Properties

Label 90.7.g.f.37.2
Level $90$
Weight $7$
Character 90.37
Analytic conductor $20.705$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,7,Mod(37,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.37"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 90.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,32,0,0,-60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7048675258\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1602x^{6} + 816401x^{4} + 140305200x^{2} + 7638760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.2
Root \(-25.3784i\) of defining polynomial
Character \(\chi\) \(=\) 90.37
Dual form 90.7.g.f.73.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 + 4.00000i) q^{2} +32.0000i q^{4} +(-75.4773 - 99.6402i) q^{5} +(145.451 + 145.451i) q^{7} +(-128.000 + 128.000i) q^{8} +(96.6517 - 700.470i) q^{10} -1037.11 q^{11} +(2027.16 - 2027.16i) q^{13} +1163.61i q^{14} -1024.00 q^{16} +(-4670.49 - 4670.49i) q^{17} -9189.32i q^{19} +(3188.49 - 2415.27i) q^{20} +(-4148.42 - 4148.42i) q^{22} +(13577.9 - 13577.9i) q^{23} +(-4231.35 + 15041.2i) q^{25} +16217.3 q^{26} +(-4654.44 + 4654.44i) q^{28} -8478.24i q^{29} +17088.4 q^{31} +(-4096.00 - 4096.00i) q^{32} -37364.0i q^{34} +(3514.53 - 25471.1i) q^{35} +(-14956.3 - 14956.3i) q^{37} +(36757.3 - 36757.3i) q^{38} +(22415.0 + 3092.86i) q^{40} -50688.1 q^{41} +(-12486.6 + 12486.6i) q^{43} -33187.4i q^{44} +108624. q^{46} +(25787.6 + 25787.6i) q^{47} -75336.8i q^{49} +(-77090.0 + 43239.2i) q^{50} +(64869.0 + 64869.0i) q^{52} +(166649. - 166649. i) q^{53} +(78277.9 + 103337. i) q^{55} -37235.6 q^{56} +(33912.9 - 33912.9i) q^{58} +247188. i q^{59} -281194. q^{61} +(68353.5 + 68353.5i) q^{62} -32768.0i q^{64} +(-354991. - 48982.0i) q^{65} +(-304343. - 304343. i) q^{67} +(149456. - 149456. i) q^{68} +(115942. - 87826.2i) q^{70} +288398. q^{71} +(-487894. + 487894. i) q^{73} -119650. i q^{74} +294058. q^{76} +(-150848. - 150848. i) q^{77} -222009. i q^{79} +(77288.8 + 102032. i) q^{80} +(-202752. - 202752. i) q^{82} +(-749160. + 749160. i) q^{83} +(-112853. + 817885. i) q^{85} -99892.6 q^{86} +(132749. - 132749. i) q^{88} +689800. i q^{89} +589705. q^{91} +(434494. + 434494. i) q^{92} +206301. i q^{94} +(-915626. + 693585. i) q^{95} +(820944. + 820944. i) q^{97} +(301347. - 301347. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{2} - 60 q^{5} + 388 q^{7} - 1024 q^{8} - 976 q^{10} + 4192 q^{11} + 7884 q^{13} - 8192 q^{16} + 1372 q^{17} - 5888 q^{20} + 16768 q^{22} - 14888 q^{23} + 17932 q^{25} + 63072 q^{26} - 12416 q^{28}+ \cdots + 301888 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 + 4.00000i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 32.0000i 0.500000i
\(5\) −75.4773 99.6402i −0.603818 0.797122i
\(6\) 0 0
\(7\) 145.451 + 145.451i 0.424057 + 0.424057i 0.886598 0.462541i \(-0.153062\pi\)
−0.462541 + 0.886598i \(0.653062\pi\)
\(8\) −128.000 + 128.000i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 96.6517 700.470i 0.0966517 0.700470i
\(11\) −1037.11 −0.779193 −0.389596 0.920986i \(-0.627385\pi\)
−0.389596 + 0.920986i \(0.627385\pi\)
\(12\) 0 0
\(13\) 2027.16 2027.16i 0.922693 0.922693i −0.0745260 0.997219i \(-0.523744\pi\)
0.997219 + 0.0745260i \(0.0237444\pi\)
\(14\) 1163.61i 0.424057i
\(15\) 0 0
\(16\) −1024.00 −0.250000
\(17\) −4670.49 4670.49i −0.950640 0.950640i 0.0481978 0.998838i \(-0.484652\pi\)
−0.998838 + 0.0481978i \(0.984652\pi\)
\(18\) 0 0
\(19\) 9189.32i 1.33975i −0.742476 0.669873i \(-0.766349\pi\)
0.742476 0.669873i \(-0.233651\pi\)
\(20\) 3188.49 2415.27i 0.398561 0.301909i
\(21\) 0 0
\(22\) −4148.42 4148.42i −0.389596 0.389596i
\(23\) 13577.9 13577.9i 1.11597 1.11597i 0.123638 0.992327i \(-0.460544\pi\)
0.992327 0.123638i \(-0.0394561\pi\)
\(24\) 0 0
\(25\) −4231.35 + 15041.2i −0.270807 + 0.962634i
\(26\) 16217.3 0.922693
\(27\) 0 0
\(28\) −4654.44 + 4654.44i −0.212028 + 0.212028i
\(29\) 8478.24i 0.347625i −0.984779 0.173813i \(-0.944391\pi\)
0.984779 0.173813i \(-0.0556087\pi\)
\(30\) 0 0
