Properties

Label 1805.2.b.f.1084.1
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-2,2,12,0,0,-8,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.4227136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 7x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.1
Root \(-0.407132i\) of defining polynomial
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.f.1084.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.45620i q^{2} +1.56104i q^{3} -4.03293 q^{4} +(2.19869 - 0.407132i) q^{5} +3.83424 q^{6} -4.50527i q^{7} +4.99330i q^{8} +0.563139 q^{9} +(-1.00000 - 5.40043i) q^{10} +2.19869 q^{11} -6.29559i q^{12} -3.75849i q^{13} -11.0659 q^{14} +(0.635552 + 3.43226i) q^{15} +4.19869 q^{16} -0.665886i q^{17} -1.38318i q^{18} +(-8.86718 + 1.64194i) q^{20} +7.03293 q^{21} -5.40043i q^{22} -0.488026i q^{23} -7.79476 q^{24} +(4.66849 - 1.79032i) q^{25} -9.23163 q^{26} +5.56222i q^{27} +18.1695i q^{28} -3.59607 q^{29} +(8.43032 - 1.56104i) q^{30} +6.83424 q^{31} -0.326239i q^{32} +3.43226i q^{33} -1.63555 q^{34} +(-1.83424 - 9.90571i) q^{35} -2.27110 q^{36} +3.01171i q^{37} +5.86718 q^{39} +(2.03293 + 10.9787i) q^{40} +0.0724126 q^{41} -17.2743i q^{42} +0.420541i q^{43} -8.86718 q^{44} +(1.23817 - 0.229272i) q^{45} -1.19869 q^{46} -5.02278i q^{47} +6.55434i q^{48} -13.2975 q^{49} +(-4.39738 - 11.4668i) q^{50} +1.03948 q^{51} +15.1578i q^{52} +2.61799i q^{53} +13.6619 q^{54} +(4.83424 - 0.895159i) q^{55} +22.4962 q^{56} +8.83269i q^{58} -12.5357 q^{59} +(-2.56314 - 13.8421i) q^{60} +7.06587 q^{61} -16.7863i q^{62} -2.53710i q^{63} +7.59607 q^{64} +(-1.53020 - 8.26377i) q^{65} +8.43032 q^{66} -5.72667i q^{67} +2.68548i q^{68} +0.761831 q^{69} +(-24.3304 + 4.50527i) q^{70} +6.97252 q^{71} +2.81192i q^{72} -2.95764i q^{73} +7.39738 q^{74} +(2.79476 + 7.28772i) q^{75} -9.90571i q^{77} -14.4110i q^{78} -11.3370 q^{79} +(9.23163 - 1.70942i) q^{80} -6.99346 q^{81} -0.177860i q^{82} -15.6999i q^{83} -28.3634 q^{84} +(-0.271104 - 1.46408i) q^{85} +1.03293 q^{86} -5.61363i q^{87} +10.9787i q^{88} +1.33697 q^{89} +(-0.563139 - 3.04120i) q^{90} -16.9330 q^{91} +1.96818i q^{92} +10.6686i q^{93} -12.3370 q^{94} +0.509273 q^{96} -4.38638i q^{97} +32.6613i q^{98} +1.23817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} + 2 q^{5} + 12 q^{6} - 8 q^{9} - 6 q^{10} + 2 q^{11} - 22 q^{14} + 4 q^{15} + 14 q^{16} - 20 q^{20} + 20 q^{21} - 2 q^{24} + 6 q^{25} - 22 q^{26} + 12 q^{29} + 6 q^{30} + 30 q^{31} - 10 q^{34}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45620i 1.73680i −0.495866 0.868399i \(-0.665149\pi\)
0.495866 0.868399i \(-0.334851\pi\)
\(3\) 1.56104i 0.901270i 0.892708 + 0.450635i \(0.148802\pi\)
−0.892708 + 0.450635i \(0.851198\pi\)
\(4\) −4.03293 −2.01647
\(5\) 2.19869 0.407132i 0.983285 0.182075i
\(6\) 3.83424 1.56532
\(7\) 4.50527i 1.70283i −0.524490 0.851417i \(-0.675744\pi\)
0.524490 0.851417i \(-0.324256\pi\)
\(8\) 4.99330i 1.76540i
\(9\) 0.563139 0.187713
\(10\) −1.00000 5.40043i −0.316228 1.70777i
\(11\) 2.19869 0.662930 0.331465 0.943467i \(-0.392457\pi\)
0.331465 + 0.943467i \(0.392457\pi\)
\(12\) 6.29559i 1.81738i
\(13\) 3.75849i 1.04242i −0.853429 0.521209i \(-0.825481\pi\)
0.853429 0.521209i \(-0.174519\pi\)
\(14\) −11.0659 −2.95748
\(15\) 0.635552 + 3.43226i 0.164099 + 0.886205i
\(16\) 4.19869 1.04967
\(17\) 0.665886i 0.161501i −0.996734 0.0807506i \(-0.974268\pi\)
0.996734 0.0807506i \(-0.0257317\pi\)
\(18\) 1.38318i 0.326020i
\(19\) 0 0
\(20\) −8.86718 + 1.64194i −1.98276 + 0.367149i
\(21\) 7.03293 1.53471
\(22\) 5.40043i 1.15138i
\(23\) 0.488026i 0.101760i −0.998705 0.0508802i \(-0.983797\pi\)
0.998705 0.0508802i \(-0.0162027\pi\)
\(24\) −7.79476 −1.59110
\(25\) 4.66849 1.79032i 0.933697 0.358063i
\(26\) −9.23163 −1.81047
\(27\) 5.56222i 1.07045i
\(28\) 18.1695i 3.43371i
\(29\) −3.59607 −0.667774 −0.333887 0.942613i \(-0.608360\pi\)
−0.333887 + 0.942613i \(0.608360\pi\)
\(30\) 8.43032 1.56104i 1.53916 0.285006i
\(31\) 6.83424 1.22747 0.613733 0.789514i \(-0.289667\pi\)
0.613733 + 0.789514i \(0.289667\pi\)
\(32\) 0.326239i 0.0576714i
\(33\) 3.43226i 0.597479i
\(34\) −1.63555 −0.280495
\(35\) −1.83424 9.90571i −0.310044 1.67437i
\(36\) −2.27110 −0.378517
\(37\) 3.01171i 0.495123i 0.968872 + 0.247561i \(0.0796292\pi\)
−0.968872 + 0.247561i \(0.920371\pi\)
\(38\) 0 0
\(39\) 5.86718 0.939500
\(40\) 2.03293 + 10.9787i 0.321435 + 1.73589i
\(41\) 0.0724126 0.0113090 0.00565448 0.999984i \(-0.498200\pi\)
0.00565448 + 0.999984i \(0.498200\pi\)
\(42\) 17.2743i 2.66548i
\(43\) 0.420541i 0.0641319i 0.999486 + 0.0320660i \(0.0102087\pi\)
−0.999486 + 0.0320660i \(0.989791\pi\)
\(44\) −8.86718 −1.33678
\(45\) 1.23817 0.229272i 0.184575 0.0341779i
\(46\) −1.19869 −0.176737
\(47\) 5.02278i 0.732648i −0.930487 0.366324i \(-0.880616\pi\)
0.930487 0.366324i \(-0.119384\pi\)
\(48\) 6.55434i 0.946038i
\(49\) −13.2975 −1.89964
\(50\) −4.39738 11.4668i −0.621884 1.62164i
\(51\) 1.03948 0.145556
\(52\) 15.1578i 2.10200i
\(53\) 2.61799i 0.359609i 0.983702 + 0.179804i \(0.0575465\pi\)
−0.983702 + 0.179804i \(0.942454\pi\)
\(54\) 13.6619 1.85915
\(55\) 4.83424 0.895159i 0.651849 0.120703i
\(56\) 22.4962 3.00618
\(57\) 0 0
\(58\) 8.83269i 1.15979i
\(59\) −12.5357 −1.63200 −0.816002 0.578049i \(-0.803814\pi\)
−0.816002 + 0.578049i \(0.803814\pi\)
\(60\) −2.56314 13.8421i −0.330900 1.78700i
\(61\) 7.06587 0.904692 0.452346 0.891843i \(-0.350587\pi\)
0.452346 + 0.891843i \(0.350587\pi\)
\(62\) 16.7863i 2.13186i
\(63\) 2.53710i 0.319644i
\(64\) 7.59607 0.949509
\(65\) −1.53020 8.26377i −0.189799 1.02499i
\(66\) 8.43032 1.03770
\(67\) 5.72667i 0.699624i −0.936820 0.349812i \(-0.886245\pi\)
0.936820 0.349812i \(-0.113755\pi\)
\(68\) 2.68548i 0.325662i
\(69\) 0.761831 0.0917136
