Properties

Label 95.2.i.b.49.1
Level $95$
Weight $2$
Character 95.49
Analytic conductor $0.759$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 6x^{10} + 29x^{8} - 40x^{6} + 43x^{4} - 7x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(-0.352587 - 0.203566i\) of defining polynomial
Character \(\chi\) \(=\) 95.49
Dual form 95.2.i.b.64.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.12713 - 1.22810i) q^{2} +(1.35190 + 0.780522i) q^{3} +(2.01647 + 3.49262i) q^{4} +(-1.45193 + 1.70056i) q^{5} +(-1.91712 - 3.32055i) q^{6} +4.50527i q^{7} -4.99330i q^{8} +(-0.281570 - 0.487693i) q^{9} +O(q^{10})\) \(q+(-2.12713 - 1.22810i) q^{2} +(1.35190 + 0.780522i) q^{3} +(2.01647 + 3.49262i) q^{4} +(-1.45193 + 1.70056i) q^{5} +(-1.91712 - 3.32055i) q^{6} +4.50527i q^{7} -4.99330i q^{8} +(-0.281570 - 0.487693i) q^{9} +(5.17691 - 1.83419i) q^{10} +2.19869 q^{11} +6.29559i q^{12} +(3.25495 - 1.87925i) q^{13} +(5.53293 - 9.58332i) q^{14} +(-3.29020 + 1.16572i) q^{15} +(-2.09935 + 3.63617i) q^{16} +(-0.576674 - 0.332943i) q^{17} +1.38318i q^{18} +(-3.79804 + 2.13891i) q^{19} +(-8.86718 - 1.64194i) q^{20} +(-3.51647 + 6.09070i) q^{21} +(-4.67691 - 2.70022i) q^{22} +(0.422643 - 0.244013i) q^{23} +(3.89738 - 6.75046i) q^{24} +(-0.783783 - 4.93819i) q^{25} -9.23163 q^{26} -5.56222i q^{27} +(-15.7352 + 9.08474i) q^{28} +(1.79804 + 3.11429i) q^{29} +(8.43032 + 1.56104i) q^{30} +6.83424 q^{31} +(0.282531 - 0.163119i) q^{32} +(2.97242 + 1.71613i) q^{33} +(0.817776 + 1.41643i) q^{34} +(-7.66147 - 6.54135i) q^{35} +(1.13555 - 1.96683i) q^{36} -3.01171i q^{37} +(10.7057 + 0.114636i) q^{38} +5.86718 q^{39} +(8.49139 + 7.24994i) q^{40} +(-0.0362063 + 0.0627112i) q^{41} +(14.9600 - 8.63716i) q^{42} +(0.364199 + 0.210271i) q^{43} +(4.43359 + 7.67920i) q^{44} +(1.23817 + 0.229272i) q^{45} -1.19869 q^{46} +(4.34986 - 2.51139i) q^{47} +(-5.67623 + 3.27717i) q^{48} -13.2975 q^{49} +(-4.39738 + 11.4668i) q^{50} +(-0.519739 - 0.900215i) q^{51} +(13.1270 + 7.57888i) q^{52} +(-2.26725 + 1.30900i) q^{53} +(-6.83097 + 11.8316i) q^{54} +(-3.19235 + 3.73900i) q^{55} +22.4962 q^{56} +(-6.80405 - 0.0728572i) q^{57} -8.83269i q^{58} +(6.26783 - 10.8562i) q^{59} +(-10.7060 - 9.14077i) q^{60} +(-3.53293 - 6.11922i) q^{61} +(-14.5374 - 8.39315i) q^{62} +(2.19719 - 1.26855i) q^{63} +7.59607 q^{64} +(-1.53020 + 8.26377i) q^{65} +(-4.21516 - 7.30087i) q^{66} +(4.95944 - 2.86334i) q^{67} -2.68548i q^{68} +0.761831 q^{69} +(8.26353 + 23.3234i) q^{70} +(-3.48626 + 6.03838i) q^{71} +(-2.43520 + 1.40596i) q^{72} +(-2.56139 - 1.47882i) q^{73} +(-3.69869 + 6.40632i) q^{74} +(2.79476 - 7.28772i) q^{75} +(-15.1290 - 8.95208i) q^{76} +9.90571i q^{77} +(-12.4803 - 7.20549i) q^{78} +(5.66849 - 9.81811i) q^{79} +(-3.13541 - 8.84953i) q^{80} +(3.49673 - 6.05651i) q^{81} +(0.154031 - 0.0889301i) q^{82} +15.6999i q^{83} -28.3634 q^{84} +(1.40348 - 0.497256i) q^{85} +(-0.516467 - 0.894547i) q^{86} +5.61363i q^{87} -10.9787i q^{88} +(-0.668486 - 1.15785i) q^{89} +(-2.35218 - 2.00829i) q^{90} +(8.46652 + 14.6644i) q^{91} +(1.70449 + 0.984089i) q^{92} +(9.23924 + 5.33428i) q^{93} -12.3370 q^{94} +(1.87716 - 9.56432i) q^{95} +0.509273 q^{96} +(-3.79871 - 2.19319i) q^{97} +(28.2856 + 16.3307i) q^{98} +(-0.619085 - 1.07229i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} - 2 q^{5} - 12 q^{6} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{4} - 2 q^{5} - 12 q^{6} + 8 q^{9} + 6 q^{10} + 4 q^{11} + 22 q^{14} - 4 q^{15} - 14 q^{16} - 12 q^{19} - 40 q^{20} - 20 q^{21} + 2 q^{24} - 6 q^{25} - 44 q^{26} - 12 q^{29} + 12 q^{30} + 60 q^{31} + 10 q^{34} + 14 q^{36} + 4 q^{39} + 10 q^{40} - 12 q^{41} + 20 q^{44} + 60 q^{45} + 8 q^{46} - 4 q^{49} - 8 q^{50} - 40 q^{51} - 4 q^{54} - 18 q^{55} + 92 q^{56} + 20 q^{59} + 4 q^{60} + 2 q^{61} + 24 q^{64} - 40 q^{65} - 6 q^{66} - 36 q^{69} + 46 q^{70} + 2 q^{71} - 22 q^{74} - 56 q^{75} - 70 q^{76} + 24 q^{79} - 22 q^{80} - 14 q^{81} - 96 q^{84} + 2 q^{85} + 16 q^{86} + 36 q^{89} - 8 q^{90} + 24 q^{91} - 60 q^{94} + 46 q^{95} + 52 q^{96} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12713 1.22810i −1.50411 0.868399i −0.999989 0.00476685i \(-0.998483\pi\)
−0.504123 0.863632i \(-0.668184\pi\)
\(3\) 1.35190 + 0.780522i 0.780522 + 0.450635i 0.836615 0.547791i \(-0.184531\pi\)
−0.0560930 + 0.998426i \(0.517864\pi\)
\(4\) 2.01647 + 3.49262i 1.00823 + 1.74631i
\(5\) −1.45193 + 1.70056i −0.649324 + 0.760512i
\(6\) −1.91712 3.32055i −0.782662 1.35561i
\(7\) 4.50527i 1.70283i 0.524490 + 0.851417i \(0.324256\pi\)
−0.524490 + 0.851417i \(0.675744\pi\)
\(8\) 4.99330i 1.76540i
\(9\) −0.281570 0.487693i −0.0938566 0.162564i
\(10\) 5.17691 1.83419i 1.63708 0.580022i
\(11\) 2.19869 0.662930 0.331465 0.943467i \(-0.392457\pi\)
0.331465 + 0.943467i \(0.392457\pi\)
\(12\) 6.29559i 1.81738i
\(13\) 3.25495 1.87925i 0.902761 0.521209i 0.0246661 0.999696i \(-0.492148\pi\)
0.878095 + 0.478486i \(0.158814\pi\)
\(14\) 5.53293 9.58332i 1.47874 2.56125i
\(15\) −3.29020 + 1.16572i −0.849525 + 0.300989i
\(16\) −2.09935 + 3.63617i −0.524836 + 0.909043i
\(17\) −0.576674 0.332943i −0.139864 0.0807506i 0.428435 0.903573i \(-0.359065\pi\)
−0.568299 + 0.822822i \(0.692398\pi\)
\(18\) 1.38318i 0.326020i
\(19\) −3.79804 + 2.13891i −0.871329 + 0.490699i
\(20\) −8.86718 1.64194i −1.98276 0.367149i
\(21\) −3.51647 + 6.09070i −0.767356 + 1.32910i
\(22\) −4.67691 2.70022i −0.997121 0.575688i
\(23\) 0.422643 0.244013i 0.0881272 0.0508802i −0.455289 0.890344i \(-0.650464\pi\)
0.543416 + 0.839464i \(0.317131\pi\)
\(24\) 3.89738 6.75046i 0.795550 1.37793i
\(25\) −0.783783 4.93819i −0.156757 0.987637i
\(26\) −9.23163 −1.81047
\(27\) 5.56222i 1.07045i
\(28\) −15.7352 + 9.08474i −2.97368 + 1.71685i
\(29\) 1.79804 + 3.11429i 0.333887 + 0.578309i 0.983270 0.182152i \(-0.0583062\pi\)
−0.649383 + 0.760461i \(0.724973\pi\)