\(31\) 17088.4 0.573609 0.286805 0.957989i \(-0.407407\pi\)
0.286805 + 0.957989i \(0.407407\pi\)
\(32\) −4096.00 4096.00i −0.125000 0.125000i
\(33\) 0 0
\(34\) 37364.0i 0.950640i
\(35\) 3514.53 25471.1i 0.0819716 0.594078i
\(36\) 0 0
\(37\) −14956.3 14956.3i −0.295269 0.295269i 0.543888 0.839158i \(-0.316952\pi\)
−0.839158 + 0.543888i \(0.816952\pi\)
\(38\) 36757.3 36757.3i 0.669873 0.669873i
\(39\) 0 0
\(40\) 22415.0 + 3092.86i 0.350235 + 0.0483259i
\(41\) −50688.1 −0.735452 −0.367726 0.929934i \(-0.619864\pi\)
−0.367726 + 0.929934i \(0.619864\pi\)
\(42\) 0 0
\(43\) −12486.6 + 12486.6i −0.157050 + 0.157050i −0.781258 0.624208i \(-0.785422\pi\)
0.624208 + 0.781258i \(0.285422\pi\)
\(44\) 33187.4i 0.389596i
\(45\) 0 0
\(46\) 108624. 1.11597
\(47\) 25787.6 + 25787.6i 0.248380 + 0.248380i 0.820306 0.571925i \(-0.193803\pi\)
−0.571925 + 0.820306i \(0.693803\pi\)
\(48\) 0 0
\(49\) 75336.8i 0.640352i
\(50\) −77090.0 + 43239.2i −0.616720 + 0.345914i
\(51\) 0 0
\(52\) 64869.0 + 64869.0i 0.461347 + 0.461347i
\(53\) 166649. 166649.i 1.11937 1.11937i 0.127542 0.991833i \(-0.459291\pi\)
0.991833 0.127542i \(-0.0407087\pi\)
\(54\) 0 0
\(55\) 78277.9 + 103337.i 0.470491 + 0.621111i
\(56\) −37235.6 −0.212028
\(57\) 0 0
\(58\) 33912.9 33912.9i 0.173813 0.173813i
\(59\) 247188.i 1.20357i 0.798658 + 0.601785i \(0.205544\pi\)
−0.798658 + 0.601785i \(0.794456\pi\)
\(60\) 0 0
\(61\) −281194. −1.23884 −0.619422 0.785058i \(-0.712633\pi\)
−0.619422 + 0.785058i \(0.712633\pi\)
\(62\) 68353.5 + 68353.5i 0.286805 + 0.286805i
\(63\) 0 0
\(64\) 32768.0i 0.125000i
\(65\) −354991. 48982.0i −1.29264 0.178360i
\(66\) 0 0
\(67\) −304343. 304343.i −1.01190 1.01190i −0.999928 0.0119749i \(-0.996188\pi\)
−0.0119749 0.999928i \(-0.503812\pi\)
\(68\) 149456. 149456.i 0.475320 0.475320i
\(69\) 0 0
\(70\) 115942. 87826.2i 0.338025 0.256053i
\(71\) 288398. 0.805780 0.402890 0.915248i \(-0.368006\pi\)
0.402890 + 0.915248i \(0.368006\pi\)
\(72\) 0 0
\(73\) −487894. + 487894.i −1.25417 + 1.25417i −0.300338 + 0.953833i \(0.597100\pi\)
−0.953833 + 0.300338i \(0.902900\pi\)
\(74\) 119650.i 0.295269i
\(75\) 0 0
\(76\) 294058. 0.669873
\(77\) −150848. 150848.i −0.330422 0.330422i
\(78\) 0 0
\(79\) 222009.i 0.450286i −0.974326 0.225143i \(-0.927715\pi\)
0.974326 0.225143i \(-0.0722850\pi\)
\(80\) 77288.8 + 102032.i 0.150955 + 0.199280i
\(81\) 0 0
\(82\) −202752. 202752.i −0.367726 0.367726i
\(83\) −749160. + 749160.i −1.31021 + 1.31021i −0.388948 + 0.921260i \(0.627161\pi\)
−0.921260 + 0.388948i \(0.872839\pi\)
\(84\) 0 0
\(85\) −112853. + 817885.i −0.183762 + 1.33179i
\(86\) −99892.6 −0.157050
\(87\) 0 0
\(88\) 132749. 132749.i 0.194798 0.194798i
\(89\) 689800.i 0.978482i 0.872149 + 0.489241i \(0.162726\pi\)
−0.872149 + 0.489241i \(0.837274\pi\)
\(90\) 0 0
\(91\) 589705. 0.782548
\(92\) 434494. + 434494.i 0.557983 + 0.557983i
\(93\) 0 0
\(94\) 206301.i 0.248380i
\(95\) −915626. + 693585.i −1.06794 + 0.808963i
\(96\) 0 0
\(97\) 820944. + 820944.i 0.899494 + 0.899494i 0.995391 0.0958974i \(-0.0305721\pi\)
−0.0958974 + 0.995391i \(0.530572\pi\)
\(98\) 301347. 301347.i 0.320176 0.320176i
\(99\) 0 0
\(100\) −481317. 135403.i −0.481317 0.135403i
\(101\) 290048. 0.281518 0.140759 0.990044i \(-0.455046\pi\)
0.140759 + 0.990044i \(0.455046\pi\)
\(102\) 0 0
\(103\) 291498. 291498.i 0.266762 0.266762i −0.561032 0.827794i \(-0.689596\pi\)
0.827794 + 0.561032i \(0.189596\pi\)
\(104\) 518952.i 0.461347i
\(105\) 0 0
\(106\) 1.33319e6 1.11937
\(107\) −792277. 792277.i −0.646734 0.646734i 0.305468 0.952202i \(-0.401187\pi\)
−0.952202 + 0.305468i \(0.901187\pi\)
\(108\) 0 0
\(109\) 165909.i 0.128112i −0.997946 0.0640559i \(-0.979596\pi\)
0.997946 0.0640559i \(-0.0204036\pi\)
\(110\) −100238. + 726461.i −0.0753103 + 0.545801i
\(111\) 0 0
\(112\) −148942. 148942.i −0.106014 0.106014i
\(113\) 750389. 750389.i 0.520057 0.520057i −0.397532 0.917589i \(-0.630133\pi\)
0.917589 + 0.397532i \(0.130133\pi\)
\(114\) 0 0
\(115\) −2.37774e6 328083.i −1.56340 0.215720i
\(116\) 271304. 0.173813
\(117\) 0 0
\(118\) −988752. + 988752.i −0.601785 + 0.601785i