\(70\) −24.3304 + 4.50527i −2.90804 + 0.538483i
\(71\) 6.97252 0.827486 0.413743 0.910394i \(-0.364221\pi\)
0.413743 + 0.910394i \(0.364221\pi\)
\(72\) 2.81192i 0.331388i
\(73\) 2.95764i 0.346165i −0.984907 0.173083i \(-0.944627\pi\)
0.984907 0.173083i \(-0.0553728\pi\)
\(74\) 7.39738 0.859928
\(75\) 2.79476 + 7.28772i 0.322712 + 0.841513i
\(76\) 0 0
\(77\) 9.90571i 1.12886i
\(78\) 14.4110i 1.63172i
\(79\) −11.3370 −1.27551 −0.637755 0.770240i \(-0.720137\pi\)
−0.637755 + 0.770240i \(0.720137\pi\)
\(80\) 9.23163 1.70942i 1.03213 0.191119i
\(81\) −6.99346 −0.777051
\(82\) 0.177860i 0.0196414i
\(83\) 15.6999i 1.72328i −0.507517 0.861642i \(-0.669436\pi\)
0.507517 0.861642i \(-0.330564\pi\)
\(84\) −28.3634 −3.09470
\(85\) −0.271104 1.46408i −0.0294053 0.158802i
\(86\) 1.03293 0.111384
\(87\) 5.61363i 0.601845i
\(88\) 10.9787i 1.17034i
\(89\) 1.33697 0.141719 0.0708594 0.997486i \(-0.477426\pi\)
0.0708594 + 0.997486i \(0.477426\pi\)
\(90\) −0.563139 3.04120i −0.0593601 0.320570i
\(91\) −16.9330 −1.77507
\(92\) 1.96818i 0.205197i
\(93\) 10.6686i 1.10628i
\(94\) −12.3370 −1.27246
\(95\) 0 0
\(96\) 0.509273 0.0519775
\(97\) 4.38638i 0.445369i −0.974891 0.222685i \(-0.928518\pi\)
0.974891 0.222685i \(-0.0714820\pi\)
\(98\) 32.6613i 3.29929i
\(99\) 1.23817 0.124441
\(100\) −18.8277 + 7.22023i −1.88277 + 0.722023i
\(101\) −10.5686 −1.05161 −0.525807 0.850604i \(-0.676237\pi\)
−0.525807 + 0.850604i \(0.676237\pi\)
\(102\) 2.55317i 0.252801i
\(103\) 5.75615i 0.567171i 0.958947 + 0.283585i \(0.0915239\pi\)
−0.958947 + 0.283585i \(0.908476\pi\)
\(104\) 18.7673 1.84028
\(105\) 15.4633 2.86334i 1.50906 0.279433i
\(106\) 6.43032 0.624568
\(107\) 1.30229i 0.125897i 0.998017 + 0.0629486i \(0.0200504\pi\)
−0.998017 + 0.0629486i \(0.979950\pi\)
\(108\) 22.4321i 2.15853i
\(109\) 12.0329 1.15255 0.576273 0.817257i \(-0.304506\pi\)
0.576273 + 0.817257i \(0.304506\pi\)
\(110\) −2.19869 11.8739i −0.209637 1.13213i
\(111\) −4.70142 −0.446239
\(112\) 18.9163i 1.78742i
\(113\) 7.74626i 0.728707i 0.931261 + 0.364353i \(0.118710\pi\)
−0.931261 + 0.364353i \(0.881290\pi\)
\(114\) 0 0
\(115\) −0.198691 1.07302i −0.0185281 0.100060i
\(116\) 14.5027 1.34654
\(117\) 2.11656i 0.195676i
\(118\) 30.7901i 2.83446i
\(119\) −3.00000 −0.275010
\(120\) −17.1383 + 3.17350i −1.56450 + 0.289700i
\(121\) −6.16576 −0.560523
\(122\) 17.3552i 1.57127i
\(123\) 0.113039i 0.0101924i
\(124\) −27.5621 −2.47515
\(125\) 9.53566 5.83705i 0.852896 0.522081i
\(126\) −6.23163 −0.555157
\(127\) 3.93635i 0.349295i 0.984631 + 0.174647i \(0.0558786\pi\)
−0.984631 + 0.174647i \(0.944121\pi\)
\(128\) 19.3100i 1.70678i
\(129\) −0.656483 −0.0578001
\(130\) −20.2975 + 3.75849i −1.78021 + 0.329642i
\(131\) −16.3250 −1.42632 −0.713160 0.701002i \(-0.752737\pi\)
−0.713160 + 0.701002i \(0.752737\pi\)
\(132\) 13.8421i 1.20480i
\(133\) 0 0
\(134\) −14.0659 −1.21511
\(135\) 2.26456 + 12.2296i 0.194902 + 1.05256i
\(136\) 3.32497 0.285114
\(137\) 16.4306i 1.40376i 0.712296 + 0.701879i \(0.247655\pi\)
−0.712296 + 0.701879i \(0.752345\pi\)
\(138\) 1.87121i 0.159288i
\(139\) 2.66849 0.226338 0.113169 0.993576i \(-0.463900\pi\)
0.113169 + 0.993576i \(0.463900\pi\)
\(140\) 7.39738 + 39.9491i 0.625193 + 3.37631i
\(141\) 7.84079 0.660313
\(142\) 17.1259i 1.43718i
\(143\) 8.26377i 0.691051i
\(144\) 2.36445 0.197037
\(145\) −7.90666 + 1.46408i −0.656612 + 0.121585i
\(146\) −7.26456 −0.601219
\(147\) 20.7580i 1.71209i
\(148\) 12.1460i 0.998399i
\(149\) 17.9660 1.47183 0.735915 0.677074i \(-0.236752\pi\)
0.735915 + 0.677074i \(0.236752\pi\)
\(150\) 17.9001 6.86451i 1.46154 0.560485i
\(151\) −12.7344 −1.03631 −0.518154 0.855288i \(-0.673380\pi\)
−0.518154 + 0.855288i \(0.673380\pi\)
\(152\) 0 0
\(153\) 0.374987i 0.0303159i
\(154\) −24.3304 −1.96060
\(155\) 15.0264 2.78244i 1.20695 0.223491i
\(156\) −23.6619 −1.89447
\(157\) 20.0541i 1.60049i 0.599673 + 0.800245i \(0.295298\pi\)
−0.599673 + 0.800245i \(0.704702\pi\)
\(158\) 27.8459i 2.21530i
\(159\) −4.08680 −0.324104
\(160\) −0.132822 0.717298i −0.0105005 0.0567074i
\(161\) −2.19869 −0.173281
\(162\) 17.1773i 1.34958i
\(163\) 14.2331i 1.11482i −0.830236 0.557412i \(-0.811794\pi\)
0.830236 0.557412i \(-0.188206\pi\)
\(164\) −0.292035 −0.0228041
\(165\) 1.39738 + 7.54647i 0.108786 + 0.587492i
\(166\) −38.5621 −2.99300
\(167\) 5.61630i 0.434602i −0.976105 0.217301i \(-0.930275\pi\)
0.976105 0.217301i \(-0.0697253\pi\)
\(168\) 35.1176i 2.70938i
\(169\) −1.12628 −0.0866368
\(170\) −3.59607 + 0.665886i −0.275806 + 0.0510711i
\(171\) 0 0
\(172\) 1.69601i 0.129320i
\(173\) 10.6905i 0.812783i −0.913699 0.406391i \(-0.866787\pi\)
0.913699 0.406391i \(-0.133213\pi\)
\(174\) −13.7882 −1.04528
\(175\) −8.06587 21.0328i −0.609722 1.58993i
\(176\) 9.23163 0.695860
\(177\) 19.5687i 1.47088i
\(178\) 3.28388i 0.246137i
\(179\) −7.68942 −0.574734 −0.287367 0.957821i \(-0.592780\pi\)
−0.287367 + 0.957821i \(0.592780\pi\)
\(180\) −4.99346 + 0.924640i −0.372190 + 0.0689186i
\(181\) −6.12628 −0.455363 −0.227681 0.973736i \(-0.573114\pi\)
−0.227681 + 0.973736i \(0.573114\pi\)
\(182\) 41.5910i 3.08293i
\(183\) 11.0301i 0.815371i
\(184\) 2.43686 0.179648
\(185\) 1.22617 + 6.62183i 0.0901496 + 0.486847i
\(186\) 26.2042 1.92138
\(187\) 1.46408i 0.107064i
\(188\) 20.2565i 1.47736i
\(189\) 25.0593 1.82280
\(190\) 0 0
\(191\) 5.85517 0.423666 0.211833 0.977306i \(-0.432057\pi\)
0.211833 + 0.977306i \(0.432057\pi\)
\(192\) 11.8578i 0.855764i
\(193\) 2.59117i 0.186517i 0.995642 + 0.0932584i \(0.0297283\pi\)
−0.995642 + 0.0932584i \(0.970272\pi\)
\(194\) −10.7738 −0.773516
\(195\) 12.9001 2.38872i 0.923796 0.171060i
\(196\) 53.6279 3.83057
\(197\) 19.8628i 1.41517i 0.706629 + 0.707584i \(0.250215\pi\)
−0.706629 + 0.707584i \(0.749785\pi\)
\(198\) 3.04120i 0.216128i