\(30\) 8.43032 + 1.56104i 1.53916 + 0.285006i
\(31\) 6.83424 1.22747 0.613733 0.789514i \(-0.289667\pi\)
0.613733 + 0.789514i \(0.289667\pi\)
\(32\) 0.282531 0.163119i 0.0499449 0.0288357i
\(33\) 2.97242 + 1.71613i 0.517432 + 0.298739i
\(34\) 0.817776 + 1.41643i 0.140247 + 0.242916i
\(35\) −7.66147 6.54135i −1.29503 1.10569i
\(36\) 1.13555 1.96683i 0.189259 0.327806i
\(37\) 3.01171i 0.495123i −0.968872 0.247561i \(-0.920371\pi\)
0.968872 0.247561i \(-0.0796292\pi\)
\(38\) 10.7057 + 0.114636i 1.73670 + 0.0185964i
\(39\) 5.86718 0.939500
\(40\) 8.49139 + 7.24994i 1.34261 + 1.14632i
\(41\) −0.0362063 + 0.0627112i −0.00565448 + 0.00979384i −0.868839 0.495095i \(-0.835133\pi\)
0.863184 + 0.504889i \(0.168467\pi\)
\(42\) 14.9600 8.63716i 2.30838 1.33274i
\(43\) 0.364199 + 0.210271i 0.0555399 + 0.0320660i 0.527513 0.849547i \(-0.323125\pi\)
−0.471973 + 0.881613i \(0.656458\pi\)
\(44\) 4.43359 + 7.67920i 0.668389 + 1.15768i
\(45\) 1.23817 + 0.229272i 0.184575 + 0.0341779i
\(46\) −1.19869 −0.176737
\(47\) 4.34986 2.51139i 0.634492 0.366324i −0.147998 0.988988i \(-0.547283\pi\)
0.782490 + 0.622664i \(0.213950\pi\)
\(48\) −5.67623 + 3.27717i −0.819293 + 0.473019i
\(49\) −13.2975 −1.89964
\(50\) −4.39738 + 11.4668i −0.621884 + 1.62164i
\(51\) −0.519739 0.900215i −0.0727780 0.126055i
\(52\) 13.1270 + 7.57888i 1.82039 + 1.05100i
\(53\) −2.26725 + 1.30900i −0.311430 + 0.179804i −0.647566 0.762009i \(-0.724213\pi\)
0.336136 + 0.941813i \(0.390880\pi\)
\(54\) −6.83097 + 11.8316i −0.929577 + 1.61008i
\(55\) −3.19235 + 3.73900i −0.430457 + 0.504166i
\(56\) 22.4962 3.00618
\(57\) −6.80405 0.0728572i −0.901218 0.00965017i
\(58\) 8.83269i 1.15979i
\(59\) 6.26783 10.8562i 0.816002 1.41336i −0.0926038 0.995703i \(-0.529519\pi\)
0.908606 0.417654i \(-0.137148\pi\)
\(60\) −10.7060 9.14077i −1.38214 1.18007i
\(61\) −3.53293 6.11922i −0.452346 0.783486i 0.546185 0.837664i \(-0.316079\pi\)
−0.998531 + 0.0541782i \(0.982746\pi\)
\(62\) −14.5374 8.39315i −1.84625 1.06593i
\(63\) 2.19719 1.26855i 0.276820 0.159822i
\(64\) 7.59607 0.949509
\(65\) −1.53020 + 8.26377i −0.189799 + 1.02499i
\(66\) −4.21516 7.30087i −0.518850 0.898675i
\(67\) 4.95944 2.86334i 0.605892 0.349812i −0.165464 0.986216i \(-0.552912\pi\)
0.771356 + 0.636404i \(0.219579\pi\)
\(68\) 2.68548i 0.325662i
\(69\) 0.761831 0.0917136
\(70\) 8.26353 + 23.3234i 0.987681 + 2.78768i
\(71\) −3.48626 + 6.03838i −0.413743 + 0.716624i −0.995296 0.0968847i \(-0.969112\pi\)
0.581552 + 0.813509i \(0.302446\pi\)
\(72\) −2.43520 + 1.40596i −0.286991 + 0.165694i
\(73\) −2.56139 1.47882i −0.299788 0.173083i 0.342560 0.939496i \(-0.388706\pi\)
−0.642348 + 0.766413i \(0.722039\pi\)
\(74\) −3.69869 + 6.40632i −0.429964 + 0.744720i
\(75\) 2.79476 7.28772i 0.322712 0.841513i
\(76\) −15.1290 8.95208i −1.73542 1.02687i
\(77\) 9.90571i 1.12886i
\(78\) −12.4803 7.20549i −1.41311 0.815861i
\(79\) 5.66849 9.81811i 0.637755 1.10462i −0.348170 0.937431i \(-0.613197\pi\)
0.985924 0.167192i \(-0.0534699\pi\)
\(80\) −3.13541 8.84953i −0.350549 0.989408i
\(81\) 3.49673 6.05651i 0.388525 0.672946i
\(82\) 0.154031 0.0889301i 0.0170099 0.00982068i
\(83\) 15.6999i 1.72328i 0.507517 + 0.861642i \(0.330564\pi\)
−0.507517 + 0.861642i \(0.669436\pi\)
\(84\) −28.3634 −3.09470
\(85\) 1.40348 0.497256i 0.152229 0.0539350i
\(86\) −0.516467 0.894547i −0.0556921 0.0964615i
\(87\) 5.61363i 0.601845i
\(88\) 10.9787i 1.17034i
\(89\) −0.668486 1.15785i −0.0708594 0.122732i 0.828419 0.560109i \(-0.189241\pi\)
−0.899278 + 0.437377i \(0.855908\pi\)
\(90\) −2.35218 2.00829i −0.247942 0.211692i
\(91\) 8.46652 + 14.6644i 0.887533 + 1.53725i
\(92\) 1.70449 + 0.984089i 0.177706 + 0.102598i
\(93\) 9.23924 + 5.33428i 0.958065 + 0.553139i
\(94\) −12.3370 −1.27246
\(95\) 1.87716 9.56432i 0.192593 0.981279i
\(96\) 0.509273 0.0519775
\(97\) −3.79871 2.19319i −0.385701 0.222685i 0.294595 0.955622i \(-0.404815\pi\)
−0.680296 + 0.732938i \(0.738149\pi\)
\(98\) 28.2856 + 16.3307i 2.85727 + 1.64965i
\(99\) −0.619085 1.07229i −0.0622204 0.107769i
\(100\) 15.6668 12.6952i 1.56668 1.26952i
\(101\) 5.28430 + 9.15267i 0.525807 + 0.910725i 0.999548 + 0.0300608i \(0.00957008\pi\)
−0.473741 + 0.880664i \(0.657097\pi\)
\(102\) 2.55317i 0.252801i
\(103\) 5.75615i 0.567171i −0.958947 0.283585i \(-0.908476\pi\)
0.958947 0.283585i \(-0.0915239\pi\)
\(104\) −9.38364 16.2529i −0.920142 1.59373i
\(105\) −5.25190 14.8232i −0.512533 1.44660i
\(106\) 6.43032 0.624568
\(107\) 1.30229i 0.125897i −0.998017 0.0629486i \(-0.979950\pi\)
0.998017 0.0629486i \(-0.0200504\pi\)
\(108\) 19.4267 11.2160i 1.86934 1.07926i
\(109\) −6.01647 + 10.4208i −0.576273 + 0.998134i 0.419629 + 0.907696i \(0.362160\pi\)
−0.995902 + 0.0904385i \(0.971173\pi\)
\(110\) 11.3824 4.03282i 1.08527 0.384514i
\(111\) 2.35071 4.07155i 0.223120 0.386454i
\(112\) −16.3820 9.45813i −1.54795 0.893709i
\(113\) 7.74626i 0.728707i −0.931261 0.364353i \(-0.881290\pi\)
0.931261 0.364353i \(-0.118710\pi\)
\(114\) 14.3836 + 8.51104i 1.34715 + 0.797132i
\(115\) −0.198691 + 1.07302i −0.0185281 + 0.100060i
\(116\) −7.25136 + 12.5597i −0.673272 + 1.16614i
\(117\) −1.83299 1.05828i −0.169460 0.0978378i
\(118\) −26.6650 + 15.3951i −2.45472 + 1.41723i
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) 5.82081 + 16.4289i 0.531365 + 1.49975i
\(121\) −6.16576 −0.560523
\(122\) 17.3552i 1.57127i
\(123\) −0.0978950 + 0.0565197i −0.00882689 + 0.00509621i
\(124\) 13.7810 + 23.8694i 1.23757 + 2.14354i
\(125\) 9.53566 + 5.83705i 0.852896 + 0.522081i
\(126\) −6.23163 −0.555157
\(127\) −3.40898 + 1.96818i −0.302498 + 0.174647i −0.643565 0.765392i \(-0.722545\pi\)
0.341066 + 0.940039i \(0.389212\pi\)
\(128\) −16.7229 9.65499i −1.47811 0.853389i
\(129\) 0.328242 + 0.568531i 0.0289001 + 0.0500564i
\(130\) 13.4037 15.6989i 1.17558 1.37688i
\(131\) 8.16248 14.1378i 0.713160 1.23523i −0.250505 0.968115i \(-0.580597\pi\)