\(119\) 1.35866e6i 0.806250i
\(120\) 0 0
\(121\) −695974. −0.392859
\(122\) −1.12478e6 1.12478e6i −0.619422 0.619422i
\(123\) 0 0
\(124\) 546828.i 0.286805i
\(125\) 1.81808e6 713653.i 0.930854 0.365390i
\(126\) 0 0
\(127\) 583066. + 583066.i 0.284647 + 0.284647i 0.834959 0.550312i \(-0.185491\pi\)
−0.550312 + 0.834959i \(0.685491\pi\)
\(128\) 131072. 131072.i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −1.22403e6 1.61589e6i −0.557139 0.735499i
\(131\) 4.18868e6 1.86321 0.931607 0.363466i \(-0.118407\pi\)
0.931607 + 0.363466i \(0.118407\pi\)
\(132\) 0 0
\(133\) 1.33660e6 1.33660e6i 0.568128 0.568128i
\(134\) 2.43474e6i 1.01190i
\(135\) 0 0
\(136\) 1.19565e6 0.475320
\(137\) −250638. 250638.i −0.0974731 0.0974731i 0.656689 0.754162i \(-0.271957\pi\)
−0.754162 + 0.656689i \(0.771957\pi\)
\(138\) 0 0
\(139\) 4.91265e6i 1.82924i −0.404309 0.914622i \(-0.632488\pi\)
0.404309 0.914622i \(-0.367512\pi\)
\(140\) 815075. + 112465.i 0.297039 + 0.0409858i
\(141\) 0 0
\(142\) 1.15359e6 + 1.15359e6i 0.402890 + 0.402890i
\(143\) −2.10237e6 + 2.10237e6i −0.718956 + 0.718956i
\(144\) 0 0
\(145\) −844774. + 639914.i −0.277100 + 0.209903i
\(146\) −3.90315e6 −1.25417
\(147\) 0 0
\(148\) 478601. 478601.i 0.147635 0.147635i
\(149\) 3.77991e6i 1.14268i −0.820715 0.571338i \(-0.806425\pi\)
0.820715 0.571338i \(-0.193575\pi\)
\(150\) 0 0
\(151\) 1.19813e6 0.347996 0.173998 0.984746i \(-0.444331\pi\)
0.173998 + 0.984746i \(0.444331\pi\)
\(152\) 1.17623e6 + 1.17623e6i 0.334937 + 0.334937i
\(153\) 0 0
\(154\) 1.20679e6i 0.330422i
\(155\) −1.28979e6 1.70269e6i −0.346356 0.457236i
\(156\) 0 0
\(157\) 2.93950e6 + 2.93950e6i 0.759582 + 0.759582i 0.976246 0.216664i \(-0.0695176\pi\)
−0.216664 + 0.976246i \(0.569518\pi\)
\(158\) 888035. 888035.i 0.225143 0.225143i
\(159\) 0 0
\(160\) −98971.4 + 717281.i −0.0241629 + 0.175118i
\(161\) 3.94986e6 0.946465
\(162\) 0 0
\(163\) 3.63502e6 3.63502e6i 0.839351 0.839351i −0.149422 0.988774i \(-0.547741\pi\)
0.988774 + 0.149422i \(0.0477413\pi\)
\(164\) 1.62202e6i 0.367726i
\(165\) 0 0
\(166\) −5.99328e6 −1.31021
\(167\) 738364. + 738364.i 0.158533 + 0.158533i 0.781917 0.623383i \(-0.214242\pi\)
−0.623383 + 0.781917i \(0.714242\pi\)
\(168\) 0 0
\(169\) 3.39192e6i 0.702725i
\(170\) −3.72295e6 + 2.82013e6i −0.757776 + 0.574014i
\(171\) 0 0
\(172\) −399570. 399570.i −0.0785250 0.0785250i
\(173\) −5.01441e6 + 5.01441e6i −0.968459 + 0.968459i −0.999518 0.0310584i \(-0.990112\pi\)
0.0310584 + 0.999518i \(0.490112\pi\)
\(174\) 0 0
\(175\) −2.80321e6 + 1.57230e6i −0.523048 + 0.293374i
\(176\) 1.06200e6 0.194798
\(177\) 0 0
\(178\) −2.75920e6 + 2.75920e6i −0.489241 + 0.489241i
\(179\) 7.77058e6i 1.35486i −0.735587 0.677430i \(-0.763094\pi\)
0.735587 0.677430i \(-0.236906\pi\)
\(180\) 0 0
\(181\) 6.98198e6 1.17745 0.588726 0.808333i \(-0.299630\pi\)
0.588726 + 0.808333i \(0.299630\pi\)
\(182\) 2.35882e6 + 2.35882e6i 0.391274 + 0.391274i
\(183\) 0 0
\(184\) 3.47596e6i 0.557983i
\(185\) −361387. + 2.61911e6i −0.0570766 + 0.413655i
\(186\) 0 0
\(187\) 4.84379e6 + 4.84379e6i 0.740732 + 0.740732i
\(188\) −825202. + 825202.i −0.124190 + 0.124190i
\(189\) 0 0
\(190\) −6.43684e6 888163.i −0.938452 0.129489i
\(191\) −1.75621e6 −0.252044 −0.126022 0.992027i \(-0.540221\pi\)
−0.126022 + 0.992027i \(0.540221\pi\)
\(192\) 0 0
\(193\) −8.48929e6 + 8.48929e6i −1.18086 + 1.18086i −0.201343 + 0.979521i \(0.564530\pi\)
−0.979521 + 0.201343i \(0.935470\pi\)
\(194\) 6.56755e6i 0.899494i
\(195\) 0 0
\(196\) 2.41078e6 0.320176
\(197\) 7.08383e6 + 7.08383e6i 0.926552 + 0.926552i 0.997481 0.0709298i \(-0.0225966\pi\)
−0.0709298 + 0.997481i \(0.522597\pi\)
\(198\) 0 0
\(199\) 2.34311e6i 0.297326i −0.988888 0.148663i \(-0.952503\pi\)
0.988888 0.148663i \(-0.0474970\pi\)
\(200\) −1.38365e6 2.46688e6i −0.172957 0.308360i
\(201\) 0 0
\(202\) 1.16019e6 + 1.16019e6i 0.140759 + 0.140759i
\(203\) 1.23317e6 1.23317e6i 0.147413 0.147413i
\(204\) 0 0
\(205\) 3.82580e6 + 5.05058e6i 0.444080 + 0.586245i
\(206\) 2.33199e6 0.266762
\(207\) 0 0