\(199\) 12.7618 0.904662 0.452331 0.891850i \(-0.350593\pi\)
0.452331 + 0.891850i \(0.350593\pi\)
\(200\) 8.93959 + 23.3112i 0.632124 + 1.64835i
\(201\) 8.93959 0.630550
\(202\) 25.9586i 1.82644i
\(203\) 16.2013i 1.13711i
\(204\) −4.19215 −0.293509
\(205\) 0.159213 0.0294815i 0.0111199 0.00205908i
\(206\) 14.1383 0.985061
\(207\) 0.274827i 0.0191018i
\(208\) 15.7808i 1.09420i
\(209\) 0 0
\(210\) −7.03293 37.9809i −0.485319 2.62093i
\(211\) 13.8552 0.953830 0.476915 0.878950i \(-0.341755\pi\)
0.476915 + 0.878950i \(0.341755\pi\)
\(212\) 10.5582i 0.725139i
\(213\) 10.8844i 0.745788i
\(214\) 3.19869 0.218658
\(215\) 0.171216 + 0.924640i 0.0116768 + 0.0630599i
\(216\) −27.7738 −1.88977
\(217\) 30.7901i 2.09017i
\(218\) 29.5553i 2.00174i
\(219\) 4.61701 0.311988
\(220\) −19.4962 + 3.61012i −1.31443 + 0.243394i
\(221\) −2.50273 −0.168352
\(222\) 11.5476i 0.775027i
\(223\) 21.6960i 1.45287i −0.687233 0.726437i \(-0.741175\pi\)
0.687233 0.726437i \(-0.258825\pi\)
\(224\) −1.46980 −0.0982048
\(225\) 2.62901 1.00820i 0.175267 0.0672132i
\(226\) 19.0264 1.26562
\(227\) 8.19628i 0.544006i 0.962296 + 0.272003i \(0.0876861\pi\)
−0.962296 + 0.272003i \(0.912314\pi\)
\(228\) 0 0
\(229\) 16.6619 1.10105 0.550526 0.834818i \(-0.314427\pi\)
0.550526 + 0.834818i \(0.314427\pi\)
\(230\) −2.63555 + 0.488026i −0.173783 + 0.0321795i
\(231\) 15.4633 1.01741
\(232\) 17.9563i 1.17889i
\(233\) 12.2135i 0.800135i −0.916486 0.400068i \(-0.868987\pi\)
0.916486 0.400068i \(-0.131013\pi\)
\(234\) −5.19869 −0.339849
\(235\) −2.04494 11.0435i −0.133397 0.720402i
\(236\) 50.5555 3.29088
\(237\) 17.6975i 1.14958i
\(238\) 7.36861i 0.477636i
\(239\) −2.03948 −0.131923 −0.0659614 0.997822i \(-0.521011\pi\)
−0.0659614 + 0.997822i \(0.521011\pi\)
\(240\) 2.66849 + 14.4110i 0.172250 + 0.930225i
\(241\) 17.5237 1.12880 0.564399 0.825502i \(-0.309108\pi\)
0.564399 + 0.825502i \(0.309108\pi\)
\(242\) 15.1444i 0.973516i
\(243\) 5.76956i 0.370118i
\(244\) −28.4962 −1.82428
\(245\) −29.2371 + 5.41384i −1.86789 + 0.345878i
\(246\) 0.277648 0.0177022
\(247\) 0 0
\(248\) 34.1254i 2.16697i
\(249\) 24.5082 1.55314
\(250\) −14.3370 23.4215i −0.906750 1.48131i
\(251\) −3.33806 −0.210696 −0.105348 0.994435i \(-0.533596\pi\)
−0.105348 + 0.994435i \(0.533596\pi\)
\(252\) 10.2319i 0.644552i
\(253\) 1.07302i 0.0674601i
\(254\) 9.66849 0.606655
\(255\) 2.28549 0.423205i 0.143123 0.0265021i
\(256\) −32.2371 −2.01482
\(257\) 27.5845i 1.72067i −0.509726 0.860337i \(-0.670253\pi\)
0.509726 0.860337i \(-0.329747\pi\)
\(258\) 1.61246i 0.100387i
\(259\) 13.5686 0.843112
\(260\) 6.17122 + 33.3272i 0.382723 + 2.06687i
\(261\) −2.02509 −0.125350
\(262\) 40.0974i 2.47723i
\(263\) 13.6262i 0.840227i 0.907471 + 0.420114i \(0.138010\pi\)
−0.907471 + 0.420114i \(0.861990\pi\)
\(264\) −17.1383 −1.05479
\(265\) 1.06587 + 5.75615i 0.0654758 + 0.353598i
\(266\) 0 0
\(267\) 2.08707i 0.127727i
\(268\) 23.0953i 1.41077i
\(269\) 3.60808 0.219988 0.109994 0.993932i \(-0.464917\pi\)
0.109994 + 0.993932i \(0.464917\pi\)
\(270\) 30.0384 5.56222i 1.82808 0.338506i
\(271\) 10.5631 0.641665 0.320833 0.947136i \(-0.396037\pi\)
0.320833 + 0.947136i \(0.396037\pi\)
\(272\) 2.79585i 0.169523i
\(273\) 26.4332i 1.59981i
\(274\) 40.3568 2.43804
\(275\) 10.2646 3.93635i 0.618976 0.237371i
\(276\) −3.07241 −0.184938
\(277\) 6.73487i 0.404659i −0.979317 0.202330i \(-0.935149\pi\)
0.979317 0.202330i \(-0.0648512\pi\)
\(278\) 6.55434i 0.393103i
\(279\) 3.84863 0.230412
\(280\) 49.4622 9.15893i 2.95593 0.547351i
\(281\) 23.4303 1.39774 0.698868 0.715251i \(-0.253688\pi\)
0.698868 + 0.715251i \(0.253688\pi\)
\(282\) 19.2586i 1.14683i
\(283\) 14.6831i 0.872822i 0.899747 + 0.436411i \(0.143751\pi\)
−0.899747 + 0.436411i \(0.856249\pi\)
\(284\) −28.1197 −1.66860
\(285\) 0 0
\(286\) −20.2975 −1.20022
\(287\) 0.326239i 0.0192573i
\(288\) 0.183718i 0.0108257i
\(289\) 16.5566 0.973917
\(290\) 3.59607 + 19.4204i 0.211169 + 1.14040i
\(291\) 6.84733 0.401398
\(292\) 11.9280i 0.698031i
\(293\) 18.1855i 1.06241i 0.847243 + 0.531206i \(0.178261\pi\)
−0.847243 + 0.531206i \(0.821739\pi\)
\(294\) −50.9858 −2.97355
\(295\) −27.5621 + 5.10368i −1.60472 + 0.297147i
\(296\) −15.0384 −0.874089
\(297\) 12.2296i 0.709634i
\(298\) 44.1281i 2.55627i
\(299\) −1.83424 −0.106077
\(300\) −11.2711 29.3909i −0.650737 1.69688i
\(301\) 1.89465 0.109206
\(302\) 31.2782i 1.79986i
\(303\) 16.4981i 0.947788i
\(304\) 0 0
\(305\) 15.5357 2.87674i 0.889570 0.164722i
\(306\) −0.921044 −0.0526526
\(307\) 29.3801i 1.67681i 0.545045 + 0.838406i \(0.316512\pi\)
−0.545045 + 0.838406i \(0.683488\pi\)
\(308\) 39.9491i 2.27631i
\(309\) −8.98561 −0.511174
\(310\) −6.83424 36.9079i −0.388159 2.09623i
\(311\) −0.193232 −0.0109572 −0.00547859 0.999985i \(-0.501744\pi\)
−0.00547859 + 0.999985i \(0.501744\pi\)
\(312\) 29.2966i 1.65859i
\(313\) 21.2755i 1.20256i 0.799038 + 0.601281i \(0.205343\pi\)
−0.799038 + 0.601281i \(0.794657\pi\)
\(314\) 49.2569 2.77973
\(315\) −1.03293 5.57829i −0.0581993 0.314301i
\(316\) 45.7213 2.57202
\(317\) 19.1701i 1.07670i 0.842721 + 0.538351i \(0.180952\pi\)
−0.842721 + 0.538351i \(0.819048\pi\)
\(318\) 10.0380i 0.562904i
\(319\) −7.90666 −0.442688
\(320\) 16.7014 3.09261i 0.933638 0.172882i
\(321\) −2.03293 −0.113467
\(322\) 5.40043i 0.300954i
\(323\) 0 0
\(324\) 28.2042 1.56690
\(325\) −6.72890 17.5465i −0.373252 0.973304i
\(326\) −34.9594 −1.93622
\(327\) 18.7839i 1.03875i
\(328\) 0.361578i 0.0199648i
\(329\) −22.6290 −1.24758
\(330\) 18.5357 3.43226i 1.02035 0.188939i
\(331\) −20.6070 −1.13266 −0.566331 0.824178i \(-0.691638\pi\)
−0.566331 + 0.824178i \(0.691638\pi\)
\(332\) 63.3165i 3.47495i
\(333\) 1.69601i 0.0929410i
\(334\) −13.7948 −0.754816
\(335\) −2.33151 12.5912i −0.127384 0.687930i