0.963665 0.267114i \(-0.0860699\pi\)
\(132\) 13.8421i 1.20480i
\(133\) −9.63635 17.1112i −0.835578 1.48373i
\(134\) −14.0659 −1.21511
\(135\) 9.45887 + 8.07597i 0.814090 + 0.695069i
\(136\) −1.66248 + 2.87951i −0.142557 + 0.246916i
\(137\) −14.2293 + 8.21529i −1.21569 + 0.701879i −0.963993 0.265927i \(-0.914322\pi\)
−0.251697 + 0.967806i \(0.580989\pi\)
\(138\) −1.62052 0.935605i −0.137947 0.0796440i
\(139\) −1.33424 2.31098i −0.113169 0.196015i 0.803877 0.594795i \(-0.202767\pi\)
−0.917046 + 0.398781i \(0.869433\pi\)
\(140\) 7.39738 39.9491i 0.625193 3.37631i
\(141\) 7.84079 0.660313
\(142\) 14.8315 8.56297i 1.24463 0.718588i
\(143\) 7.15663 4.13188i 0.598468 0.345526i
\(144\) 2.36445 0.197037
\(145\) −7.90666 1.46408i −0.656612 0.121585i
\(146\) 3.63228 + 6.29129i 0.300610 + 0.520671i
\(147\) −17.9769 10.3790i −1.48271 0.856045i
\(148\) 10.5188 6.07302i 0.864639 0.499199i
\(149\) −8.98299 + 15.5590i −0.735915 + 1.27464i 0.218405 + 0.975858i \(0.429915\pi\)
−0.954321 + 0.298784i \(0.903419\pi\)
\(150\) −14.8949 + 12.0697i −1.21616 + 0.985487i
\(151\) −12.7344 −1.03631 −0.518154 0.855288i \(-0.673380\pi\)
−0.518154 + 0.855288i \(0.673380\pi\)
\(152\) 10.6802 + 18.9647i 0.866278 + 1.53824i
\(153\) 0.374987i 0.0303159i
\(154\) 12.1652 21.0708i 0.980301 1.69793i
\(155\) −9.92286 + 11.6220i −0.797023 + 0.933503i
\(156\) 11.8310 + 20.4918i 0.947236 + 1.64066i
\(157\) 17.3674 + 10.0270i 1.38607 + 0.800245i 0.992869 0.119209i \(-0.0380358\pi\)
0.393197 + 0.919454i \(0.371369\pi\)
\(158\) −24.1153 + 13.9230i −1.91851 + 1.10765i
\(159\) −4.08680 −0.324104
\(160\) −0.132822 + 0.717298i −0.0105005 + 0.0567074i
\(161\) 1.09935 + 1.90412i 0.0866406 + 0.150066i
\(162\) −14.8760 + 8.58867i −1.16877 + 0.674790i
\(163\) 14.2331i 1.11482i 0.830236 + 0.557412i \(0.188206\pi\)
−0.830236 + 0.557412i \(0.811794\pi\)
\(164\) −0.292035 −0.0228041
\(165\) −7.23413 + 2.56307i −0.563176 + 0.199534i
\(166\) 19.2810 33.3957i 1.49650 2.59201i
\(167\) 4.86386 2.80815i 0.376376 0.217301i −0.299864 0.953982i \(-0.596941\pi\)
0.676241 + 0.736681i \(0.263608\pi\)
\(168\) 30.4127 + 17.5588i 2.34639 + 1.35469i
\(169\) 0.563139 0.975386i 0.0433184 0.0750297i
\(170\) −3.59607 0.665886i −0.275806 0.0510711i
\(171\) 2.11254 + 1.25002i 0.161550 + 0.0955918i
\(172\) 1.69601i 0.129320i
\(173\) −9.25824 5.34524i −0.703891 0.406391i 0.104904 0.994482i \(-0.466546\pi\)
−0.808795 + 0.588091i \(0.799880\pi\)
\(174\) 6.89411 11.9409i 0.522641 0.905241i
\(175\) 22.2479 3.53116i 1.68178 0.266930i
\(176\) −4.61581 + 7.99482i −0.347930 + 0.602632i
\(177\) 16.9470 9.78437i 1.27382 0.735438i
\(178\) 3.28388i 0.246137i
\(179\) −7.68942 −0.574734 −0.287367 0.957821i \(-0.592780\pi\)
−0.287367 + 0.957821i \(0.592780\pi\)
\(180\) 1.69597 + 4.78678i 0.126410 + 0.356786i
\(181\) 3.06314 + 5.30551i 0.227681 + 0.394356i 0.957121 0.289690i \(-0.0935522\pi\)
−0.729439 + 0.684046i \(0.760219\pi\)
\(182\) 41.5910i 3.08293i
\(183\) 11.0301i 0.815371i
\(184\) −1.21843 2.11038i −0.0898239 0.155580i
\(185\) 5.12159 + 4.37281i 0.376547 + 0.321495i
\(186\) −13.1021 22.6935i −0.960691 1.66397i
\(187\) −1.26793 0.732039i −0.0927201 0.0535320i
\(188\) 17.5427 + 10.1283i 1.27943 + 0.738680i
\(189\) 25.0593 1.82280
\(190\) −15.7389 + 18.0392i −1.14182 + 1.30870i
\(191\) 5.85517 0.423666 0.211833 0.977306i \(-0.432057\pi\)
0.211833 + 0.977306i \(0.432057\pi\)
\(192\) 10.2692 + 5.92891i 0.741113 + 0.427882i
\(193\) 2.24402 + 1.29559i 0.161528 + 0.0932584i 0.578585 0.815622i \(-0.303605\pi\)
−0.417057 + 0.908880i \(0.636938\pi\)
\(194\) 5.38692 + 9.33041i 0.386758 + 0.669885i
\(195\) −8.51875 + 9.97747i −0.610040 + 0.714501i
\(196\) −26.8140 46.4431i −1.91528 3.31737i
\(197\) 19.8628i 1.41517i −0.706629 0.707584i \(-0.749785\pi\)
0.706629 0.707584i \(-0.250215\pi\)
\(198\) 3.04120i 0.216128i
\(199\) −6.38092 11.0521i −0.452331 0.783460i 0.546199 0.837655i \(-0.316074\pi\)
−0.998530 + 0.0541948i \(0.982741\pi\)
\(200\) −24.6578 + 3.91366i −1.74357 + 0.276738i
\(201\) 8.93959 0.630550
\(202\) 25.9586i 1.82644i
\(203\) −14.0307 + 8.10065i −0.984765 + 0.568554i
\(204\) 2.09607 3.63051i 0.146755 0.254186i
\(205\) −0.0540748 0.152623i −0.00377675 0.0106597i
\(206\) −7.06914 + 12.2441i −0.492530 + 0.853088i
\(207\) −0.238007 0.137413i −0.0165426 0.00955089i
\(208\) 15.7808i 1.09420i
\(209\) −8.35071 + 4.70279i −0.577631 + 0.325299i
\(210\) −7.03293 + 37.9809i −0.485319 + 2.62093i
\(211\) −6.92759 + 11.9989i −0.476915 + 0.826041i −0.999650 0.0264545i \(-0.991578\pi\)
0.522735 + 0.852495i \(0.324912\pi\)
\(212\) −9.14366 5.27909i −0.627989 0.362570i
\(213\) −9.42619 + 5.44221i −0.645872 + 0.372894i
\(214\) −1.59935 + 2.77015i −0.109329 + 0.189363i
\(215\) −0.886370 + 0.314043i −0.0604499 + 0.0214175i
\(216\) −27.7738 −1.88977
\(217\) 30.7901i 2.09017i
\(218\) 25.5957 14.7777i 1.73356 1.00087i
\(219\) −2.30850 3.99844i −0.155994 0.270190i
\(220\) −19.4962 3.61012i −1.31443 0.243394i
\(221\) −2.50273 −0.168352
\(222\) −10.0006 + 5.77382i −0.671193 + 0.387514i
\(223\) −18.7893 10.8480i −1.25823 0.726437i −0.285496 0.958380i \(-0.592158\pi\)
−0.972729 + 0.231943i \(0.925492\pi\)
\(224\) 0.734898 + 1.27288i 0.0491024 + 0.0850479i
\(225\) −2.18763 + 1.77269i −0.145842 + 0.118179i
\(226\) −9.51320 + 16.4773i −0.632808 + 1.09606i
\(227\) 8.19628i 0.544006i −0.962296 0.272003i \(-0.912314\pi\)
0.962296 0.272003i \(-0.0876861\pi\)
\(228\) −13.4657 23.9109i −0.891786 1.58354i
\(229\) 16.6619 1.10105 0.550526 0.834818i \(-0.314427\pi\)
0.550526 + 0.834818i \(0.314427\pi\)
\(230\) 1.74042 2.03844i 0.114760 0.134411i
\(231\) −7.73163 + 13.3916i −0.508704 + 0.881101i
\(232\) 15.5506 8.97814i 1.02095 0.589444i
\(233\) −10.5772 6.10677i −0.692937 0.400068i 0.111774 0.993734i \(-0.464347\pi\)
−0.804711 + 0.593666i \(0.797680\pi\)