\(208\) −2.07581e6 + 2.07581e6i −0.230673 + 0.230673i
\(209\) 9.53029e6i 1.04392i
\(210\) 0 0
\(211\) −4.10418e6 −0.436897 −0.218448 0.975848i \(-0.570100\pi\)
−0.218448 + 0.975848i \(0.570100\pi\)
\(212\) 5.33277e6 + 5.33277e6i 0.559687 + 0.559687i
\(213\) 0 0
\(214\) 6.33822e6i 0.646734i
\(215\) 2.18662e6 + 301712.i 0.220018 + 0.0303583i
\(216\) 0 0
\(217\) 2.48553e6 + 2.48553e6i 0.243243 + 0.243243i
\(218\) 663634. 663634.i 0.0640559 0.0640559i
\(219\) 0 0
\(220\) −3.30680e6 + 2.50489e6i −0.310556 + 0.235245i
\(221\) −1.89356e7 −1.75430
\(222\) 0 0
\(223\) −9.84643e6 + 9.84643e6i −0.887901 + 0.887901i −0.994321 0.106421i \(-0.966061\pi\)
0.106421 + 0.994321i \(0.466061\pi\)
\(224\) 1.19154e6i 0.106014i
\(225\) 0 0
\(226\) 6.00311e6 0.520057
\(227\) −447932. 447932.i −0.0382943 0.0382943i 0.687700 0.725995i \(-0.258620\pi\)
−0.725995 + 0.687700i \(0.758620\pi\)
\(228\) 0 0
\(229\) 2.13385e7i 1.77688i −0.458991 0.888441i \(-0.651789\pi\)
0.458991 0.888441i \(-0.348211\pi\)
\(230\) −8.19862e6 1.08233e7i −0.673840 0.889560i
\(231\) 0 0
\(232\) 1.08521e6 + 1.08521e6i 0.0869064 + 0.0869064i
\(233\) −1.19508e6 + 1.19508e6i −0.0944775 + 0.0944775i −0.752766 0.658288i \(-0.771281\pi\)
0.658288 + 0.752766i \(0.271281\pi\)
\(234\) 0 0
\(235\) 623103. 4.51586e6i 0.0480127 0.347966i
\(236\) −7.91001e6 −0.601785
\(237\) 0 0
\(238\) 5.43464e6 5.43464e6i 0.403125 0.403125i
\(239\) 2.07007e6i 0.151632i −0.997122 0.0758160i \(-0.975844\pi\)
0.997122 0.0758160i \(-0.0241562\pi\)
\(240\) 0 0
\(241\) 2.35841e7 1.68487 0.842437 0.538795i \(-0.181120\pi\)
0.842437 + 0.538795i \(0.181120\pi\)
\(242\) −2.78389e6 2.78389e6i −0.196429 0.196429i
\(243\) 0 0
\(244\) 8.99822e6i 0.619422i
\(245\) −7.50658e6 + 5.68622e6i −0.510439 + 0.386656i
\(246\) 0 0
\(247\) −1.86282e7 1.86282e7i −1.23617 1.23617i
\(248\) −2.18731e6 + 2.18731e6i −0.143402 + 0.143402i
\(249\) 0 0
\(250\) 1.01269e7 + 4.41769e6i 0.648122 + 0.282732i
\(251\) 8.83541e6 0.558734 0.279367 0.960184i \(-0.409875\pi\)
0.279367 + 0.960184i \(0.409875\pi\)
\(252\) 0 0
\(253\) −1.40818e7 + 1.40818e7i −0.869552 + 0.869552i
\(254\) 4.66453e6i 0.284647i
\(255\) 0 0
\(256\) 1.04858e6 0.0625000
\(257\) 6.09969e6 + 6.09969e6i 0.359342 + 0.359342i 0.863570 0.504228i \(-0.168223\pi\)
−0.504228 + 0.863570i \(0.668223\pi\)
\(258\) 0 0
\(259\) 4.35082e6i 0.250422i
\(260\) 1.56743e6 1.13597e7i 0.0891799 0.646319i
\(261\) 0 0
\(262\) 1.67547e7 + 1.67547e7i 0.931607 + 0.931607i
\(263\) 4.35686e6 4.35686e6i 0.239500 0.239500i −0.577143 0.816643i \(-0.695832\pi\)
0.816643 + 0.577143i \(0.195832\pi\)
\(264\) 0 0
\(265\) −2.91832e7 4.02673e6i −1.56818 0.216379i
\(266\) 1.06928e7 0.568128
\(267\) 0 0
\(268\) 9.73898e6 9.73898e6i 0.505952 0.505952i
\(269\) 1.36102e7i 0.699208i −0.936898 0.349604i \(-0.886316\pi\)
0.936898 0.349604i \(-0.113684\pi\)
\(270\) 0 0
\(271\) −8.20889e6 −0.412455 −0.206228 0.978504i \(-0.566119\pi\)
−0.206228 + 0.978504i \(0.566119\pi\)
\(272\) 4.78259e6 + 4.78259e6i 0.237660 + 0.237660i
\(273\) 0 0
\(274\) 2.00510e6i 0.0974731i
\(275\) 4.38836e6 1.55993e7i 0.211010 0.750077i
\(276\) 0 0
\(277\) 2.56480e7 + 2.56480e7i 1.20674 + 1.20674i 0.972076 + 0.234665i \(0.0753995\pi\)
0.234665 + 0.972076i \(0.424601\pi\)
\(278\) 1.96506e7 1.96506e7i 0.914622 0.914622i
\(279\) 0 0
\(280\) 2.81044e6 + 3.71016e6i 0.128027 + 0.169012i
\(281\) 2.47592e7 1.11588 0.557940 0.829881i \(-0.311592\pi\)
0.557940 + 0.829881i \(0.311592\pi\)
\(282\) 0 0
\(283\) −1.00351e7 + 1.00351e7i −0.442753 + 0.442753i −0.892936 0.450183i \(-0.851359\pi\)
0.450183 + 0.892936i \(0.351359\pi\)
\(284\) 9.22873e6i 0.402890i
\(285\) 0 0
\(286\) −1.68190e7 −0.718956
\(287\) −7.37266e6 7.37266e6i −0.311873 0.311873i
\(288\) 0 0
\(289\) 1.94895e7i 0.807433i
\(290\) −5.93875e6 819436.i −0.243501 0.0335986i
\(291\) 0 0
\(292\) −1.56126e7 1.56126e7i −0.627085 0.627085i
\(293\) −1.88230e6 + 1.88230e6i −0.0748319 + 0.0748319i −0.743532 0.668700i \(-0.766851\pi\)
0.668700 + 0.743532i \(0.266851\pi\)
\(294\) 0 0
\(295\) 2.46299e7 1.86571e7i 0.959392 0.726737i