\(336\) 29.5291 1.61095
\(337\) 10.2074i 0.556030i −0.960577 0.278015i \(-0.910324\pi\)
0.960577 0.278015i \(-0.0896765\pi\)
\(338\) 2.76637i 0.150471i
\(339\) −12.0923 −0.656761
\(340\) 1.09334 + 5.90453i 0.0592949 + 0.320218i
\(341\) 15.0264 0.813725
\(342\) 0 0
\(343\) 28.3719i 1.53194i
\(344\) −2.09989 −0.113218
\(345\) 1.67503 0.310166i 0.0901806 0.0166988i
\(346\) −26.2580 −1.41164
\(347\) 5.44110i 0.292094i 0.989278 + 0.146047i \(0.0466550\pi\)
−0.989278 + 0.146047i \(0.953345\pi\)
\(348\) 22.6394i 1.21360i
\(349\) 1.55114 0.0830304 0.0415152 0.999138i \(-0.486781\pi\)
0.0415152 + 0.999138i \(0.486781\pi\)
\(350\) −51.6609 + 19.8114i −2.76139 + 1.05896i
\(351\) 20.9056 1.11586
\(352\) 0.717298i 0.0382321i
\(353\) 32.9335i 1.75287i 0.481517 + 0.876437i \(0.340086\pi\)
−0.481517 + 0.876437i \(0.659914\pi\)
\(354\) −48.0648 −2.55461
\(355\) 15.3304 2.83874i 0.813655 0.150665i
\(356\) −5.39192 −0.285771
\(357\) 4.68313i 0.247858i
\(358\) 18.8868i 0.998197i
\(359\) 3.49727 0.184579 0.0922894 0.995732i \(-0.470581\pi\)
0.0922894 + 0.995732i \(0.470581\pi\)
\(360\) 1.14483 + 6.18255i 0.0603376 + 0.325849i
\(361\) 0 0
\(362\) 15.0474i 0.790873i
\(363\) 9.62502i 0.505183i
\(364\) 68.2899 3.57936
\(365\) −1.20415 6.50293i −0.0630281 0.340379i
\(366\) 27.0923 1.41614
\(367\) 19.5039i 1.01810i 0.860738 + 0.509048i \(0.170002\pi\)
−0.860738 + 0.509048i \(0.829998\pi\)
\(368\) 2.04907i 0.106815i
\(369\) 0.0407784 0.00212284
\(370\) 16.2646 3.01171i 0.845554 0.156572i
\(371\) 11.7948 0.612354
\(372\) 43.0256i 2.23077i
\(373\) 23.5158i 1.21760i −0.793322 0.608802i \(-0.791650\pi\)
0.793322 0.608802i \(-0.208350\pi\)
\(374\) −3.59607 −0.185949
\(375\) 9.11189 + 14.8856i 0.470536 + 0.768689i
\(376\) 25.0803 1.29342
\(377\) 13.5158i 0.696100i
\(378\) 61.5508i 3.16583i
\(379\) 7.05148 0.362210 0.181105 0.983464i \(-0.442033\pi\)
0.181105 + 0.983464i \(0.442033\pi\)
\(380\) 0 0
\(381\) −6.14483 −0.314809
\(382\) 14.3815i 0.735822i
\(383\) 3.08409i 0.157589i −0.996891 0.0787947i \(-0.974893\pi\)
0.996891 0.0787947i \(-0.0251072\pi\)
\(384\) 30.1437 1.53827
\(385\) −4.03293 21.7796i −0.205537 1.10999i
\(386\) 6.36445 0.323942
\(387\) 0.236823i 0.0120384i
\(388\) 17.6900i 0.898072i
\(389\) −9.39084 −0.476134 −0.238067 0.971249i \(-0.576514\pi\)
−0.238067 + 0.971249i \(0.576514\pi\)
\(390\) −5.86718 31.6853i −0.297096 1.60445i
\(391\) −0.324970 −0.0164344
\(392\) 66.3984i 3.35362i
\(393\) 25.4840i 1.28550i
\(394\) 48.7871 2.45786
\(395\) −24.9265 + 4.61565i −1.25419 + 0.232239i
\(396\) −4.99346 −0.250931
\(397\) 26.7595i 1.34302i −0.740996 0.671510i \(-0.765646\pi\)
0.740996 0.671510i \(-0.234354\pi\)
\(398\) 31.3456i 1.57122i
\(399\) 0 0
\(400\) 19.6015 7.51699i 0.980077 0.375849i
\(401\) −25.1701 −1.25694 −0.628468 0.777835i \(-0.716318\pi\)
−0.628468 + 0.777835i \(0.716318\pi\)
\(402\) 21.9575i 1.09514i
\(403\) 25.6865i 1.27953i
\(404\) 42.6225 2.12055
\(405\) −15.3765 + 2.84726i −0.764062 + 0.141482i
\(406\) 39.7937 1.97493
\(407\) 6.62183i 0.328232i
\(408\) 5.19043i 0.256964i
\(409\) 28.3215 1.40041 0.700204 0.713943i \(-0.253092\pi\)
0.700204 + 0.713943i \(0.253092\pi\)
\(410\) −0.0724126 0.391060i −0.00357621 0.0193131i
\(411\) −25.6489 −1.26516
\(412\) 23.2142i 1.14368i
\(413\) 56.4766i 2.77903i
\(414\) −0.675030 −0.0331759
\(415\) −6.39192 34.5192i −0.313767 1.69448i
\(416\) −1.22617 −0.0601178
\(417\) 4.16563i 0.203992i
\(418\) 0 0
\(419\) −13.0449 −0.637287 −0.318643 0.947875i \(-0.603227\pi\)
−0.318643 + 0.947875i \(0.603227\pi\)
\(420\) −62.3623 + 11.5476i −3.04297 + 0.563467i
\(421\) 3.32497 0.162049 0.0810246 0.996712i \(-0.474181\pi\)
0.0810246 + 0.996712i \(0.474181\pi\)
\(422\) 34.0311i 1.65661i
\(423\) 2.82853i 0.137528i
\(424\) −13.0724 −0.634852
\(425\) −1.19215 3.10868i −0.0578276 0.150793i
\(426\) 26.7344 1.29528
\(427\) 31.8337i 1.54054i
\(428\) 5.25205i 0.253868i
\(429\) 12.9001 0.622823
\(430\) 2.27110 0.420541i 0.109522 0.0202803i
\(431\) 0.0484069 0.00233168 0.00116584 0.999999i \(-0.499629\pi\)
0.00116584 + 0.999999i \(0.499629\pi\)
\(432\) 23.3540i 1.12362i
\(433\) 9.56872i 0.459844i 0.973209 + 0.229922i \(0.0738470\pi\)
−0.973209 + 0.229922i \(0.926153\pi\)
\(434\) −75.6268 −3.63020
\(435\) −2.28549 12.3426i −0.109581 0.591784i
\(436\) −48.5280 −2.32407
\(437\) 0 0
\(438\) 11.3403i 0.541861i
\(439\) 22.2515 1.06200 0.531002 0.847370i \(-0.321816\pi\)
0.531002 + 0.847370i \(0.321816\pi\)
\(440\) 4.46980 + 24.1388i 0.213089 + 1.15077i
\(441\) −7.48834 −0.356588
\(442\) 6.14721i 0.292393i
\(443\) 20.1157i 0.955727i −0.878434 0.477863i \(-0.841411\pi\)
0.878434 0.477863i \(-0.158589\pi\)
\(444\) 18.9605 0.899827
\(445\) 2.93959 0.544325i 0.139350 0.0258035i
\(446\) −53.2899 −2.52335
\(447\) 28.0457i 1.32652i
\(448\) 34.2224i 1.61686i
\(449\) 12.4973 0.589783 0.294891 0.955531i \(-0.404717\pi\)
0.294891 + 0.955531i \(0.404717\pi\)
\(450\) −2.47634 6.45738i −0.116736 0.304404i
\(451\) 0.159213 0.00749705
\(452\) 31.2402i 1.46941i
\(453\) 19.8789i 0.933992i
\(454\) 20.1317 0.944829
\(455\) −37.2305 + 6.89399i −1.74539 + 0.323195i
\(456\) 0 0
\(457\) 28.3179i 1.32465i −0.749215 0.662327i \(-0.769569\pi\)
0.749215 0.662327i \(-0.230431\pi\)
\(458\) 40.9251i 1.91231i
\(459\) 3.70381 0.172879
\(460\) 0.801309 + 4.32741i 0.0373612 + 0.201767i
\(461\) 5.31951 0.247754 0.123877 0.992298i \(-0.460467\pi\)
0.123877 + 0.992298i \(0.460467\pi\)
\(462\) 37.9809i 1.76703i
\(463\) 17.9327i 0.833401i 0.909044 + 0.416701i \(0.136814\pi\)
−0.909044 + 0.416701i \(0.863186\pi\)
\(464\) −15.0988 −0.700944
\(465\) 4.34352 + 23.4569i 0.201426 + 1.08779i
\(466\) −29.9989 −1.38967
\(467\) 28.7791i 1.33174i 0.746069 + 0.665868i \(0.231939\pi\)
−0.746069 + 0.665868i \(0.768061\pi\)