\(234\) 2.59935 + 4.50220i 0.169925 + 0.294318i
\(235\) −2.04494 + 11.0435i −0.133397 + 0.720402i
\(236\) 50.5555 3.29088
\(237\) 15.3265 8.84876i 0.995563 0.574789i
\(238\) −6.38140 + 3.68430i −0.413645 + 0.238818i
\(239\) −2.03948 −0.131923 −0.0659614 0.997822i \(-0.521011\pi\)
−0.0659614 + 0.997822i \(0.521011\pi\)
\(240\) 2.66849 14.4110i 0.172250 0.930225i
\(241\) −8.76183 15.1759i −0.564399 0.977568i −0.997105 0.0760330i \(-0.975775\pi\)
0.432706 0.901535i \(-0.357559\pi\)
\(242\) 13.1154 + 7.57218i 0.843089 + 0.486758i
\(243\) −4.99659 + 2.88478i −0.320531 + 0.185059i
\(244\) 14.2481 24.6784i 0.912141 1.57987i
\(245\) 19.3071 22.6131i 1.23348 1.44470i
\(246\) 0.277648 0.0177022
\(247\) −8.34289 + 14.0995i −0.530846 + 0.897129i
\(248\) 34.1254i 2.16697i
\(249\) −12.2541 + 21.2247i −0.776572 + 1.34506i
\(250\) −13.1152 24.1269i −0.829475 1.52592i
\(251\) 1.66903 + 2.89084i 0.105348 + 0.182468i 0.913880 0.405984i \(-0.133071\pi\)
−0.808532 + 0.588452i \(0.799738\pi\)
\(252\) 8.86112 + 5.11597i 0.558198 + 0.322276i
\(253\) 0.929261 0.536509i 0.0584222 0.0337301i
\(254\) 9.66849 0.606655
\(255\) 2.28549 + 0.423205i 0.143123 + 0.0265021i
\(256\) 16.1185 + 27.9181i 1.00741 + 1.74488i
\(257\) 23.8889 13.7922i 1.49015 0.860337i 0.490210 0.871604i \(-0.336920\pi\)
0.999937 + 0.0112676i \(0.00358665\pi\)
\(258\) 1.61246i 0.100387i
\(259\) 13.5686 0.843112
\(260\) −31.9478 + 11.3192i −1.98132 + 0.701986i
\(261\) 1.01255 1.75378i 0.0626750 0.108556i
\(262\) −34.7254 + 20.0487i −2.14534 + 1.23861i
\(263\) 11.8006 + 6.81310i 0.727658 + 0.420114i 0.817565 0.575837i \(-0.195324\pi\)
−0.0899066 + 0.995950i \(0.528657\pi\)
\(264\) 8.56914 14.8422i 0.527394 0.913473i
\(265\) 1.06587 5.75615i 0.0654758 0.353598i
\(266\) −0.516467 + 48.2322i −0.0316666 + 2.95731i
\(267\) 2.08707i 0.127727i
\(268\) 20.0011 + 11.5476i 1.22176 + 0.705385i
\(269\) −1.80404 + 3.12469i −0.109994 + 0.190515i −0.915768 0.401708i \(-0.868417\pi\)
0.805773 + 0.592224i \(0.201750\pi\)
\(270\) −10.2022 28.7951i −0.620884 1.75242i
\(271\) −5.28157 + 9.14795i −0.320833 + 0.555698i −0.980660 0.195719i \(-0.937296\pi\)
0.659828 + 0.751417i \(0.270629\pi\)
\(272\) 2.42128 1.39793i 0.146812 0.0847617i
\(273\) 26.4332i 1.59981i
\(274\) 40.3568 2.43804
\(275\) −1.72330 10.8575i −0.103919 0.654735i
\(276\) 1.53621 + 2.66079i 0.0924688 + 0.160161i
\(277\) 6.73487i 0.404659i 0.979317 + 0.202330i \(0.0648512\pi\)
−0.979317 + 0.202330i \(0.935149\pi\)
\(278\) 6.55434i 0.393103i
\(279\) −1.92432 3.33301i −0.115206 0.199542i
\(280\) −32.6629 + 38.2560i −1.95198 + 2.28624i
\(281\) −11.7152 20.2912i −0.698868 1.21047i −0.968859 0.247612i \(-0.920354\pi\)
0.269992 0.962863i \(-0.412979\pi\)
\(282\) −16.6784 9.62928i −0.993185 0.573415i
\(283\) 12.7160 + 7.34157i 0.755886 + 0.436411i 0.827817 0.560999i \(-0.189583\pi\)
−0.0719306 + 0.997410i \(0.522916\pi\)
\(284\) −28.1197 −1.66860
\(285\) 10.0029 11.4649i 0.592522 0.679121i
\(286\) −20.2975 −1.20022
\(287\) −0.282531 0.163119i −0.0166773 0.00962863i
\(288\) −0.159104 0.0918589i −0.00937531 0.00541284i
\(289\) −8.27830 14.3384i −0.486959 0.843437i
\(290\) 15.0205 + 12.8245i 0.882033 + 0.753079i
\(291\) −3.42367 5.92996i −0.200699 0.347621i
\(292\) 11.9280i 0.698031i
\(293\) 18.1855i 1.06241i −0.847243 0.531206i \(-0.821739\pi\)
0.847243 0.531206i \(-0.178261\pi\)
\(294\) 25.4929 + 44.1550i 1.48678 + 2.57517i
\(295\) 9.36111 + 26.4213i 0.545025 + 1.53831i
\(296\) −15.0384 −0.874089
\(297\) 12.2296i 0.709634i
\(298\) 38.2161 22.0641i 2.21380 1.27814i
\(299\) 0.917122 1.58850i 0.0530385 0.0918654i
\(300\) 31.0888 4.93438i 1.79491 0.284886i
\(301\) −0.947326 + 1.64082i −0.0546030 + 0.0945752i
\(302\) 27.0877 + 15.6391i 1.55872 + 0.899928i
\(303\) 16.4981i 0.947788i
\(304\) 0.195962 18.3006i 0.0112392 1.04961i
\(305\) 15.5357 + 2.87674i 0.889570 + 0.164722i
\(306\) 0.460522 0.797647i 0.0263263 0.0455985i
\(307\) 25.4439 + 14.6901i 1.45216 + 0.838406i 0.998604 0.0528200i \(-0.0168209\pi\)
0.453559 + 0.891226i \(0.350154\pi\)
\(308\) −34.5969 + 19.9745i −1.97134 + 1.13815i
\(309\) 4.49281 7.78177i 0.255587 0.442689i
\(310\) 35.3803 12.5353i 2.00946 0.711958i
\(311\) −0.193232 −0.0109572 −0.00547859 0.999985i \(-0.501744\pi\)
−0.00547859 + 0.999985i \(0.501744\pi\)
\(312\) 29.2966i 1.65859i
\(313\) −18.4251 + 10.6377i −1.04145 + 0.601281i −0.920243 0.391346i \(-0.872009\pi\)
−0.121206 + 0.992627i \(0.538676\pi\)
\(314\) −24.6285 42.6578i −1.38986 2.40732i
\(315\) −1.03293 + 5.57829i −0.0581993 + 0.314301i
\(316\) 45.7213 2.57202
\(317\) −16.6018 + 9.58506i −0.932451 + 0.538351i −0.887586 0.460642i \(-0.847619\pi\)
−0.0448649 + 0.998993i \(0.514286\pi\)
\(318\) 8.69317 + 5.01901i 0.487489 + 0.281452i
\(319\) 3.95333 + 6.84736i 0.221344 + 0.383379i
\(320\) −11.0290 + 12.9176i −0.616539 + 0.722113i
\(321\) 1.01647 1.76057i 0.0567337 0.0982656i
\(322\) 5.40043i 0.300954i
\(323\) 2.90236 + 0.0310783i 0.161492 + 0.00172924i
\(324\) 28.2042 1.56690
\(325\) −11.8312 14.6006i −0.656280 0.809897i
\(326\) 17.4797 30.2758i 0.968112 1.67682i
\(327\) −16.2674 + 9.39197i −0.899588 + 0.519377i
\(328\) 0.313136 + 0.180789i 0.0172900 + 0.00998240i
\(329\) 11.3145 + 19.5973i 0.623789 + 1.08043i
\(330\) 18.5357 + 3.43226i 1.02035 + 0.188939i
\(331\) −20.6070 −1.13266 −0.566331 0.824178i \(-0.691638\pi\)
−0.566331 + 0.824178i \(0.691638\pi\)
\(332\) −54.8337 + 31.6583i −3.00939 + 1.73747i
\(333\) −1.46879 + 0.848007i −0.0804893 + 0.0464705i
\(334\) −13.7948 −0.754816
\(335\) −2.33151 + 12.5912i −0.127384 + 0.687930i
\(336\) −14.7646 25.5730i −0.805473 1.39512i
\(337\) −8.83982 5.10368i −0.481536 0.278015i 0.239520 0.970891i \(-0.423010\pi\)
−0.721056 + 0.692876i \(0.756343\pi\)
\(338\) −2.39575 + 1.38318i −0.130311 + 0.0752353i
\(339\) 6.04613 10.4722i 0.328381 0.568772i
\(340\) 4.56680 + 3.89913i 0.247670 + 0.211460i