\(296\) 3.82881e6 0.147635
\(297\) 0 0
\(298\) 1.51196e7 1.51196e7i 0.571338 0.571338i
\(299\) 5.50493e7i 2.05939i
\(300\) 0 0
\(301\) −3.63238e6 −0.133196
\(302\) 4.79253e6 + 4.79253e6i 0.173998 + 0.173998i
\(303\) 0 0
\(304\) 9.40986e6i 0.334937i
\(305\) 2.12238e7 + 2.80183e7i 0.748037 + 0.987510i
\(306\) 0 0
\(307\) −3.23684e7 3.23684e7i −1.11868 1.11868i −0.991935 0.126747i \(-0.959547\pi\)
−0.126747 0.991935i \(-0.540453\pi\)
\(308\) 4.82715e6 4.82715e6i 0.165211 0.165211i
\(309\) 0 0
\(310\) 1.65162e6 1.19699e7i 0.0554403 0.401796i
\(311\) −1.96913e7 −0.654625 −0.327313 0.944916i \(-0.606143\pi\)
−0.327313 + 0.944916i \(0.606143\pi\)
\(312\) 0 0
\(313\) 1.21275e7 1.21275e7i 0.395493 0.395493i −0.481147 0.876640i \(-0.659780\pi\)
0.876640 + 0.481147i \(0.159780\pi\)
\(314\) 2.35160e7i 0.759582i
\(315\) 0 0
\(316\) 7.10428e6 0.225143
\(317\) −2.36698e7 2.36698e7i −0.743048 0.743048i 0.230116 0.973163i \(-0.426090\pi\)
−0.973163 + 0.230116i \(0.926090\pi\)
\(318\) 0 0
\(319\) 8.79282e6i 0.270867i
\(320\) −3.26501e6 + 2.47324e6i −0.0996402 + 0.0754773i
\(321\) 0 0
\(322\) 1.57995e7 + 1.57995e7i 0.473232 + 0.473232i
\(323\) −4.29187e7 + 4.29187e7i −1.27362 + 1.27362i
\(324\) 0 0
\(325\) 2.19132e7 + 3.90684e7i 0.638344 + 1.13809i
\(326\) 2.90802e7 0.839351
\(327\) 0 0
\(328\) 6.48808e6 6.48808e6i 0.183863 0.183863i
\(329\) 7.50167e6i 0.210654i
\(330\) 0 0
\(331\) 3.78781e7 1.04449 0.522245 0.852796i \(-0.325095\pi\)
0.522245 + 0.852796i \(0.325095\pi\)
\(332\) −2.39731e7 2.39731e7i −0.655104 0.655104i
\(333\) 0 0
\(334\) 5.90691e6i 0.158533i
\(335\) −7.35382e6 + 5.32958e7i −0.195604 + 1.41762i
\(336\) 0 0
\(337\) −2.24435e7 2.24435e7i −0.586411 0.586411i 0.350247 0.936657i \(-0.386098\pi\)
−0.936657 + 0.350247i \(0.886098\pi\)
\(338\) 1.35677e7 1.35677e7i 0.351362 0.351362i
\(339\) 0 0
\(340\) −2.61723e7 3.61129e6i −0.665895 0.0918810i
\(341\) −1.77225e7 −0.446952
\(342\) 0 0
\(343\) 2.80701e7 2.80701e7i 0.695602 0.695602i
\(344\) 3.19656e6i 0.0785250i
\(345\) 0 0
\(346\) −4.01153e7 −0.968459
\(347\) −3.01955e7 3.01955e7i −0.722692 0.722692i 0.246461 0.969153i \(-0.420732\pi\)
−0.969153 + 0.246461i \(0.920732\pi\)
\(348\) 0 0
\(349\) 7.82272e7i 1.84027i 0.391600 + 0.920135i \(0.371922\pi\)
−0.391600 + 0.920135i \(0.628078\pi\)
\(350\) −1.75021e7 4.92365e6i −0.408211 0.114837i
\(351\) 0 0
\(352\) 4.24798e6 + 4.24798e6i 0.0973991 + 0.0973991i
\(353\) 9.45650e6 9.45650e6i 0.214984 0.214984i −0.591397 0.806381i \(-0.701423\pi\)
0.806381 + 0.591397i \(0.201423\pi\)
\(354\) 0 0
\(355\) −2.17675e7 2.87360e7i −0.486545 0.642305i
\(356\) −2.20736e7 −0.489241
\(357\) 0 0
\(358\) 3.10823e7 3.10823e7i 0.677430 0.677430i
\(359\) 2.13996e7i 0.462511i 0.972893 + 0.231256i \(0.0742834\pi\)
−0.972893 + 0.231256i \(0.925717\pi\)
\(360\) 0 0
\(361\) −3.73977e7 −0.794919
\(362\) 2.79279e7 + 2.79279e7i 0.588726 + 0.588726i
\(363\) 0 0
\(364\) 1.88706e7i 0.391274i
\(365\) 8.54388e7 + 1.17889e7i 1.75702 + 0.242436i
\(366\) 0 0
\(367\) −1.29658e7 1.29658e7i −0.262302 0.262302i 0.563687 0.825989i \(-0.309383\pi\)
−0.825989 + 0.563687i \(0.809383\pi\)
\(368\) −1.39038e7 + 1.39038e7i −0.278991 + 0.278991i
\(369\) 0 0
\(370\) −1.19220e7 + 9.03088e6i −0.235366 + 0.178289i
\(371\) 4.84787e7 0.949356
\(372\) 0 0
\(373\) 3.92352e6 3.92352e6i 0.0756048 0.0756048i −0.668293 0.743898i \(-0.732975\pi\)
0.743898 + 0.668293i \(0.232975\pi\)
\(374\) 3.87504e7i 0.740732i
\(375\) 0 0
\(376\) −6.60162e6 −0.124190
\(377\) −1.71867e7 1.71867e7i −0.320752 0.320752i
\(378\) 0 0
\(379\) 3.61170e7i 0.663429i −0.943380 0.331714i \(-0.892373\pi\)
0.943380 0.331714i \(-0.107627\pi\)
\(380\) −2.21947e7 2.93000e7i −0.404482 0.533970i
\(381\) 0 0
\(382\) −7.02485e6 7.02485e6i −0.126022 0.126022i
\(383\) 774461. 774461.i 0.0137849 0.0137849i −0.700181 0.713966i \(-0.746897\pi\)
0.713966 + 0.700181i \(0.246897\pi\)
\(384\) 0 0
\(385\) −3.64494e6 + 2.64162e7i −0.0638716 + 0.462901i
\(386\) −6.79144e7 −1.18086
\(387\) 0 0
\(388\) −2.62702e7 + 2.62702e7i −0.449747 + 0.449747i