\(468\) 8.53593i 0.394574i
\(469\) −25.8002 −1.19134
\(470\) −27.1252 + 5.02278i −1.25119 + 0.231684i
\(471\) −31.3053 −1.44247
\(472\) 62.5943i 2.88114i
\(473\) 0.924640i 0.0425150i
\(474\) −43.4687 −1.99658
\(475\) 0 0
\(476\) 12.0988 0.554548
\(477\) 1.47429i 0.0675033i
\(478\) 5.00937i 0.229123i
\(479\) 8.05148 0.367882 0.183941 0.982937i \(-0.441115\pi\)
0.183941 + 0.982937i \(0.441115\pi\)
\(480\) 1.11973 0.207342i 0.0511087 0.00946381i
\(481\) 11.3195 0.516125
\(482\) 43.0417i 1.96049i
\(483\) 3.43226i 0.156173i
\(484\) 24.8661 1.13028
\(485\) −1.78584 9.64429i −0.0810907 0.437925i
\(486\) 14.1712 0.642819
\(487\) 1.09761i 0.0497376i 0.999691 + 0.0248688i \(0.00791680\pi\)
−0.999691 + 0.0248688i \(0.992083\pi\)
\(488\) 35.2820i 1.59714i
\(489\) 22.2185 1.00476
\(490\) 13.2975 + 71.8122i 0.600720 + 3.24415i
\(491\) 13.1053 0.591436 0.295718 0.955275i \(-0.404441\pi\)
0.295718 + 0.955275i \(0.404441\pi\)
\(492\) 0.455880i 0.0205527i
\(493\) 2.39458i 0.107846i
\(494\) 0 0
\(495\) 2.72235 0.504099i 0.122361 0.0226576i
\(496\) 28.6949 1.28844
\(497\) 31.4131i 1.40907i
\(498\) 60.1971i 2.69750i
\(499\) −24.1407 −1.08068 −0.540342 0.841445i \(-0.681705\pi\)
−0.540342 + 0.841445i \(0.681705\pi\)
\(500\) −38.4567 + 23.5404i −1.71984 + 1.05276i
\(501\) 8.76729 0.391694
\(502\) 8.19895i 0.365937i
\(503\) 18.9618i 0.845465i 0.906254 + 0.422733i \(0.138929\pi\)
−0.906254 + 0.422733i \(0.861071\pi\)
\(504\) 12.6685 0.564299
\(505\) −23.2371 + 4.30282i −1.03404 + 0.191473i
\(506\) −2.63555 −0.117165
\(507\) 1.75817i 0.0780831i
\(508\) 15.8751i 0.704342i
\(509\) −21.9605 −0.973383 −0.486692 0.873574i \(-0.661796\pi\)
−0.486692 + 0.873574i \(0.661796\pi\)
\(510\) −1.03948 5.61363i −0.0460289 0.248576i
\(511\) −13.3250 −0.589462
\(512\) 40.5609i 1.79255i
\(513\) 0 0
\(514\) −67.7531 −2.98846
\(515\) 2.34352 + 12.6560i 0.103268 + 0.557690i
\(516\) 2.64755 0.116552
\(517\) 11.0435i 0.485695i
\(518\) 33.3272i 1.46431i
\(519\) 16.6883 0.732537
\(520\) 41.2635 7.64077i 1.80952 0.335070i
\(521\) 6.56968 0.287823 0.143912 0.989591i \(-0.454032\pi\)
0.143912 + 0.989591i \(0.454032\pi\)
\(522\) 4.97403i 0.217708i
\(523\) 4.19777i 0.183556i −0.995780 0.0917779i \(-0.970745\pi\)
0.995780 0.0917779i \(-0.0292550\pi\)
\(524\) 65.8375 2.87613
\(525\) 32.8332 12.5912i 1.43296 0.549524i
\(526\) 33.4687 1.45931
\(527\) 4.55083i 0.198237i
\(528\) 14.4110i 0.627157i
\(529\) 22.7618 0.989645
\(530\) 14.1383 2.61799i 0.614128 0.113718i
\(531\) −7.05933 −0.306349
\(532\) 0 0
\(533\) 0.272162i 0.0117887i
\(534\) 5.12628 0.221836
\(535\) 0.530205 + 2.86334i 0.0229228 + 0.123793i
\(536\) 28.5950 1.23512
\(537\) 12.0035i 0.517990i
\(538\) 8.86217i 0.382075i
\(539\) −29.2371 −1.25933
\(540\) −9.13282 49.3212i −0.393014 2.12245i
\(541\) −4.63009 −0.199063 −0.0995316 0.995034i \(-0.531734\pi\)
−0.0995316 + 0.995034i \(0.531734\pi\)
\(542\) 25.9452i 1.11444i
\(543\) 9.56340i 0.410405i
\(544\) −0.217238 −0.00931400
\(545\) 26.4567 4.89900i 1.13328 0.209850i
\(546\) −64.9254 −2.77855
\(547\) 38.0399i 1.62647i −0.581938 0.813233i \(-0.697705\pi\)
0.581938 0.813233i \(-0.302295\pi\)
\(548\) 66.2634i 2.83063i
\(549\) 3.97907 0.169823
\(550\) −9.66849 25.2118i −0.412266 1.07504i
\(551\) 0 0
\(552\) 3.80405i 0.161911i
\(553\) 51.0762i 2.17198i
\(554\) −16.5422 −0.702811
\(555\) −10.3370 + 1.91410i −0.438780 + 0.0812491i
\(556\) −10.7618 −0.456403
\(557\) 36.4306i 1.54361i 0.635857 + 0.771807i \(0.280647\pi\)
−0.635857 + 0.771807i \(0.719353\pi\)
\(558\) 9.45302i 0.400178i
\(559\) 1.58060 0.0668523
\(560\) −7.70142 41.5910i −0.325444 1.75754i
\(561\) 2.28549 0.0964935
\(562\) 57.5496i 2.42758i
\(563\) 20.6856i 0.871795i −0.899996 0.435897i \(-0.856431\pi\)
0.899996 0.435897i \(-0.143569\pi\)
\(564\) −31.6214 −1.33150
\(565\) 3.15375 + 17.0316i 0.132679 + 0.716526i
\(566\) 36.0648 1.51592
\(567\) 31.5074i 1.32319i
\(568\) 34.8159i 1.46084i
\(569\) 27.1132 1.13664 0.568322 0.822806i \(-0.307593\pi\)
0.568322 + 0.822806i \(0.307593\pi\)
\(570\) 0 0
\(571\) 46.4687 1.94466 0.972328 0.233622i \(-0.0750578\pi\)
0.972328 + 0.233622i \(0.0750578\pi\)
\(572\) 33.3272i 1.39348i
\(573\) 9.14019i 0.381837i
\(574\) −0.801309 −0.0334460
\(575\) −0.873721 2.27834i −0.0364367 0.0950135i
\(576\) 4.27765 0.178235
\(577\) 18.0398i 0.751008i 0.926821 + 0.375504i \(0.122530\pi\)
−0.926821 + 0.375504i \(0.877470\pi\)
\(578\) 40.6664i 1.69150i
\(579\) −4.04494 −0.168102
\(580\) 31.8870 5.90453i 1.32404 0.245172i
\(581\) −70.7322 −2.93447
\(582\) 16.8184i 0.697147i
\(583\) 5.75615i 0.238395i
\(584\) 14.7684 0.611120
\(585\) −0.861719 4.65365i −0.0356277 0.192405i
\(586\) 44.6674 1.84519
\(587\) 26.0337i 1.07452i 0.843415 + 0.537262i \(0.180541\pi\)
−0.843415 + 0.537262i \(0.819459\pi\)
\(588\) 83.7156i 3.45237i
\(589\) 0 0
\(590\) 12.5357 + 67.6980i 0.516085 + 2.78708i
\(591\) −31.0068 −1.27545
\(592\) 12.6453i 0.519717i
\(593\) 18.1561i 0.745580i 0.927916 + 0.372790i \(0.121599\pi\)
−0.927916 + 0.372790i \(0.878401\pi\)
\(594\) 30.0384 1.23249
\(595\) −6.59607 + 1.22140i −0.270413 + 0.0500724i
\(596\) −72.4556 −2.96790
\(597\) 19.9218i 0.815345i
\(598\) 4.50527i 0.184234i
\(599\) −40.0713 −1.63727 −0.818635 0.574314i \(-0.805269\pi\)
−0.818635 + 0.574314i \(0.805269\pi\)
\(600\) −36.3898 + 13.9551i −1.48561 + 0.569715i
\(601\) 15.0473 0.613793 0.306897 0.951743i \(-0.400709\pi\)
0.306897 + 0.951743i \(0.400709\pi\)
\(602\) 4.65365i 0.189669i
\(603\) 3.22491i 0.131329i
\(604\) 51.3568 2.08968
\(605\) −13.5566 + 2.51028i −0.551154 + 0.102057i
\(606\) −40.5226 −1.64612
\(607\) 29.3860i 1.19274i −0.802709 0.596370i \(-0.796609\pi\)
0.802709 0.596370i \(-0.203391\pi\)
\(608\) 0 0
\(609\) −25.2910 −1.02484
\(610\) −7.06587 38.1587i −0.286089 1.54500i
\(611\) −18.8781 −0.763726
