(825\) 0 0
\(826\) 138.718 4.82662
\(827\) −29.0512 −1.01021 −0.505105 0.863058i \(-0.668546\pi\)
−0.505105 + 0.863058i \(0.668546\pi\)
\(828\) 1.10836 0.0385181
\(829\) 34.5380 1.19956 0.599778 0.800166i \(-0.295256\pi\)
0.599778 + 0.800166i \(0.295256\pi\)
\(830\) 0 0
\(831\) 10.5134 0.364707
\(832\) 28.5498 0.989786
\(833\) 8.85462 0.306794
\(834\) −10.2316 −0.354292
\(835\) 0 0
\(836\) 0 0
\(837\) −38.0136 −1.31394
\(838\) 32.0410 1.10684
\(839\) −44.7243 −1.54406 −0.772028 0.635589i \(-0.780757\pi\)
−0.772028 + 0.635589i \(0.780757\pi\)
\(840\) 0 0
\(841\) −16.0683 −0.554078
\(842\) 8.16680 0.281447
\(843\) 36.5758 1.25974
\(844\) 55.8770 1.92337
\(845\) 0 0
\(846\) −6.94743 −0.238858
\(847\) −27.7784 −0.954478
\(848\) 10.9921 0.377471
\(849\) 22.9210 0.786648
\(850\) 0 0
\(851\) 1.46980 0.0503839
\(852\) 43.8962 1.50386
\(853\) −16.2603 −0.556741 −0.278370 0.960474i \(-0.589794\pi\)
−0.278370 + 0.960474i \(0.589794\pi\)
\(854\) 78.1900 2.67561
\(855\) 0 0
\(856\) −6.50273 −0.222259
\(857\) −16.6379 −0.568340 −0.284170 0.958774i \(-0.591718\pi\)
−0.284170 + 0.958774i \(0.591718\pi\)
\(858\) −31.6853 −1.08172
\(859\) 40.2724 1.37408 0.687038 0.726621i \(-0.258910\pi\)
0.687038 + 0.726621i \(0.258910\pi\)
\(860\) 0 0
\(861\) 0.509273 0.0173560
\(862\) 0.118897 0.00404965
\(863\) −32.9634 −1.12209 −0.561044 0.827786i \(-0.689600\pi\)
−0.561044 + 0.827786i \(0.689600\pi\)
\(864\) −1.81461 −0.0617343
\(865\) 0 0
\(866\) 23.5027 0.798655
\(867\) −25.8456 −0.877762
\(868\) 124.175 4.21476
\(869\) 24.9265 0.845574
\(870\) 0 0
\(871\) −21.5237 −0.729301
\(872\) −60.0841 −2.03470
\(873\) −2.47014 −0.0836016
\(874\) 0 0
\(875\) 0 0
\(876\) −18.6201 −0.629114
\(877\) 0.213199 0.00719923 0.00359962 0.999994i \(-0.498854\pi\)
0.00359962 + 0.999994i \(0.498854\pi\)
\(878\) −54.6541 −1.84449
\(879\) 28.3885 0.957519
\(880\) 0 0
\(881\) 51.8661 1.74741 0.873707 0.486453i \(-0.161710\pi\)
0.873707 + 0.486453i \(0.161710\pi\)
\(882\) −18.3929 −0.619321
\(883\) 41.6451 1.40147 0.700734 0.713422i \(-0.252856\pi\)
0.700734 + 0.713422i \(0.252856\pi\)
\(884\) −10.0933 −0.339476
\(885\) 0 0
\(886\) −49.4083 −1.65990
\(887\) 4.09325 0.137438 0.0687190 0.997636i \(-0.478109\pi\)
0.0687190 + 0.997636i \(0.478109\pi\)
\(888\) −23.4756 −0.787790
\(889\) −17.7344 −0.594791
\(890\) 0 0
\(891\) −15.3765 −0.515130
\(892\) −87.4987 −2.92967
\(893\) 0 0
\(894\) −68.8859 −2.30389