\(389\) 4.56599e7i 0.775686i 0.921726 + 0.387843i \(0.126780\pi\)
−0.921726 + 0.387843i \(0.873220\pi\)
\(390\) 0 0
\(391\) −1.26831e8 −2.12176
\(392\) 9.64311e6 + 9.64311e6i 0.160088 + 0.160088i
\(393\) 0 0
\(394\) 5.66707e7i 0.926552i
\(395\) −2.21210e7 + 1.67566e7i −0.358933 + 0.271891i
\(396\) 0 0
\(397\) 5.08606e7 + 5.08606e7i 0.812849 + 0.812849i 0.985060 0.172211i \(-0.0550912\pi\)
−0.172211 + 0.985060i \(0.555091\pi\)
\(398\) 9.37244e6 9.37244e6i 0.148663 0.148663i
\(399\) 0 0
\(400\) 4.33291e6 1.54021e7i 0.0677016 0.240658i
\(401\) 3.46994e7 0.538133 0.269066 0.963122i \(-0.413285\pi\)
0.269066 + 0.963122i \(0.413285\pi\)
\(402\) 0 0
\(403\) 3.46408e7 3.46408e7i 0.529265 0.529265i
\(404\) 9.28155e6i 0.140759i
\(405\) 0 0
\(406\) 9.86537e6 0.147413
\(407\) 1.55112e7 + 1.55112e7i 0.230072 + 0.230072i
\(408\) 0 0
\(409\) 6.63216e6i 0.0969360i −0.998825 0.0484680i \(-0.984566\pi\)
0.998825 0.0484680i \(-0.0154339\pi\)
\(410\) −4.89909e6 + 3.55055e7i −0.0710827 + 0.515162i
\(411\) 0 0
\(412\) 9.32795e6 + 9.32795e6i 0.133381 + 0.133381i
\(413\) −3.59538e7 + 3.59538e7i −0.510382 + 0.510382i
\(414\) 0 0
\(415\) 1.31191e8 + 1.81019e7i 1.83552 + 0.253268i
\(416\) −1.66065e7 −0.230673
\(417\) 0 0
\(418\) −3.81212e7 + 3.81212e7i −0.521960 + 0.521960i
\(419\) 1.87567e7i 0.254985i 0.991840 + 0.127493i \(0.0406929\pi\)
−0.991840 + 0.127493i \(0.959307\pi\)
\(420\) 0 0
\(421\) 1.01392e8 1.35881 0.679406 0.733762i \(-0.262237\pi\)
0.679406 + 0.733762i \(0.262237\pi\)
\(422\) −1.64167e7 1.64167e7i −0.218448 0.218448i
\(423\) 0 0
\(424\) 4.26622e7i 0.559687i
\(425\) 9.00121e7 5.04871e7i 1.17256 0.657679i
\(426\) 0 0
\(427\) −4.09001e7 4.09001e7i −0.525340 0.525340i
\(428\) 2.53529e7 2.53529e7i 0.323367 0.323367i
\(429\) 0 0
\(430\) 7.53963e6 + 9.95332e6i 0.0948297 + 0.125188i
\(431\) 2.54338e7 0.317672 0.158836 0.987305i \(-0.449226\pi\)
0.158836 + 0.987305i \(0.449226\pi\)
\(432\) 0 0
\(433\) −4.84883e7 + 4.84883e7i −0.597273 + 0.597273i −0.939586 0.342313i \(-0.888790\pi\)
0.342313 + 0.939586i \(0.388790\pi\)
\(434\) 1.98842e7i 0.243243i
\(435\) 0 0
\(436\) 5.30907e6 0.0640559
\(437\) −1.24772e8 1.24772e8i −1.49511 1.49511i
\(438\) 0 0
\(439\) 3.77933e7i 0.446706i 0.974738 + 0.223353i \(0.0717002\pi\)
−0.974738 + 0.223353i \(0.928300\pi\)
\(440\) −2.32468e7 3.20762e6i −0.272901 0.0376551i
\(441\) 0 0
\(442\) −7.57426e7 7.57426e7i −0.877149 0.877149i
\(443\) 2.16224e7 2.16224e7i 0.248710 0.248710i −0.571731 0.820441i \(-0.693728\pi\)
0.820441 + 0.571731i \(0.193728\pi\)
\(444\) 0 0
\(445\) 6.87318e7 5.20642e7i 0.779970 0.590826i
\(446\) −7.87715e7 −0.887901
\(447\) 0 0
\(448\) 4.76615e6 4.76615e6i 0.0530071 0.0530071i
\(449\) 9.43557e7i 1.04239i 0.853439 + 0.521193i \(0.174513\pi\)
−0.853439 + 0.521193i \(0.825487\pi\)
\(450\) 0 0
\(451\) 5.25689e7 0.573059
\(452\) 2.40124e7 + 2.40124e7i 0.260028 + 0.260028i
\(453\) 0 0
\(454\) 3.58345e6i 0.0382943i
\(455\) −4.45094e7 5.87584e7i −0.472517 0.623786i
\(456\) 0 0
\(457\) −3.23415e7 3.23415e7i −0.338853 0.338853i 0.517083 0.855936i \(-0.327018\pi\)
−0.855936 + 0.517083i \(0.827018\pi\)
\(458\) 8.53542e7 8.53542e7i 0.888441 0.888441i
\(459\) 0 0
\(460\) 1.04987e7 7.60876e7i 0.107860 0.781700i
\(461\) −8.77131e7 −0.895286 −0.447643 0.894212i \(-0.647736\pi\)
−0.447643 + 0.894212i \(0.647736\pi\)
\(462\) 0 0
\(463\) 4.91700e7 4.91700e7i 0.495402 0.495402i −0.414601 0.910003i \(-0.636079\pi\)
0.910003 + 0.414601i \(0.136079\pi\)
\(464\) 8.68171e6i 0.0869064i
\(465\) 0 0
\(466\) −9.56063e6 −0.0944775
\(467\) 9.52295e7 + 9.52295e7i 0.935020 + 0.935020i 0.998014 0.0629938i \(-0.0200648\pi\)
−0.0629938 + 0.998014i \(0.520065\pi\)
\(468\) 0 0
\(469\) 8.85342e7i 0.858208i
\(470\) 2.05558e7 1.55710e7i 0.197989 0.149976i
\(471\) 0 0
\(472\) −3.16401e7 3.16401e7i −0.300892 0.300892i
\(473\) 1.29499e7 1.29499e7i 0.122372 0.122372i
\(474\) 0 0
\(475\) 1.38218e8 + 3.88832e7i 1.28968 + 0.362812i
\(476\) 4.34771e7 0.403125
\(477\) 0 0
\(478\) 8.28027e6 8.28027e6i 0.0758160 0.0758160i
\(479\) 2.04024e8i 1.85642i −0.372062 0.928208i \(-0.621349\pi\)