\(612\) 1.51230i 0.0611310i
\(613\) 34.7078i 1.40183i 0.713243 + 0.700917i \(0.247225\pi\)
−0.713243 + 0.700917i \(0.752775\pi\)
\(614\) 72.1636 2.91229
\(615\) 0.0460220 + 0.248539i 0.00185579 + 0.0100220i
\(616\) 49.4622 1.99289
\(617\) 10.7275i 0.431874i 0.976407 + 0.215937i \(0.0692805\pi\)
−0.976407 + 0.215937i \(0.930719\pi\)
\(618\) 22.0705i 0.887805i
\(619\) 36.1437 1.45274 0.726370 0.687304i \(-0.241206\pi\)
0.726370 + 0.687304i \(0.241206\pi\)
\(620\) −60.6004 + 11.2214i −2.43377 + 0.450663i
\(621\) 2.71451 0.108929
\(622\) 0.474617i 0.0190304i
\(623\) 6.02343i 0.241324i
\(624\) 24.6345 0.986168
\(625\) 18.5895 16.7161i 0.743581 0.668646i
\(626\) 52.2569 2.08861
\(627\) 0 0
\(628\) 80.8768i 3.22734i
\(629\) 2.00546 0.0799629
\(630\) −13.7014 + 2.53710i −0.545878 + 0.101080i
\(631\) −31.5764 −1.25704 −0.628519 0.777794i \(-0.716339\pi\)
−0.628519 + 0.777794i \(0.716339\pi\)
\(632\) 56.6089i 2.25178i
\(633\) 21.6285i 0.859658i
\(634\) 47.0857 1.87001
\(635\) 1.60262 + 8.65483i 0.0635979 + 0.343456i
\(636\) 16.4818 0.653546
\(637\) 49.9786i 1.98022i
\(638\) 19.4204i 0.768859i
\(639\) 3.92650 0.155330
\(640\) −7.86172 42.4567i −0.310762 1.67825i
\(641\) 19.8266 0.783104 0.391552 0.920156i \(-0.371938\pi\)
0.391552 + 0.920156i \(0.371938\pi\)
\(642\) 4.99330i 0.197070i
\(643\) 13.4569i 0.530687i −0.964154 0.265343i \(-0.914515\pi\)
0.964154 0.265343i \(-0.0854853\pi\)
\(644\) 8.86718 0.349416
\(645\) −1.44340 + 0.267276i −0.0568340 + 0.0105240i
\(646\) 0 0
\(647\) 4.19511i 0.164927i 0.996594 + 0.0824634i \(0.0262787\pi\)
−0.996594 + 0.0824634i \(0.973721\pi\)
\(648\) 34.9204i 1.37180i
\(649\) −27.5621 −1.08191
\(650\) −43.0977 + 16.5275i −1.69043 + 0.648263i
\(651\) 48.0648 1.88381
\(652\) 57.4012i 2.24801i
\(653\) 12.1680i 0.476170i 0.971244 + 0.238085i \(0.0765196\pi\)
−0.971244 + 0.238085i \(0.923480\pi\)
\(654\) 46.1372 1.80411
\(655\) −35.8936 + 6.64642i −1.40248 + 0.259697i
\(656\) 0.304038 0.0118707
\(657\) 1.66556i 0.0649798i
\(658\) 55.5814i 2.16679i
\(659\) −8.24471 −0.321168 −0.160584 0.987022i \(-0.551338\pi\)
−0.160584 + 0.987022i \(0.551338\pi\)
\(660\) −5.63555 30.4344i −0.219364 1.18466i
\(661\) 21.1197 0.821462 0.410731 0.911756i \(-0.365273\pi\)
0.410731 + 0.911756i \(0.365273\pi\)
\(662\) 50.6150i 1.96721i
\(663\) 3.90687i 0.151730i
\(664\) 78.3941 3.04228
\(665\) 0 0
\(666\) 4.16576 0.161420
\(667\) 1.75498i 0.0679530i
\(668\) 22.6502i 0.876361i
\(669\) 33.8685 1.30943
\(670\) −30.9265 + 5.72667i −1.19480 + 0.221241i
\(671\) 15.5357 0.599748
\(672\) 2.29442i 0.0885090i
\(673\) 30.2802i 1.16722i 0.812036 + 0.583608i \(0.198359\pi\)
−0.812036 + 0.583608i \(0.801641\pi\)
\(674\) −25.0713 −0.965711
\(675\) 9.95814 + 25.9671i 0.383289 + 0.999476i
\(676\) 4.54221 0.174700
\(677\) 49.9003i 1.91783i 0.283701 + 0.958913i \(0.408438\pi\)
−0.283701 + 0.958913i \(0.591562\pi\)
\(678\) 29.7010i 1.14066i
\(679\) −19.7618 −0.758389
\(680\) 7.31058 1.35370i 0.280348 0.0519121i
\(681\) −12.7948 −0.490296
\(682\) 36.9079i 1.41328i
\(683\) 3.11357i 0.119137i −0.998224 0.0595687i \(-0.981027\pi\)
0.998224 0.0595687i \(-0.0189725\pi\)
\(684\) 0 0
\(685\) 6.68942 + 36.1258i 0.255590 + 1.38029i
\(686\) 69.6872 2.66067
\(687\) 26.0100i 0.992345i
\(688\) 1.76572i 0.0673175i
\(689\) 9.83970 0.374863
\(690\) −0.761831 4.11421i −0.0290024 0.156625i
\(691\) −30.2831 −1.15202 −0.576012 0.817441i \(-0.695392\pi\)
−0.576012 + 0.817441i \(0.695392\pi\)
\(692\) 43.1140i 1.63895i
\(693\) 5.57829i 0.211902i
\(694\) 13.3644 0.507308
\(695\) 5.86718 1.08643i 0.222555 0.0412105i
\(696\) 28.0305 1.06250
\(697\) 0.0482186i 0.00182641i
\(698\) 3.80991i 0.144207i
\(699\) 19.0659 0.721137
\(700\) 32.5291 + 84.8239i 1.22949 + 3.20604i
\(701\) 44.5699 1.68338 0.841691 0.539960i \(-0.181561\pi\)
0.841691 + 0.539960i \(0.181561\pi\)
\(702\) 51.3483i 1.93802i
\(703\) 0 0
\(704\) 16.7014 0.629458
\(705\) 17.2395 3.19224i 0.649276 0.120227i
\(706\) 80.8914 3.04439
\(707\) 47.6144i 1.79073i
\(708\) 78.9194i 2.96597i
\(709\) −9.34352 −0.350903 −0.175452 0.984488i \(-0.556139\pi\)
−0.175452 + 0.984488i \(0.556139\pi\)
\(710\) −6.97252 37.6546i −0.261674 1.41315i
\(711\) −6.38429 −0.239430
\(712\) 6.67591i 0.250190i
\(713\) 3.33529i 0.124908i
\(714\) −11.5027 −0.430479
\(715\) −3.36445 18.1695i −0.125823 0.679500i
\(716\) 31.0109 1.15893
\(717\) 3.18372i 0.118898i
\(718\) 8.59001i 0.320576i
\(719\) −25.3974 −0.947163 −0.473581 0.880750i \(-0.657039\pi\)
−0.473581 + 0.880750i \(0.657039\pi\)
\(720\) 5.19869 0.962643i 0.193744 0.0358756i
\(721\) 25.9330 0.965797
\(722\) 0 0
\(723\) 27.3552i 1.01735i
\(724\) 24.7069 0.918224
\(725\) −16.7882 + 6.43811i −0.623499 + 0.239105i
\(726\) −23.6410 −0.877400
\(727\) 31.4377i 1.16596i −0.812486 0.582980i \(-0.801886\pi\)
0.812486 0.582980i \(-0.198114\pi\)
\(728\) 84.5518i 3.13370i
\(729\) −29.9869 −1.11063
\(730\) −15.9725 + 2.95764i −0.591170 + 0.109467i
\(731\) 0.280033 0.0103574
\(732\) 44.4838i 1.64417i
\(733\) 25.3946i 0.937971i 0.883206 + 0.468985i \(0.155380\pi\)
−0.883206 + 0.468985i \(0.844620\pi\)
\(734\) 47.9056 1.76823
\(735\) −8.45125 45.6404i −0.311729 1.68347i
\(736\) −0.159213 −0.00586867
\(737\) 12.5912i 0.463802i
\(738\) 0.100160i 0.00368694i
\(739\) −35.5082 −1.30619 −0.653095 0.757276i \(-0.726530\pi\)
−0.653095 + 0.757276i \(0.726530\pi\)
\(740\) −4.94505 26.7054i −0.181784 0.981710i
\(741\) 0 0
\(742\) 28.9703i 1.06353i
\(743\) 17.1099i 0.627700i −0.949473 0.313850i \(-0.898381\pi\)
0.949473 0.313850i \(-0.101619\pi\)
\(744\) −53.2713 −1.95302
\(745\) 39.5016 7.31453i 1.44723 0.267984i
\(746\) −57.7597 −2.11473
\(747\) 8.84121i 0.323483i
\(748\) 5.90453i 0.215891i
\(749\) 5.86718 0.214382
\(750\) 36.5621 22.3807i 1.33506 0.817226i