\(341\) 15.0264 0.813725
\(342\) −2.95850 5.25339i −0.159977 0.284071i
\(343\) 28.3719i 1.53194i
\(344\) 1.04994 1.81856i 0.0566092 0.0980500i
\(345\) −1.10613 + 1.29554i −0.0595519 + 0.0697493i
\(346\) 13.1290 + 22.7401i 0.705820 + 1.22252i
\(347\) 4.71213 + 2.72055i 0.252960 + 0.146047i 0.621119 0.783716i \(-0.286678\pi\)
−0.368159 + 0.929763i \(0.620012\pi\)
\(348\) −19.6063 + 11.3197i −1.05101 + 0.606800i
\(349\) 1.55114 0.0830304 0.0415152 0.999138i \(-0.486781\pi\)
0.0415152 + 0.999138i \(0.486781\pi\)
\(350\) −51.6609 19.8114i −2.76139 1.05896i
\(351\) −10.4528 18.1048i −0.557928 0.966360i
\(352\) 0.621199 0.358649i 0.0331100 0.0191161i
\(353\) 32.9335i 1.75287i −0.481517 0.876437i \(-0.659914\pi\)
0.481517 0.876437i \(-0.340086\pi\)
\(354\) −48.0648 −2.55461
\(355\) −5.20679 14.6959i −0.276348 0.779978i
\(356\) 2.69596 4.66954i 0.142886 0.247485i
\(357\) 4.05571 2.34157i 0.214651 0.123929i
\(358\) 16.3564 + 9.44339i 0.864464 + 0.499098i
\(359\) −1.74864 + 3.02873i −0.0922894 + 0.159850i −0.908474 0.417941i \(-0.862752\pi\)
0.816185 + 0.577791i \(0.196085\pi\)
\(360\) 1.14483 6.18255i 0.0603376 0.325849i
\(361\) 9.85017 16.2473i 0.518430 0.855120i
\(362\) 15.0474i 0.790873i
\(363\) −8.33551 4.81251i −0.437501 0.252591i
\(364\) −34.1449 + 59.1408i −1.78968 + 3.09982i
\(365\) 6.23378 2.20864i 0.326291 0.115606i
\(366\) −13.5461 + 23.4626i −0.708068 + 1.22641i
\(367\) −16.8909 + 9.75196i −0.881697 + 0.509048i −0.871218 0.490897i \(-0.836669\pi\)
−0.0104794 + 0.999945i \(0.503336\pi\)
\(368\) 2.04907i 0.106815i
\(369\) 0.0407784 0.00212284
\(370\) −5.52406 15.5914i −0.287182 0.810557i
\(371\) −5.89738 10.2146i −0.306177 0.530314i
\(372\) 43.0256i 2.23077i
\(373\) 23.5158i 1.21760i 0.793322 + 0.608802i \(0.208350\pi\)
−0.793322 + 0.608802i \(0.791650\pi\)
\(374\) 1.79804 + 3.11429i 0.0929743 + 0.161036i
\(375\) 8.33536 + 15.3339i 0.430436 + 0.791841i
\(376\) −12.5401 21.7201i −0.646708 1.12013i
\(377\) 11.7050 + 6.75791i 0.602841 + 0.348050i
\(378\) −53.3046 30.7754i −2.74169 1.58292i
\(379\) 7.05148 0.362210 0.181105 0.983464i \(-0.442033\pi\)
0.181105 + 0.983464i \(0.442033\pi\)
\(380\) 37.1898 12.7299i 1.90780 0.653031i
\(381\) −6.14483 −0.314809
\(382\) −12.4547 7.19075i −0.637240 0.367911i
\(383\) −2.67090 1.54204i −0.136476 0.0787947i 0.430207 0.902730i \(-0.358440\pi\)
−0.566684 + 0.823935i \(0.691774\pi\)
\(384\) −15.0719 26.1052i −0.769133 1.33218i
\(385\) −16.8452 14.3824i −0.858511 0.732996i
\(386\) −3.18222 5.51177i −0.161971 0.280542i
\(387\) 0.236823i 0.0120384i
\(388\) 17.6900i 0.898072i
\(389\) 4.69542 + 8.13270i 0.238067 + 0.412345i 0.960160 0.279452i \(-0.0901528\pi\)
−0.722092 + 0.691797i \(0.756819\pi\)
\(390\) 30.3739 10.7615i 1.53804 0.544931i
\(391\) −0.324970 −0.0164344
\(392\) 66.3984i 3.35362i
\(393\) 22.0698 12.7420i 1.11327 0.642749i
\(394\) −24.3936 + 42.2509i −1.22893 + 2.12857i
\(395\) 8.46598 + 23.8948i 0.425970 + 1.20228i
\(396\) 2.49673 4.32446i 0.125465 0.217312i
\(397\) −23.1744 13.3797i −1.16309 0.671510i −0.211047 0.977476i \(-0.567687\pi\)
−0.952042 + 0.305966i \(0.901021\pi\)
\(398\) 31.3456i 1.57122i
\(399\) 0.328242 30.6541i 0.0164326 1.53462i
\(400\) 19.6015 + 7.51699i 0.980077 + 0.375849i
\(401\) 12.5851 21.7980i 0.628468 1.08854i −0.359391 0.933187i \(-0.617016\pi\)
0.987859 0.155352i \(-0.0496511\pi\)
\(402\) −19.0157 10.9787i −0.948417 0.547569i
\(403\) 22.2451 12.8432i 1.10811 0.639767i
\(404\) −21.3112 + 36.9121i −1.06027 + 1.83645i
\(405\) 5.22242 + 14.7400i 0.259504 + 0.732438i
\(406\) 39.7937 1.97493
\(407\) 6.62183i 0.328232i
\(408\) −4.49504 + 2.59521i −0.222538 + 0.128482i
\(409\) −14.1608 24.5271i −0.700204 1.21279i −0.968395 0.249423i \(-0.919759\pi\)
0.268191 0.963366i \(-0.413574\pi\)
\(410\) −0.0724126 + 0.391060i −0.00357621 + 0.0193131i
\(411\) −25.6489 −1.26516
\(412\) 20.1041 11.6071i 0.990457 0.571840i
\(413\) 48.9102 + 28.2383i 2.40671 + 1.38952i
\(414\) 0.337515 + 0.584593i 0.0165880 + 0.0287312i
\(415\) −26.6985 22.7951i −1.31058 1.11897i
\(416\) 0.613083 1.06189i 0.0300589 0.0520635i
\(417\) 4.16563i 0.203992i
\(418\) 23.5386 + 0.252049i 1.15131 + 0.0123281i
\(419\) −13.0449 −0.637287 −0.318643 0.947875i \(-0.603227\pi\)
−0.318643 + 0.947875i \(0.603227\pi\)
\(420\) 41.1817 48.2335i 2.00946 2.35355i
\(421\) −1.66248 + 2.87951i −0.0810246 + 0.140339i −0.903690 0.428187i \(-0.859153\pi\)
0.822666 + 0.568525i \(0.192486\pi\)
\(422\) 29.4718 17.0156i 1.43467 0.828305i
\(423\) −2.44958 1.41426i −0.119102 0.0687638i
\(424\) 6.53621 + 11.3210i 0.317426 + 0.549798i
\(425\) −1.19215 + 3.10868i −0.0578276 + 0.150793i
\(426\) 26.7344 1.29528
\(427\) 27.5688 15.9168i 1.33415 0.770270i
\(428\) 4.54841 2.62603i 0.219856 0.126934i
\(429\) 12.9001 0.622823
\(430\) 2.27110 + 0.420541i 0.109522 + 0.0202803i
\(431\) −0.0242034 0.0419216i −0.00116584 0.00201929i 0.865442 0.501009i \(-0.167038\pi\)
−0.866608 + 0.498990i \(0.833704\pi\)
\(432\) 20.2252 + 11.6770i 0.973085 + 0.561811i
\(433\) −8.28676 + 4.78436i −0.398236 + 0.229922i −0.685723 0.727863i \(-0.740514\pi\)
0.287486 + 0.957785i \(0.407180\pi\)
\(434\) 37.8134 65.4948i 1.81510 3.14385i
\(435\) −9.54630 8.15062i −0.457710 0.390792i
\(436\) −48.5280 −2.32407
\(437\) −1.08329 + 1.83076i −0.0518209 + 0.0875773i
\(438\) 11.3403i 0.541861i
\(439\) −11.1257 + 19.2703i −0.531002 + 0.919723i 0.468343 + 0.883547i \(0.344851\pi\)
−0.999345 + 0.0361764i \(0.988482\pi\)
\(440\) 18.6699 + 15.9404i 0.890054 + 0.759927i
\(441\) 3.74417 + 6.48509i 0.178294 + 0.308814i
\(442\) 5.32364 + 3.07361i 0.253220 + 0.146197i
\(443\) 17.4207 10.0579i 0.827684 0.477863i −0.0253753 0.999678i \(-0.508078\pi\)
0.853059 + 0.521815i \(0.174745\pi\)
\(444\) 18.9605 0.899827
\(445\) 2.93959 + 0.544325i 0.139350 + 0.0258035i
\(446\) 26.6449 + 46.1504i 1.26167 + 2.18528i