0.372062 0.928208i \(-0.378651\pi\)
\(480\) 0 0
\(481\) −6.06374e7 −0.544886
\(482\) 9.43362e7 + 9.43362e7i 0.842437 + 0.842437i
\(483\) 0 0
\(484\) 2.22712e7i 0.196429i
\(485\) 1.98364e7 1.43762e8i 0.173875 1.26014i
\(486\) 0 0
\(487\) −1.00420e8 1.00420e8i −0.869424 0.869424i 0.122984 0.992409i \(-0.460753\pi\)
−0.992409 + 0.122984i \(0.960753\pi\)
\(488\) 3.59929e7 3.59929e7i 0.309711 0.309711i
\(489\) 0 0
\(490\) −5.27712e7 7.28143e6i −0.448548 0.0618911i
\(491\) 7.28010e7 0.615025 0.307512 0.951544i \(-0.400503\pi\)
0.307512 + 0.951544i \(0.400503\pi\)
\(492\) 0 0
\(493\) −3.95976e7 + 3.95976e7i −0.330467 + 0.330467i
\(494\) 1.49025e8i 1.23617i
\(495\) 0 0
\(496\) −1.74985e7 −0.143402
\(497\) 4.19478e7 + 4.19478e7i 0.341696 + 0.341696i
\(498\) 0 0
\(499\) 1.79824e8i 1.44726i 0.690188 + 0.723630i \(0.257528\pi\)
−0.690188 + 0.723630i \(0.742472\pi\)
\(500\) 2.28369e7 + 5.81784e7i 0.182695 + 0.465427i
\(501\) 0 0
\(502\) 3.53416e7 + 3.53416e7i 0.279367 + 0.279367i
\(503\) 5.58642e7 5.58642e7i 0.438965 0.438965i −0.452699 0.891664i \(-0.649539\pi\)
0.891664 + 0.452699i \(0.149539\pi\)
\(504\) 0 0
\(505\) −2.18921e7 2.89005e7i −0.169986 0.224404i
\(506\) −1.12654e8 −0.869552
\(507\) 0 0
\(508\) −1.86581e7 + 1.86581e7i −0.142324 + 0.142324i
\(509\) 2.14366e6i 0.0162556i 0.999967 + 0.00812779i \(0.00258718\pi\)
−0.999967 + 0.00812779i \(0.997413\pi\)
\(510\) 0 0
\(511\) −1.41930e8 −1.06368
\(512\) 4.19430e6 + 4.19430e6i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 4.87975e7i 0.359342i
\(515\) −5.10465e7 7.04345e6i −0.373718 0.0515661i
\(516\) 0 0
\(517\) −2.67444e7 2.67444e7i −0.193536 0.193536i
\(518\) 1.74033e7 1.74033e7i 0.125211 0.125211i
\(519\) 0 0
\(520\) 5.17085e7 3.91691e7i 0.367749 0.278570i
\(521\) 5.06571e7 0.358201 0.179101 0.983831i \(-0.442681\pi\)
0.179101 + 0.983831i \(0.442681\pi\)
\(522\) 0 0
\(523\) −1.58594e7 + 1.58594e7i −0.110862 + 0.110862i −0.760362 0.649500i \(-0.774978\pi\)
0.649500 + 0.760362i \(0.274978\pi\)
\(524\) 1.34038e8i 0.931607i
\(525\) 0 0
\(526\) 3.48549e7 0.239500
\(527\) −7.98112e7 7.98112e7i −0.545296 0.545296i
\(528\) 0 0
\(529\) 2.20686e8i 1.49076i
\(530\) −1.00626e8 1.32840e8i −0.675899 0.892278i
\(531\) 0 0
\(532\) 4.27712e7 + 4.27712e7i 0.284064 + 0.284064i
\(533\) −1.02753e8 + 1.02753e8i −0.678597 + 0.678597i
\(534\) 0 0
\(535\) −1.91437e7 + 1.38742e8i −0.125016 + 0.906036i
\(536\) 7.79118e7 0.505952
\(537\) 0 0
\(538\) 5.44406e7 5.44406e7i 0.349604 0.349604i
\(539\) 7.81322e7i 0.498958i
\(540\) 0 0
\(541\) 4.43541e7 0.280119 0.140059 0.990143i \(-0.455271\pi\)
0.140059 + 0.990143i \(0.455271\pi\)
\(542\) −3.28356e7 3.28356e7i −0.206228 0.206228i
\(543\) 0 0
\(544\) 3.82607e7i 0.237660i
\(545\) −1.65312e7 + 1.25223e7i −0.102121 + 0.0773563i
\(546\) 0 0
\(547\) 1.89599e7 + 1.89599e7i 0.115844 + 0.115844i 0.762653 0.646808i \(-0.223897\pi\)
−0.646808 + 0.762653i \(0.723897\pi\)
\(548\) 8.02041e6 8.02041e6i 0.0487366 0.0487366i
\(549\) 0 0
\(550\) 7.99505e7 4.48436e7i 0.480544 0.269533i
\(551\) −7.79092e7 −0.465730
\(552\) 0 0
\(553\) 3.22915e7 3.22915e7i 0.190947 0.190947i
\(554\) 2.05184e8i 1.20674i
\(555\) 0 0
\(556\) 1.57205e8 0.914622
\(557\) 1.03290e8 + 1.03290e8i 0.597712 + 0.597712i 0.939703 0.341991i \(-0.111101\pi\)
−0.341991 + 0.939703i \(0.611101\pi\)
\(558\) 0 0
\(559\) 5.06245e7i 0.289818i
\(560\) −3.59888e6 + 2.60824e7i −0.0204929 + 0.148519i
\(561\) 0 0
\(562\) 9.90369e7 + 9.90369e7i 0.557940 + 0.557940i
\(563\) −1.84599e8 + 1.84599e8i −1.03444 + 1.03444i −0.0350521 + 0.999385i \(0.511160\pi\)
−0.999385 + 0.0350521i \(0.988840\pi\)
\(564\) 0 0
\(565\) −1.31406e8 1.81316e7i −0.728569 0.100529i
\(566\) −8.02806e7 −0.442753
\(567\) 0 0
\(568\) −3.69149e7 + 3.69149e7i −0.201445 + 0.201445i
\(569\) 9.69662e7i 0.526361i 0.964747 + 0.263180i \(0.0847715\pi\)
−0.964747 + 0.263180i \(0.915229\pi\)
\(570\) 0 0
\(571\) −8.24057e7 −0.442638 −0.221319 0.975201i \(-0.571036\pi\)
−0.221319 + 0.975201i \(0.571036\pi\)
\(572\) −6.72760e7 6.72760e7i −0.359478 0.359478i
\(573\) 0 0