\(751\) −7.45125 −0.271900 −0.135950 0.990716i \(-0.543409\pi\)
−0.135950 + 0.990716i \(0.543409\pi\)
\(752\) 21.0891i 0.769041i
\(753\) 5.21086i 0.189894i
\(754\) 33.1976 1.20899
\(755\) −27.9989 + 5.18457i −1.01898 + 0.188686i
\(756\) −101.063 −3.67561
\(757\) 53.7675i 1.95421i 0.212750 + 0.977107i \(0.431758\pi\)
−0.212750 + 0.977107i \(0.568242\pi\)
\(758\) 17.3199i 0.629086i
\(759\) 1.67503 0.0607997
\(760\) 0 0
\(761\) 23.3939 0.848029 0.424014 0.905655i \(-0.360621\pi\)
0.424014 + 0.905655i \(0.360621\pi\)
\(762\) 15.0929i 0.546760i
\(763\) 54.2117i 1.96259i
\(764\) −23.6135 −0.854308
\(765\) −0.152669 0.824480i −0.00551977 0.0298091i
\(766\) −7.57514 −0.273701
\(767\) 47.1152i 1.70123i
\(768\) 50.3235i 1.81589i
\(769\) 13.2447 0.477617 0.238808 0.971067i \(-0.423243\pi\)
0.238808 + 0.971067i \(0.423243\pi\)
\(770\) −53.4951 + 9.90571i −1.92783 + 0.356977i
\(771\) 43.0606 1.55079
\(772\) 10.4500i 0.376105i
\(773\) 17.8052i 0.640410i 0.947348 + 0.320205i \(0.103752\pi\)
−0.947348 + 0.320205i \(0.896248\pi\)
\(774\) 0.581686 0.0209083
\(775\) 31.9056 12.2355i 1.14608 0.439511i
\(776\) 21.9025 0.786254
\(777\) 21.1812i 0.759871i
\(778\) 23.0658i 0.826949i
\(779\) 0 0
\(780\) −52.0253 + 9.63354i −1.86280 + 0.344936i
\(781\) 15.3304 0.548566
\(782\) 0.798192i 0.0285433i
\(783\) 20.0022i 0.714819i
\(784\) −55.8321 −1.99400
\(785\) 8.16467 + 44.0928i 0.291410 + 1.57374i
\(786\) −62.5939 −2.23265
\(787\) 43.5779i 1.55339i −0.629880 0.776693i \(-0.716896\pi\)
0.629880 0.776693i \(-0.283104\pi\)
\(788\) 80.1055i 2.85364i
\(789\) −21.2711 −0.757271
\(790\) 11.3370 + 61.2246i 0.403351 + 2.17827i
\(791\) 34.8990 1.24087
\(792\) 6.18255i 0.219687i
\(793\) 26.5570i 0.943068i
\(794\) −65.7267 −2.33255
\(795\) −8.98561 + 1.66387i −0.318687 + 0.0590114i
\(796\) −51.4676 −1.82422
\(797\) 16.1311i 0.571395i −0.958320 0.285697i \(-0.907775\pi\)
0.958320 0.285697i \(-0.0922252\pi\)
\(798\) 0 0
\(799\) −3.34460 −0.118323
\(800\) −0.584071 1.52304i −0.0206500 0.0538476i
\(801\) 0.752902 0.0266025
\(802\) 61.8230i 2.18304i
\(803\) 6.50293i 0.229484i
\(804\) −36.0528 −1.27148
\(805\) −4.83424 + 0.895159i −0.170385 + 0.0315502i
\(806\) −63.0912 −2.22229
\(807\) 5.63237i 0.198269i
\(808\) 52.7722i 1.85652i
\(809\) −28.7134 −1.00951 −0.504755 0.863263i \(-0.668417\pi\)
−0.504755 + 0.863263i \(0.668417\pi\)
\(810\) 6.99346 + 37.7677i 0.245725 + 1.32702i
\(811\) 21.5422 0.756449 0.378225 0.925714i \(-0.376535\pi\)
0.378225 + 0.925714i \(0.376535\pi\)
\(812\) 65.3388i 2.29294i
\(813\) 16.4895i 0.578313i
\(814\) 16.2646 0.570073
\(815\) −5.79476 31.2942i −0.202982 1.09619i
\(816\) 4.36445 0.152786
\(817\) 0 0
\(818\) 69.5634i 2.43223i
\(819\) −9.53566 −0.333203
\(820\) −0.642096 + 0.118897i −0.0224230 + 0.00415207i
\(821\) 33.3204 1.16289 0.581445 0.813586i \(-0.302487\pi\)
0.581445 + 0.813586i \(0.302487\pi\)
\(822\) 62.9988i 2.19734i
\(823\) 37.2390i 1.29807i −0.760759 0.649035i \(-0.775173\pi\)
0.760759 0.649035i \(-0.224827\pi\)
\(824\) −28.7422 −1.00128
\(825\) 6.14483 + 16.0234i 0.213935 + 0.557864i
\(826\) 138.718 4.82662
\(827\) 29.0512i 1.01021i 0.863058 + 0.505105i \(0.168546\pi\)
−0.863058 + 0.505105i \(0.831454\pi\)
\(828\) 1.10836i 0.0385181i
\(829\) −34.5380 −1.19956 −0.599778 0.800166i \(-0.704744\pi\)
−0.599778 + 0.800166i \(0.704744\pi\)
\(830\) −84.7861 + 15.6999i −2.94297 + 0.544950i
\(831\) 10.5134 0.364707
\(832\) 28.5498i 0.989786i
\(833\) 8.85462i 0.306794i
\(834\) 10.2316 0.354292
\(835\) −2.28658 12.3485i −0.0791302 0.427338i
\(836\) 0 0
\(837\) 38.0136i 1.31394i
\(838\) 32.0410i 1.10684i
\(839\) 44.7243 1.54406 0.772028 0.635589i \(-0.219243\pi\)
0.772028 + 0.635589i \(0.219243\pi\)
\(840\) 14.2975 + 77.2127i 0.493310 + 2.66409i
\(841\) −16.0683 −0.554078
\(842\) 8.16680i 0.281447i
\(843\) 36.5758i 1.25974i
\(844\) −55.8770 −1.92337
\(845\) −2.47634 + 0.458545i −0.0851886 + 0.0157744i
\(846\) −6.94743 −0.238858
\(847\) 27.7784i 0.954478i
\(848\) 10.9921i 0.377471i
\(849\) −22.9210 −0.786648
\(850\) −7.63555 + 2.92816i −0.261897 + 0.100435i
\(851\) 1.46980 0.0503839
\(852\) 43.8962i 1.50386i
\(853\) 16.2603i 0.556741i −0.960474 0.278370i \(-0.910206\pi\)
0.960474 0.278370i \(-0.0897943\pi\)
\(854\) −78.1900 −2.67561
\(855\) 0 0
\(856\) −6.50273 −0.222259
\(857\) 16.6379i 0.568340i 0.958774 + 0.284170i \(0.0917181\pi\)
−0.958774 + 0.284170i \(0.908282\pi\)
\(858\) 31.6853i 1.08172i
\(859\) −40.2724 −1.37408 −0.687038 0.726621i \(-0.741090\pi\)
−0.687038 + 0.726621i \(0.741090\pi\)
\(860\) −0.690503 3.72901i −0.0235459 0.127158i
\(861\) 0.509273 0.0173560
\(862\) 0.118897i 0.00404965i
\(863\) 32.9634i 1.12209i −0.827786 0.561044i \(-0.810400\pi\)
0.827786 0.561044i \(-0.189600\pi\)
\(864\) 1.81461 0.0617343
\(865\) −4.35245 23.5051i −0.147988 0.799197i
\(866\) 23.5027 0.798655
\(867\) 25.8456i 0.877762i
\(868\) 124.175i 4.21476i
\(869\) −24.9265 −0.845574
\(870\) −30.3160 + 5.61363i −1.02781 + 0.190320i
\(871\) −21.5237 −0.729301
\(872\) 60.0841i 2.03470i
\(873\) 2.47014i 0.0836016i
\(874\) 0 0
\(875\) −26.2975 42.9608i −0.889018 1.45234i
\(876\) −18.6201 −0.629114
\(877\) 0.213199i 0.00719923i −0.999994 0.00359962i \(-0.998854\pi\)
0.999994 0.00359962i \(-0.00114580\pi\)
\(878\) 54.6541i 1.84449i
\(879\) −28.3885 −0.957519
\(880\) 20.2975 3.75849i 0.684228 0.126699i
\(881\) 51.8661 1.74741 0.873707 0.486453i \(-0.161710\pi\)
0.873707 + 0.486453i \(0.161710\pi\)
\(882\) 18.3929i 0.619321i
\(883\) 41.6451i 1.40147i 0.713422 + 0.700734i \(0.247144\pi\)
−0.713422 + 0.700734i \(0.752856\pi\)
\(884\) 10.0933 0.339476
\(885\) −7.96707 43.0256i −0.267810 1.44629i
\(886\) −49.4083 −1.65990
\(887\) 4.09325i 0.137438i −0.997636 0.0687190i \(-0.978109\pi\)
0.997636 0.0687190i \(-0.0218912\pi\)