\(447\) −24.2883 + 14.0229i −1.14880 + 0.663258i
\(448\) 34.2224i 1.61686i
\(449\) 12.4973 0.589783 0.294891 0.955531i \(-0.404717\pi\)
0.294891 + 0.955531i \(0.404717\pi\)
\(450\) 6.83042 1.08412i 0.321989 0.0511058i
\(451\) −0.0796065 + 0.137883i −0.00374852 + 0.00649263i
\(452\) 27.0548 15.6201i 1.27255 0.734707i
\(453\) −17.2156 9.93945i −0.808861 0.466996i
\(454\) −10.0659 + 17.4346i −0.472415 + 0.818246i
\(455\) −37.2305 6.89399i −1.74539 0.323195i
\(456\) −0.363798 + 33.9746i −0.0170364 + 1.59101i
\(457\) 28.3179i 1.32465i 0.749215 + 0.662327i \(0.230431\pi\)
−0.749215 + 0.662327i \(0.769569\pi\)
\(458\) −35.4422 20.4626i −1.65610 0.956153i
\(459\) −1.85190 + 3.20759i −0.0864394 + 0.149717i
\(460\) −4.14830 + 1.46975i −0.193416 + 0.0685276i
\(461\) −2.65976 + 4.60683i −0.123877 + 0.214562i −0.921293 0.388868i \(-0.872866\pi\)
0.797416 + 0.603430i \(0.206200\pi\)
\(462\) 32.8924 18.9904i 1.53029 0.883515i
\(463\) 17.9327i 0.833401i −0.909044 0.416701i \(-0.863186\pi\)
0.909044 0.416701i \(-0.136814\pi\)
\(464\) −15.0988 −0.700944
\(465\) −22.4860 + 7.96684i −1.04276 + 0.369453i
\(466\) 14.9995 + 25.9798i 0.694836 + 1.20349i
\(467\) 28.7791i 1.33174i −0.746069 0.665868i \(-0.768061\pi\)
0.746069 0.665868i \(-0.231939\pi\)
\(468\) 8.53593i 0.394574i
\(469\) 12.9001 + 22.3436i 0.595672 + 1.03173i
\(470\) 17.9125 20.9797i 0.826240 0.967722i
\(471\) 15.6527 + 27.1112i 0.721237 + 1.24922i
\(472\) −54.2083 31.2972i −2.49514 1.44057i
\(473\) 0.800762 + 0.462320i 0.0368191 + 0.0212575i
\(474\) −43.4687 −1.99658
\(475\) 13.5392 + 17.0790i 0.621219 + 0.783637i
\(476\) 12.0988 0.554548
\(477\) 1.27678 + 0.737147i 0.0584595 + 0.0337516i
\(478\) 4.33824 + 2.50469i 0.198427 + 0.114562i
\(479\) −4.02574 6.97279i −0.183941 0.318595i 0.759278 0.650766i \(-0.225552\pi\)
−0.943219 + 0.332171i \(0.892219\pi\)
\(480\) −0.739431 + 0.866048i −0.0337502 + 0.0395295i
\(481\) −5.65976 9.80298i −0.258063 0.446978i
\(482\) 43.0417i 1.96049i
\(483\) 3.43226i 0.156173i
\(484\) −12.4330 21.5347i −0.565138 0.978849i
\(485\) 9.24512 3.27556i 0.419799 0.148736i
\(486\) 14.1712 0.642819
\(487\) 1.09761i 0.0497376i −0.999691 0.0248688i \(-0.992083\pi\)
0.999691 0.0248688i \(-0.00791680\pi\)
\(488\) −30.5551 + 17.6410i −1.38316 + 0.798571i
\(489\) −11.1093 + 19.2418i −0.502379 + 0.870145i
\(490\) −68.8400 + 24.3901i −3.10987 + 1.10183i
\(491\) −6.55267 + 11.3496i −0.295718 + 0.512199i −0.975152 0.221538i \(-0.928892\pi\)
0.679434 + 0.733737i \(0.262226\pi\)
\(492\) −0.394804 0.227940i −0.0177991 0.0102763i
\(493\) 2.39458i 0.107846i
\(494\) 35.0621 19.7456i 1.57752 0.888395i
\(495\) 2.72235 + 0.504099i 0.122361 + 0.0226576i
\(496\) −14.3474 + 24.8505i −0.644219 + 1.11582i
\(497\) −27.2046 15.7066i −1.22029 0.704536i
\(498\) 52.1322 30.0985i 2.33610 1.34875i
\(499\) 12.0703 20.9064i 0.540342 0.935900i −0.458542 0.888673i \(-0.651628\pi\)
0.998884 0.0472275i \(-0.0150386\pi\)
\(500\) −1.15825 + 45.0747i −0.0517987 + 2.01580i
\(501\) 8.76729 0.391694
\(502\) 8.19895i 0.365937i
\(503\) −16.4214 + 9.48090i −0.732194 + 0.422733i −0.819224 0.573473i \(-0.805596\pi\)
0.0870300 + 0.996206i \(0.472262\pi\)
\(504\) −6.33424 10.9712i −0.282150 0.488697i
\(505\) −23.2371 4.30282i −1.03404 0.191473i
\(506\) −2.63555 −0.117165
\(507\) 1.52262 0.879086i 0.0676220 0.0390416i
\(508\) −13.7482 7.93753i −0.609978 0.352171i
\(509\) 10.9803 + 19.0184i 0.486692 + 0.842974i 0.999883 0.0152997i \(-0.00487025\pi\)
−0.513191 + 0.858274i \(0.671537\pi\)
\(510\) −4.34181 3.70703i −0.192259 0.164150i
\(511\) 6.66248 11.5398i 0.294731 0.510489i
\(512\) 40.5609i 1.79255i
\(513\) 11.8971 + 21.1255i 0.525268 + 0.932714i
\(514\) −67.7531 −2.98846
\(515\) 9.78866 + 8.35755i 0.431340 + 0.368277i
\(516\) −1.32378 + 2.29285i −0.0582761 + 0.100937i
\(517\) 9.56399 5.52177i 0.420624 0.242847i
\(518\) −28.8622 16.6636i −1.26813 0.732157i
\(519\) −8.34417 14.4525i −0.366268 0.634395i
\(520\) 41.2635 + 7.64077i 1.80952 + 0.335070i
\(521\) 6.56968 0.287823 0.143912 0.989591i \(-0.454032\pi\)
0.143912 + 0.989591i \(0.454032\pi\)
\(522\) −4.30764 + 2.48702i −0.188540 + 0.108854i
\(523\) 3.63538 2.09889i 0.158964 0.0917779i −0.418408 0.908259i \(-0.637412\pi\)
0.577372 + 0.816481i \(0.304078\pi\)
\(524\) 65.8375 2.87613
\(525\) 32.8332 + 12.5912i 1.43296 + 0.549524i
\(526\) −16.7344 28.9848i −0.729653 1.26380i
\(527\) −3.94113 2.27541i −0.171678 0.0991186i
\(528\) −12.4803 + 7.20549i −0.543134 + 0.313579i
\(529\) −11.3809 + 19.7123i −0.494822 + 0.857058i
\(530\) −9.33639 + 10.9351i −0.405547 + 0.474991i
\(531\) −7.05933 −0.306349
\(532\) 40.3316 68.1603i 1.74860 2.95513i
\(533\) 0.272162i 0.0117887i
\(534\) −2.56314 + 4.43949i −0.110918 + 0.192115i
\(535\) 2.21462 + 1.89084i 0.0957463 + 0.0817481i
\(536\) −14.2975 24.7640i −0.617558 1.06964i
\(537\) −10.3954 6.00176i −0.448593 0.258995i
\(538\) 7.67486 4.43108i 0.330887 0.191038i
\(539\) −29.2371 −1.25933
\(540\) −9.13282 + 49.3212i −0.393014 + 2.12245i
\(541\) 2.31505 + 4.00978i 0.0995316 + 0.172394i 0.911491 0.411320i \(-0.134932\pi\)
−0.811959 + 0.583714i \(0.801599\pi\)
\(542\) 22.4692 12.9726i 0.965136 0.557221i
\(543\) 9.56340i 0.410405i
\(544\) −0.217238 −0.00931400
\(545\) −8.98570 25.3617i −0.384905 1.08638i
\(546\) 32.4627 56.2271i 1.38928 2.40630i
\(547\) 32.9435 19.0199i 1.40856 0.813233i 0.413312 0.910590i \(-0.364372\pi\)
0.995250 + 0.0973563i \(0.0310386\pi\)
\(548\) −57.3858 33.1317i −2.45140 1.41532i
\(549\) −1.98953 + 3.44597i −0.0849113 + 0.147071i
\(550\) −9.66849 + 25.2118i −0.412266 + 1.07504i
\(551\) −13.4902 7.98236i −0.574701 0.340060i
\(552\) 3.80405i 0.161911i
\(553\) 44.2333 + 25.5381i 1.88099 + 1.08599i
\(554\) 8.27110 14.3260i 0.351406 0.608652i
\(555\) 3.51083 + 9.90913i 0.149026 + 0.420619i
\(556\) 5.38092 9.32002i 0.228202 0.395257i