\(895\) 0 0
\(896\) −86.9967 −2.90636
\(897\) 2.86334 0.0956040
\(898\) −30.6958 −1.02433
\(899\) 24.5764 0.819670
\(900\) 0 0
\(901\) 1.74328 0.0580772
\(902\) 0.391060 0.0130209
\(903\) 2.95764 0.0984240
\(904\) 38.6794 1.28646
\(905\) 0 0
\(906\) −48.8266 −1.62216
\(907\) 8.40726 0.279158 0.139579 0.990211i \(-0.455425\pi\)
0.139579 + 0.990211i \(0.455425\pi\)
\(908\) −33.0551 −1.09697
\(909\) 5.95159 0.197402
\(910\) 0 0
\(911\) 8.87918 0.294180 0.147090 0.989123i \(-0.453009\pi\)
0.147090 + 0.989123i \(0.453009\pi\)
\(912\) 0 0
\(913\) −34.5192 −1.14242
\(914\) 69.5544 2.30066
\(915\) 0 0
\(916\) −67.1965 −2.22024
\(917\) −73.5485 −2.42878
\(918\) −9.09730 −0.300256
\(919\) −45.9834 −1.51685 −0.758427 0.651758i \(-0.774032\pi\)
−0.758427 + 0.651758i \(0.774032\pi\)
\(920\) 0 0
\(921\) −45.8637 −1.51126
\(922\) 13.0658 0.430299
\(923\) −26.2062 −0.862587
\(924\) 62.3623 2.05157
\(925\) 0 0
\(926\) 44.0462 1.44745
\(927\) −3.24152 −0.106465
\(928\) 1.17318 0.0385115
\(929\) −22.1778 −0.727629 −0.363814 0.931471i \(-0.618526\pi\)
−0.363814 + 0.931471i \(0.618526\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −49.2564 −1.61345
\(933\) −0.301644 −0.00987538
\(934\) −70.6872 −2.31296
\(935\) 0 0
\(936\) 10.5686 0.345445
\(937\) 34.3274 1.12143 0.560714 0.828009i \(-0.310527\pi\)
0.560714 + 0.828009i \(0.310527\pi\)
\(938\) 63.3706 2.06912
\(939\) 33.2120 1.08383
\(940\) 0 0
\(941\) 33.7213 1.09928 0.549641 0.835401i \(-0.314765\pi\)
0.549641 + 0.835401i \(0.314765\pi\)
\(942\) −76.8923 −2.50529
\(943\) −0.0353393 −0.00115080
\(944\) 52.6334 1.71307
\(945\) 0 0
\(946\) 2.27110 0.0738400
\(947\) −22.1465 −0.719664 −0.359832 0.933017i \(-0.617166\pi\)
−0.359832 + 0.933017i \(0.617166\pi\)
\(948\) 71.3729 2.31809
\(949\) 11.1163 0.360849
\(950\) 0 0
\(951\) −29.9254 −0.970398
\(952\) 14.9799 0.485501
\(953\) −37.2967 −1.20816 −0.604079 0.796924i \(-0.706459\pi\)
−0.604079 + 0.796924i \(0.706459\pi\)
\(954\) −3.62116 −0.117240
\(955\) 0 0
\(956\) 8.22508 0.266018
\(957\) 12.3426 0.398981
\(958\) −19.7761 −0.638936
\(959\) −74.0242 −2.39037
\(960\) 0 0
\(961\) 15.7069 0.506674
\(962\) 27.8030 0.896405
\(963\) 0.733371 0.0236326
\(964\) 70.6718 2.27618
\(965\) 0 0
\(966\) −8.43032 −0.271241
\(967\) −18.6736 −0.600502 −0.300251 0.953860i \(-0.597070\pi\)
−0.300251 + 0.953860i \(0.597070\pi\)
\(968\) −30.7875 −0.989547
\(969\) 0 0
\(970\) 0 0