\(888\) 23.4756i 0.787790i
\(889\) 17.7344 0.594791
\(890\) −1.33697 7.22023i −0.0448154 0.242023i
\(891\) −15.3765 −0.515130
\(892\) 87.4987i 2.92967i
\(893\) 0 0
\(894\) 68.8859 2.30389
\(895\) −16.9067 + 3.13061i −0.565127 + 0.104645i
\(896\) −86.9967 −2.90636
\(897\) 2.86334i 0.0956040i
\(898\) 30.6958i 1.02433i
\(899\) −24.5764 −0.819670
\(900\) −10.6026 + 4.06600i −0.353421 + 0.135533i
\(901\) 1.74328 0.0580772
\(902\) 0.391060i 0.0130209i
\(903\) 2.95764i 0.0984240i
\(904\) −38.6794 −1.28646
\(905\) −13.4698 + 2.49421i −0.447751 + 0.0829102i
\(906\) −48.8266 −1.62216
\(907\) 8.40726i 0.279158i −0.990211 0.139579i \(-0.955425\pi\)
0.990211 0.139579i \(-0.0445750\pi\)
\(908\) 33.0551i 1.09697i
\(909\) −5.95159 −0.197402
\(910\) 16.9330 + 91.4458i 0.561325 + 3.03140i
\(911\) 8.87918 0.294180 0.147090 0.989123i \(-0.453009\pi\)
0.147090 + 0.989123i \(0.453009\pi\)
\(912\) 0 0
\(913\) 34.5192i 1.14242i
\(914\) −69.5544 −2.30066
\(915\) 4.49073 + 24.2519i 0.148459 + 0.801742i
\(916\) −67.1965 −2.22024
\(917\) 73.5485i 2.42878i
\(918\) 9.09730i 0.300256i
\(919\) 45.9834 1.51685 0.758427 0.651758i \(-0.225968\pi\)
0.758427 + 0.651758i \(0.225968\pi\)
\(920\) 5.35790 0.992125i 0.176645 0.0327094i
\(921\) −45.8637 −1.51126
\(922\) 13.0658i 0.430299i
\(923\) 26.2062i 0.862587i
\(924\) −62.3623 −2.05157
\(925\) 5.39192 + 14.0601i 0.177285 + 0.462295i
\(926\) 44.0462 1.44745
\(927\) 3.24152i 0.106465i
\(928\) 1.17318i 0.0385115i
\(929\) 22.1778 0.727629 0.363814 0.931471i \(-0.381474\pi\)
0.363814 + 0.931471i \(0.381474\pi\)
\(930\) 57.6148 10.6686i 1.88926 0.349836i
\(931\) 0 0
\(932\) 49.2564i 1.61345i
\(933\) 0.301644i 0.00987538i
\(934\) 70.6872 2.31296
\(935\) −0.596074 3.21906i −0.0194937 0.105274i
\(936\) 10.5686 0.345445
\(937\) 34.3274i 1.12143i −0.828009 0.560714i \(-0.810527\pi\)
0.828009 0.560714i \(-0.189473\pi\)
\(938\) 63.3706i 2.06912i
\(939\) −33.2120 −1.08383
\(940\) 8.24710 + 44.5379i 0.268991 + 1.45267i
\(941\) 33.7213 1.09928 0.549641 0.835401i \(-0.314765\pi\)
0.549641 + 0.835401i \(0.314765\pi\)
\(942\) 76.8923i 2.50529i
\(943\) 0.0353393i 0.00115080i
\(944\) −52.6334 −1.71307
\(945\) 55.0977 10.2025i 1.79233 0.331886i
\(946\) 2.27110 0.0738400
\(947\) 22.1465i 0.719664i 0.933017 + 0.359832i \(0.117166\pi\)
−0.933017 + 0.359832i \(0.882834\pi\)
\(948\) 71.3729i 2.31809i
\(949\) −11.1163 −0.360849
\(950\) 0 0
\(951\) −29.9254 −0.970398
\(952\) 14.9799i 0.485501i
\(953\) 37.2967i 1.20816i −0.796924 0.604079i \(-0.793541\pi\)
0.796924 0.604079i \(-0.206459\pi\)
\(954\) 3.62116 0.117240
\(955\) 12.8737 2.38383i 0.416584 0.0771390i
\(956\) 8.22508 0.266018
\(957\) 12.3426i 0.398981i
\(958\) 19.7761i 0.638936i
\(959\) 74.0242 2.39037
\(960\) 4.82770 + 26.0717i 0.155813 + 0.841459i
\(961\) 15.7069 0.506674
\(962\) 27.8030i 0.896405i
\(963\) 0.733371i 0.0236326i
\(964\) −70.6718 −2.27618
\(965\) 1.05495 + 5.69719i 0.0339601 + 0.183399i
\(966\) −8.43032 −0.271241
\(967\) 18.6736i 0.600502i 0.953860 + 0.300251i \(0.0970704\pi\)
−0.953860 + 0.300251i \(0.902930\pi\)
\(968\) 30.7875i 0.989547i
\(969\) 0 0
\(970\) −23.6883 + 4.38638i −0.760587 + 0.140838i
\(971\) 28.5806 0.917195 0.458598 0.888644i \(-0.348352\pi\)
0.458598 + 0.888644i \(0.348352\pi\)
\(972\) 23.2683i 0.746330i
\(973\) 12.0223i 0.385416i
\(974\) 2.69596 0.0863842
\(975\) 27.3908 10.5041i 0.877209 0.336401i
\(976\) 29.6674 0.949630
\(977\) 58.1909i 1.86169i −0.365411 0.930846i \(-0.619072\pi\)
0.365411 0.930846i \(-0.380928\pi\)
\(978\) 54.5732i 1.74506i
\(979\) 2.93959 0.0939497
\(980\) 117.911 21.8337i 3.76654 0.697451i
\(981\) 6.77622 0.216348
\(982\) 32.1894i 1.02720i
\(983\) 48.0725i 1.53328i 0.642080 + 0.766638i \(0.278072\pi\)
−0.642080 + 0.766638i \(0.721928\pi\)
\(984\) −0.564439 −0.0179937
\(985\) 8.08680 + 43.6722i 0.257667 + 1.39151i
\(986\) 5.88157 0.187307
\(987\) 35.3249i 1.12440i
\(988\) 0 0
\(989\) 0.205235 0.00652609
\(990\) −1.23817 6.68665i −0.0393516 0.212516i
\(991\) 38.3952 1.21966 0.609832 0.792531i \(-0.291237\pi\)
0.609832 + 0.792531i \(0.291237\pi\)
\(992\) 2.22960i 0.0707897i
\(993\) 32.1684i 1.02083i
\(994\) −77.1570 −2.44727
\(995\) 28.0593 5.19576i 0.889540 0.164717i
\(996\) −98.8399 −3.13186
\(997\) 37.8218i 1.19783i −0.800814 0.598914i \(-0.795599\pi\)
0.800814 0.598914i \(-0.204401\pi\)
\(998\) 59.2944i 1.87693i
\(999\) −16.7518 −0.530004
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.f.1084.1 6
5.2 odd 4 9025.2.a.bu.1.6 6
5.3 odd 4 9025.2.a.bu.1.1 6
5.4 even 2 inner 1805.2.b.f.1084.6 6
19.7 even 3 95.2.i.b.49.6 yes 12
19.11 even 3 95.2.i.b.64.1 yes 12
19.18 odd 2 1805.2.b.g.1084.6 6
57.11 odd 6 855.2.be.d.64.6 12
57.26 odd 6 855.2.be.d.334.1 12
95.7 odd 12 475.2.e.g.201.1 12
95.18 even 4 9025.2.a.bt.1.6 6
95.37 even 4 9025.2.a.bt.1.1 6
95.49 even 6 95.2.i.b.64.6 yes 12
95.64 even 6 95.2.i.b.49.1 12
95.68 odd 12 475.2.e.g.26.6 12
95.83 odd 12 475.2.e.g.201.6 12
95.87 odd 12 475.2.e.g.26.1 12
95.94 odd 2 1805.2.b.g.1084.1 6
285.239 odd 6 855.2.be.d.64.1 12
285.254 odd 6 855.2.be.d.334.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.i.b.49.1 12 95.64 even 6
95.2.i.b.49.6 yes 12 19.7 even 3
95.2.i.b.64.1 yes 12 19.11 even 3
95.2.i.b.64.6 yes 12 95.49 even 6
475.2.e.g.26.1 12 95.87 odd 12
475.2.e.g.26.6 12 95.68 odd 12
475.2.e.g.201.1 12 95.7 odd 12
475.2.e.g.201.6 12 95.83 odd 12
855.2.be.d.64.1 12 285.239 odd 6
855.2.be.d.64.6 12 57.11 odd 6
855.2.be.d.334.1 12 57.26 odd 6
855.2.be.d.334.6 12 285.254 odd 6
1805.2.b.f.1084.1 6 1.1 even 1 trivial
1805.2.b.f.1084.6 6 5.4 even 2 inner
1805.2.b.g.1084.1 6 95.94 odd 2
1805.2.b.g.1084.6 6 19.18 odd 2
9025.2.a.bt.1.1 6 95.37 even 4
9025.2.a.bt.1.6 6 95.18 even 4
9025.2.a.bu.1.1 6 5.3 odd 4
9025.2.a.bu.1.6 6 5.2 odd 4