\(557\) −31.5498 + 18.2153i −1.33681 + 0.771807i −0.986333 0.164765i \(-0.947313\pi\)
−0.350476 + 0.936572i \(0.613980\pi\)
\(558\) 9.45302i 0.400178i
\(559\) 1.58060 0.0668523
\(560\) 39.8696 14.1259i 1.68480 0.596927i
\(561\) −1.14275 1.97929i −0.0482468 0.0835659i
\(562\) 57.5496i 2.42758i
\(563\) 20.6856i 0.871795i 0.899996 + 0.435897i \(0.143569\pi\)
−0.899996 + 0.435897i \(0.856431\pi\)
\(564\) 15.8107 + 27.3849i 0.665750 + 1.15311i
\(565\) 13.1730 + 11.2470i 0.554190 + 0.473167i
\(566\) −18.0324 31.2330i −0.757958 1.31282i
\(567\) 27.2862 + 15.7537i 1.14591 + 0.661594i
\(568\) 30.1515 + 17.4080i 1.26513 + 0.730422i
\(569\) 27.1132 1.13664 0.568322 0.822806i \(-0.307593\pi\)
0.568322 + 0.822806i \(0.307593\pi\)
\(570\) −35.3576 + 12.1027i −1.48097 + 0.506928i
\(571\) 46.4687 1.94466 0.972328 0.233622i \(-0.0750578\pi\)
0.972328 + 0.233622i \(0.0750578\pi\)
\(572\) 28.8622 + 16.6636i 1.20679 + 0.696741i
\(573\) 7.91564 + 4.57009i 0.330680 + 0.190918i
\(574\) 0.400654 + 0.693954i 0.0167230 + 0.0289651i
\(575\) −1.53624 1.89584i −0.0640657 0.0790618i
\(576\) −2.13882 3.70455i −0.0891177 0.154356i
\(577\) 18.0398i 0.751008i −0.926821 0.375504i \(-0.877470\pi\)
0.926821 0.375504i \(-0.122530\pi\)
\(578\) 40.6664i 1.69150i
\(579\) 2.02247 + 3.50302i 0.0840509 + 0.145580i
\(580\) −10.8300 30.5672i −0.449693 1.26924i
\(581\) −70.7322 −2.93447
\(582\) 16.8184i 0.697147i
\(583\) −4.98497 + 2.87808i −0.206457 + 0.119198i
\(584\) −7.38419 + 12.7898i −0.305560 + 0.529245i
\(585\) 4.46104 1.58056i 0.184441 0.0653480i
\(586\) −22.3337 + 38.6831i −0.922597 + 1.59798i
\(587\) 22.5458 + 13.0168i 0.930565 + 0.537262i 0.886990 0.461788i \(-0.152792\pi\)
0.0435750 + 0.999050i \(0.486125\pi\)
\(588\) 83.7156i 3.45237i
\(589\) −25.9567 + 14.6178i −1.06953 + 0.602316i
\(590\) 12.5357 67.6980i 0.516085 2.78708i
\(591\) 15.5034 26.8526i 0.637724 1.10457i
\(592\) 10.9511 + 6.32263i 0.450088 + 0.259858i
\(593\) −15.7236 + 9.07803i −0.645691 + 0.372790i −0.786804 0.617203i \(-0.788266\pi\)
0.141112 + 0.989994i \(0.454932\pi\)
\(594\) −15.0192 + 26.0140i −0.616245 + 1.06737i
\(595\) 2.24028 + 6.32307i 0.0918424 + 0.259220i
\(596\) −72.4556 −2.96790
\(597\) 19.9218i 0.815345i
\(598\) −3.90168 + 2.25264i −0.159552 + 0.0921172i
\(599\) 20.0357 + 34.7028i 0.818635 + 1.41792i 0.906688 + 0.421802i \(0.138602\pi\)
−0.0880531 + 0.996116i \(0.528065\pi\)
\(600\) −36.3898 13.9551i −1.48561 0.569715i
\(601\) 15.0473 0.613793 0.306897 0.951743i \(-0.400709\pi\)
0.306897 + 0.951743i \(0.400709\pi\)
\(602\) 4.03018 2.32683i 0.164258 0.0948344i
\(603\) −2.79286 1.61246i −0.113734 0.0656643i
\(604\) −25.6784 44.4763i −1.04484 1.80972i
\(605\) 8.95226 10.4852i 0.363961 0.426285i
\(606\) 20.2613 35.0936i 0.823059 1.42558i
\(607\) 29.3860i 1.19274i 0.802709 + 0.596370i \(0.203391\pi\)
−0.802709 + 0.596370i \(0.796609\pi\)
\(608\) −0.724166 + 1.22384i −0.0293688 + 0.0496333i
\(609\) −25.2910 −1.02484
\(610\) −29.5135 25.1986i −1.19497 1.02026i
\(611\) 9.43905 16.3489i 0.381863 0.661406i
\(612\) −1.30969 + 0.756148i −0.0529410 + 0.0305655i
\(613\) 30.0578 + 17.3539i 1.21402 + 0.700917i 0.963633 0.267229i \(-0.0861079\pi\)
0.250390 + 0.968145i \(0.419441\pi\)
\(614\) −36.0818 62.4955i −1.45614 2.52211i
\(615\) 0.0460220 0.248539i 0.00185579 0.0100220i
\(616\) 49.4622 1.99289
\(617\) −9.29031 + 5.36376i −0.374014 + 0.215937i −0.675210 0.737625i \(-0.735947\pi\)
0.301197 + 0.953562i \(0.402614\pi\)
\(618\) −19.1136 + 11.0352i −0.768862 + 0.443903i
\(619\) 36.1437 1.45274 0.726370 0.687304i \(-0.241206\pi\)
0.726370 + 0.687304i \(0.241206\pi\)
\(620\) −60.6004 11.2214i −2.43377 0.450663i
\(621\) −1.35725 2.35083i −0.0544647 0.0943357i
\(622\) 0.411031 + 0.237309i 0.0164808 + 0.00951521i
\(623\) 5.21644 3.01171i 0.208992 0.120662i
\(624\) −12.3172 + 21.3341i −0.493084 + 0.854046i
\(625\) −23.7714 + 7.74093i −0.950855 + 0.309637i
\(626\) 52.2569 2.08861
\(627\) −14.9600 0.160191i −0.597445 0.00639739i
\(628\) 80.8768i 3.22734i
\(629\) −1.00273 + 1.73678i −0.0399814 + 0.0692499i
\(630\) 9.04790 10.5972i 0.360477 0.422204i
\(631\) 15.7882 + 27.3460i 0.628519 + 1.08863i 0.987849 + 0.155417i \(0.0496720\pi\)
−0.359330 + 0.933211i \(0.616995\pi\)
\(632\) −49.0248 28.3045i −1.95010 1.12589i
\(633\) −18.7309 + 10.8143i −0.744485 + 0.429829i
\(634\) 47.0857 1.87001
\(635\) 1.60262 8.65483i 0.0635979 0.343456i
\(636\) −8.24090 14.2737i −0.326773 0.565987i
\(637\) −43.2827 + 24.9893i −1.71492 + 0.990111i
\(638\) 19.4204i 0.768859i
\(639\) 3.92650 0.155330
\(640\) 40.6994 14.4199i 1.60879 0.569996i
\(641\) −9.91331 + 17.1704i −0.391552 + 0.678188i −0.992654 0.120984i \(-0.961395\pi\)
0.601102 + 0.799172i \(0.294728\pi\)
\(642\) −4.32432 + 2.49665i −0.170667 + 0.0985349i
\(643\) −11.6540 6.72843i −0.459588 0.265343i 0.252283 0.967654i \(-0.418819\pi\)
−0.711871 + 0.702310i \(0.752152\pi\)
\(644\) −4.43359 + 7.67920i −0.174708 + 0.302603i
\(645\) −1.44340 0.267276i −0.0568340 0.0105240i
\(646\) −6.13555 3.63051i −0.241400 0.142840i
\(647\) 4.19511i 0.164927i −0.996594 0.0824634i \(-0.973721\pi\)
0.996594 0.0824634i \(-0.0262787\pi\)
\(648\) −30.2420 17.4602i −1.18802 0.685902i
\(649\) 13.7810 23.8694i 0.540953 0.936957i
\(650\) 7.23559 + 45.5875i 0.283803 + 1.78809i
\(651\) −24.0324 + 41.6253i −0.941904 + 1.63143i
\(652\) −49.7109 + 28.7006i −1.94683 + 1.12400i
\(653\) 12.1680i 0.476170i −0.971244 0.238085i \(-0.923480\pi\)
0.971244 0.238085i \(-0.0765196\pi\)
\(654\) 46.1372 1.80411
\(655\) 12.1908 + 34.4080i 0.476334 + 1.34443i
\(656\) −0.152019 0.263305i −0.00593535 0.0102803i
\(657\) 1.66556i 0.0649798i
\(658\) 55.5814i 2.16679i
\(659\) 4.12236 + 7.14013i 0.160584 + 0.278140i 0.935078 0.354441i \(-0.115329\pi\)
−0.774494 + 0.632581i \(0.781996\pi\)
\(660\) −23.5392 20.0977i −0.916262 0.782303i
\(661\) −10.5599 18.2902i −0.410731 0.711407i 0.584239 0.811582i \(-0.301393\pi\)