\(971\) 28.5806 0.917195 0.458598 0.888644i \(-0.348352\pi\)
0.458598 + 0.888644i \(0.348352\pi\)
\(972\) 23.2683 0.746330
\(973\) −12.0223 −0.385416
\(974\) −2.69596 −0.0863842
\(975\) 0 0
\(976\) 29.6674 0.949630
\(977\) 58.1909 1.86169 0.930846 0.365411i \(-0.119072\pi\)
0.930846 + 0.365411i \(0.119072\pi\)
\(978\) −54.5732 −1.74506
\(979\) −2.93959 −0.0939497
\(980\) 0 0
\(981\) 6.77622 0.216348
\(982\) 32.1894 1.02720
\(983\) 48.0725 1.53328 0.766638 0.642080i \(-0.221928\pi\)
0.766638 + 0.642080i \(0.221928\pi\)
\(984\) 0.564439 0.0179937
\(985\) 0 0
\(986\) 5.88157 0.187307
\(987\) 35.3249 1.12440
\(988\) 0 0
\(989\) −0.205235 −0.00652609
\(990\) 0 0
\(991\) 38.3952 1.21966 0.609832 0.792531i \(-0.291237\pi\)
0.609832 + 0.792531i \(0.291237\pi\)
\(992\) 2.22960 0.0707897
\(993\) −32.1684 −1.02083
\(994\) 77.1570 2.44727
\(995\) 0 0
\(996\) −98.8399 −3.13186
\(997\) 37.8218 1.19783 0.598914 0.800814i \(-0.295599\pi\)
0.598914 + 0.800814i \(0.295599\pi\)
\(998\) 59.2944 1.87693
\(999\) 16.7518 0.530004
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.bu.1.6 6
5.2 odd 4 1805.2.b.f.1084.6 6
5.3 odd 4 1805.2.b.f.1084.1 6
5.4 even 2 inner 9025.2.a.bu.1.1 6
19.7 even 3 475.2.e.g.201.1 12
19.11 even 3 475.2.e.g.26.1 12
19.18 odd 2 9025.2.a.bt.1.1 6
95.7 odd 12 95.2.i.b.49.1 12
95.18 even 4 1805.2.b.g.1084.6 6
95.37 even 4 1805.2.b.g.1084.1 6
95.49 even 6 475.2.e.g.26.6 12
95.64 even 6 475.2.e.g.201.6 12
95.68 odd 12 95.2.i.b.64.1 yes 12
95.83 odd 12 95.2.i.b.49.6 yes 12
95.87 odd 12 95.2.i.b.64.6 yes 12
95.94 odd 2 9025.2.a.bt.1.6 6
285.68 even 12 855.2.be.d.64.6 12
285.83 even 12 855.2.be.d.334.1 12
285.182 even 12 855.2.be.d.64.1 12
285.197 even 12 855.2.be.d.334.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.i.b.49.1 12 95.7 odd 12
95.2.i.b.49.6 yes 12 95.83 odd 12
95.2.i.b.64.1 yes 12 95.68 odd 12
95.2.i.b.64.6 yes 12 95.87 odd 12
475.2.e.g.26.1 12 19.11 even 3
475.2.e.g.26.6 12 95.49 even 6
475.2.e.g.201.1 12 19.7 even 3
475.2.e.g.201.6 12 95.64 even 6
855.2.be.d.64.1 12 285.182 even 12
855.2.be.d.64.6 12 285.68 even 12
855.2.be.d.334.1 12 285.83 even 12
855.2.be.d.334.6 12 285.197 even 12
1805.2.b.f.1084.1 6 5.3 odd 4
1805.2.b.f.1084.6 6 5.2 odd 4
1805.2.b.g.1084.1 6 95.37 even 4
1805.2.b.g.1084.6 6 95.18 even 4
9025.2.a.bt.1.1 6 19.18 odd 2
9025.2.a.bt.1.6 6 95.94 odd 2
9025.2.a.bu.1.1 6 5.4 even 2 inner
9025.2.a.bu.1.6 6 1.1 even 1 trivial