−0.994970 + 0.100175i \(0.968060\pi\)
\(662\) 43.8338 + 25.3075i 1.70365 + 0.983603i
\(663\) −3.38345 1.95344i −0.131402 0.0758652i
\(664\) 78.3941 3.04228
\(665\) 43.0899 + 8.45714i 1.67095 + 0.327954i
\(666\) 4.16576 0.161420
\(667\) 1.51986 + 0.877489i 0.0588490 + 0.0339765i
\(668\) 19.6156 + 11.3251i 0.758951 + 0.438180i
\(669\) −16.9342 29.3310i −0.654716 1.13400i
\(670\) 20.4227 23.9198i 0.788998 0.924103i
\(671\) −7.76783 13.4543i −0.299874 0.519397i
\(672\) 2.29442i 0.0885090i
\(673\) 30.2802i 1.16722i −0.812036 0.583608i \(-0.801641\pi\)
0.812036 0.583608i \(-0.198359\pi\)
\(674\) 12.5357 + 21.7124i 0.482856 + 0.836331i
\(675\) −27.4673 + 4.35957i −1.05722 + 0.167800i
\(676\) 4.54221 0.174700
\(677\) 49.9003i 1.91783i −0.283701 0.958913i \(-0.591562\pi\)
0.283701 0.958913i \(-0.408438\pi\)
\(678\) −25.7219 + 14.8505i −0.987842 + 0.570331i
\(679\) 9.88092 17.1142i 0.379195 0.656785i
\(680\) −2.48295 7.00800i −0.0952168 0.268745i
\(681\) 6.39738 11.0806i 0.245148 0.424609i
\(682\) −31.9632 18.4539i −1.22393 0.706638i
\(683\) 3.11357i 0.119137i 0.998224 + 0.0595687i \(0.0189725\pi\)
−0.998224 + 0.0595687i \(0.981027\pi\)
\(684\) −0.105997 + 9.89894i −0.00405290 + 0.378496i
\(685\) 6.68942 36.1258i 0.255590 1.38029i
\(686\) −34.8436 + 60.3509i −1.33034 + 2.30421i
\(687\) 22.5254 + 13.0050i 0.859396 + 0.496172i
\(688\) −1.52916 + 0.882861i −0.0582987 + 0.0336588i
\(689\) −4.91985 + 8.52143i −0.187431 + 0.324641i
\(690\) 3.94393 1.39734i 0.150143 0.0531959i
\(691\) −30.2831 −1.15202 −0.576012 0.817441i \(-0.695392\pi\)
−0.576012 + 0.817441i \(0.695392\pi\)
\(692\) 43.1140i 1.63895i
\(693\) 4.83094 2.78915i 0.183512 0.105951i
\(694\) −6.68222 11.5740i −0.253654 0.439341i
\(695\) 5.86718 + 1.08643i 0.222555 + 0.0412105i
\(696\) 28.0305 1.06250
\(697\) 0.0417585 0.0241093i 0.00158172 0.000913204i
\(698\) −3.29948 1.90495i −0.124887 0.0721035i
\(699\) −9.53293 16.5115i −0.360569 0.624523i
\(700\) 57.1951 + 70.5830i 2.16177 + 2.66779i
\(701\) −22.2849 + 38.5987i −0.841691 + 1.45785i 0.0467733 + 0.998906i \(0.485106\pi\)
−0.888464 + 0.458946i \(0.848227\pi\)
\(702\) 51.3483i 1.93802i
\(703\) 6.44177 + 11.4386i 0.242956 + 0.431415i
\(704\) 16.7014 0.629458
\(705\) −11.3843 + 13.3337i −0.428757 + 0.502176i
\(706\) −40.4457 + 70.0540i −1.52219 + 2.63652i
\(707\) −41.2353 + 23.8072i −1.55081 + 0.895363i
\(708\) 68.3462 + 39.4597i 2.56861 + 1.48299i
\(709\) 4.67176 + 8.09172i 0.175452 + 0.303891i 0.940317 0.340299i \(-0.110528\pi\)
−0.764866 + 0.644190i \(0.777195\pi\)
\(710\) −6.97252 + 37.6546i −0.261674 + 1.41315i
\(711\) −6.38429 −0.239430
\(712\) −5.78150 + 3.33795i −0.216671 + 0.125095i
\(713\) 2.88844 1.66764i 0.108173 0.0624538i
\(714\) −11.5027 −0.430479
\(715\) −3.36445 + 18.1695i −0.125823 + 0.679500i
\(716\) −15.5055 26.8562i −0.579466 1.00366i
\(717\) −2.75718 1.59186i −0.102969 0.0594490i
\(718\) 7.43916 4.29500i 0.277627 0.160288i
\(719\) 12.6987 21.9948i 0.473581 0.820267i −0.525961 0.850508i \(-0.676294\pi\)
0.999543 + 0.0302417i \(0.00962768\pi\)
\(720\) −3.43302 + 4.02088i −0.127941 + 0.149849i
\(721\) 25.9330 0.965797
\(722\) −40.9059 + 22.4631i −1.52236 + 0.835992i
\(723\) 27.3552i 1.01735i
\(724\) −12.3534 + 21.3968i −0.459112 + 0.795205i
\(725\) 13.9697 11.3200i 0.518821 0.420413i
\(726\) 11.8205 + 20.4737i 0.438700 + 0.759851i
\(727\) −27.2259 15.7189i −1.00975 0.582980i −0.0986328 0.995124i \(-0.531447\pi\)
−0.911119 + 0.412143i \(0.864780\pi\)
\(728\) 73.2240 42.2759i 2.71386 1.56685i
\(729\) −29.9869 −1.11063
\(730\) −15.9725 2.95764i −0.591170 0.109467i
\(731\) −0.140016 0.242515i −0.00517869 0.00896975i
\(732\) 38.5241 22.2419i 1.42389 0.822085i
\(733\) 25.3946i 0.937971i −0.883206 0.468985i \(-0.844620\pi\)
0.883206 0.468985i \(-0.155380\pi\)
\(734\) 47.9056 1.76823
\(735\) 43.7514 15.5012i 1.61379 0.571770i
\(736\) 0.0796065 0.137883i 0.00293434 0.00508242i
\(737\) 10.9043 6.29559i 0.401664 0.231901i
\(738\) −0.0867411 0.0500800i −0.00319299 0.00184347i
\(739\) 17.7541 30.7510i 0.653095 1.13119i −0.329273 0.944235i \(-0.606804\pi\)
0.982368 0.186959i \(-0.0598631\pi\)
\(740\) −4.94505 + 26.7054i −0.181784 + 0.981710i
\(741\) −22.2838 + 12.5493i −0.818614 + 0.461011i
\(742\) 28.9703i 1.06353i
\(743\) −14.8176 8.55493i −0.543604 0.313850i 0.202934 0.979192i \(-0.434952\pi\)
−0.746538 + 0.665342i \(0.768286\pi\)
\(744\) 26.6357 46.1343i 0.976511 1.69137i
\(745\) −13.4163 37.8667i −0.491533 1.38733i
\(746\) 28.8798 50.0213i 1.05737 1.83141i
\(747\) 7.65671 4.42060i 0.280144 0.161741i
\(748\) 5.90453i 0.215891i
\(749\) 5.86718 0.214382
\(750\) 1.10119 42.8540i 0.0402097 1.56481i
\(751\) 3.72562 + 6.45297i 0.135950 + 0.235472i 0.925960 0.377622i \(-0.123258\pi\)
−0.790010 + 0.613094i \(0.789925\pi\)
\(752\) 21.0891i 0.769041i
\(753\) 5.21086i 0.189894i
\(754\) −16.5988 28.7500i −0.604493 1.04701i
\(755\) 18.4894 21.6555i 0.672899 0.788124i
\(756\) 50.5313 + 87.5228i 1.83781 + 3.18317i
\(757\) 46.5640 + 26.8838i 1.69240 + 0.977107i 0.952574 + 0.304306i \(0.0984245\pi\)
0.739824 + 0.672801i \(0.234909\pi\)
\(758\) −14.9994 8.65994i −0.544804 0.314543i
\(759\) 1.67503 0.0607997
\(760\) −47.7575 9.37325i −1.73235 0.340003i
\(761\) 23.3939 0.848029 0.424014 0.905655i \(-0.360621\pi\)
0.424014 + 0.905655i \(0.360621\pi\)
\(762\) 13.0709 + 7.54647i 0.473508 + 0.273380i
\(763\) −46.9487 27.1058i −1.69966 0.981297i
\(764\) 11.8068 + 20.4499i 0.427154 + 0.739852i
\(765\) −0.637686 0.544455i −0.0230556 0.0196848i
\(766\) 3.78757 + 6.56027i 0.136851 + 0.237032i
\(767\) 47.1152i 1.70123i
\(768\) 50.3235i 1.81589i
\(769\) −6.62236 11.4703i −0.238808 0.413628i 0.721564 0.692347i \(-0.243423\pi\)
−0.960373 + 0.278719i \(0.910090\pi\)
\(770\) 18.1690 + 51.2810i 0.654764 + 1.84804i
\(771\) 43.0606 1.55079
\(772\) 10.4500i 0.376105i