\(574\) 5.89812e7i 0.311873i
\(575\) 1.46775e8 + 2.61681e8i 0.772055 + 1.37648i
\(576\) 0 0
\(577\) 1.75260e8 + 1.75260e8i 0.912336 + 0.912336i 0.996456 0.0841201i \(-0.0268079\pi\)
−0.0841201 + 0.996456i \(0.526808\pi\)
\(578\) −7.79579e7 + 7.79579e7i −0.403716 + 0.403716i
\(579\) 0 0
\(580\) −2.04773e7 2.70328e7i −0.104951 0.138550i
\(581\) −2.17933e8 −1.11120
\(582\) 0 0
\(583\) −1.72833e8 + 1.72833e8i −0.872209 + 0.872209i
\(584\) 1.24901e8i 0.627085i
\(585\) 0 0
\(586\) −1.50584e7 −0.0748319
\(587\) 5.98432e7 + 5.98432e7i 0.295870 + 0.295870i 0.839394 0.543524i \(-0.182910\pi\)
−0.543524 + 0.839394i \(0.682910\pi\)
\(588\) 0 0
\(589\) 1.57031e8i 0.768490i
\(590\) 1.73148e8 + 2.38911e7i 0.843065 + 0.116327i
\(591\) 0 0
\(592\) 1.53152e7 + 1.53152e7i 0.0738173 + 0.0738173i
\(593\) −7.10812e7 + 7.10812e7i −0.340872 + 0.340872i −0.856695 0.515823i \(-0.827486\pi\)
0.515823 + 0.856695i \(0.327486\pi\)
\(594\) 0 0
\(595\) −1.35377e8 + 1.02548e8i −0.642680 + 0.486829i
\(596\) 1.20957e8 0.571338
\(597\) 0 0
\(598\) 2.20197e8 2.20197e8i 1.02969 1.02969i
\(599\) 1.93410e8i 0.899911i −0.893051 0.449955i \(-0.851440\pi\)
0.893051 0.449955i \(-0.148560\pi\)
\(600\) 0 0
\(601\) −2.04018e8 −0.939822 −0.469911 0.882714i \(-0.655714\pi\)
−0.469911 + 0.882714i \(0.655714\pi\)
\(602\) −1.45295e7 1.45295e7i −0.0665981 0.0665981i
\(603\) 0 0
\(604\) 3.83403e7i 0.173998i
\(605\) 5.25302e7 + 6.93470e7i 0.237215 + 0.313156i
\(606\) 0 0
\(607\) 2.70178e8 + 2.70178e8i 1.20805 + 1.20805i 0.971659 + 0.236388i \(0.0759636\pi\)
0.236388 + 0.971659i \(0.424036\pi\)
\(608\) −3.76394e7 + 3.76394e7i −0.167468 + 0.167468i
\(609\) 0 0
\(610\) −2.71779e7 + 1.96968e8i −0.119736 + 0.867774i
\(611\) 1.04551e8 0.458357
\(612\) 0 0
\(613\) −1.48040e8 + 1.48040e8i −0.642685 + 0.642685i −0.951215 0.308529i \(-0.900163\pi\)
0.308529 + 0.951215i \(0.400163\pi\)
\(614\) 2.58947e8i 1.11868i
\(615\) 0 0
\(616\) 3.86172e7 0.165211
\(617\) 3.46749e7 + 3.46749e7i 0.147625 + 0.147625i 0.777056 0.629431i \(-0.216712\pi\)
−0.629431 + 0.777056i \(0.716712\pi\)
\(618\) 0 0
\(619\) 3.42044e8i 1.44215i 0.692858 + 0.721074i \(0.256351\pi\)
−0.692858 + 0.721074i \(0.743649\pi\)
\(620\) 5.44861e7 4.12731e7i 0.228618 0.173178i
\(621\) 0 0
\(622\) −7.87651e7 7.87651e7i −0.327313 0.327313i
\(623\) −1.00332e8 + 1.00332e8i −0.414932 + 0.414932i
\(624\) 0 0
\(625\) −2.08332e8 1.27289e8i −0.853328 0.521375i
\(626\) 9.70201e7 0.395493
\(627\) 0 0
\(628\) −9.40641e7 + 9.40641e7i −0.379791 + 0.379791i
\(629\) 1.39706e8i 0.561390i
\(630\) 0 0
\(631\) 8.36979e7 0.333140 0.166570 0.986030i \(-0.446731\pi\)
0.166570 + 0.986030i \(0.446731\pi\)
\(632\) 2.84171e7 + 2.84171e7i 0.112572 + 0.112572i
\(633\) 0 0
\(634\) 1.89358e8i 0.743048i
\(635\) 1.40886e7 1.02105e8i 0.0550233 0.398774i
\(636\) 0 0
\(637\) −1.52719e8 1.52719e8i −0.590848 0.590848i
\(638\) −3.51713e7 + 3.51713e7i −0.135434 + 0.135434i
\(639\) 0 0
\(640\) −2.29530e7 3.16708e6i −0.0875588 0.0120815i
\(641\) −1.80537e8 −0.685475 −0.342737 0.939431i \(-0.611354\pi\)
−0.342737 + 0.939431i \(0.611354\pi\)
\(642\) 0 0
\(643\) 2.11026e8 2.11026e8i 0.793784 0.793784i −0.188324 0.982107i \(-0.560305\pi\)
0.982107 + 0.188324i \(0.0603054\pi\)
\(644\) 1.26396e8i 0.473232i
\(645\) 0 0
\(646\) −3.43349e8 −1.27362
\(647\) −1.30845e8 1.30845e8i −0.483109 0.483109i 0.423014 0.906123i \(-0.360972\pi\)
−0.906123 + 0.423014i \(0.860972\pi\)
\(648\) 0 0
\(649\) 2.56360e8i 0.937812i
\(650\) −6.86209e7 + 2.43926e8i −0.249871 + 0.888215i
\(651\) 0 0
\(652\) 1.16321e8 + 1.16321e8i 0.419676 + 0.419676i
\(653\) 3.15489e8 3.15489e8i 1.13304 1.13304i 0.143371 0.989669i \(-0.454206\pi\)
0.989669 0.143371i \(-0.0457943\pi\)
\(654\) 0 0
\(655\) −3.16150e8 4.17361e8i −1.12504 1.48521i
\(656\) 5.19046e7 0.183863
\(657\) 0 0
\(658\) −3.00067e7 + 3.00067e7i −0.105327 + 0.105327i
\(659\) 1.90964e8i 0.667260i −0.942704 0.333630i \(-0.891726\pi\)
0.942704 0.333630i \(-0.108274\pi\)
\(660\) 0 0
\(661\) 4.57014e8 1.58243 0.791216 0.611536i \(-0.209448\pi\)
0.791216 + 0.611536i \(0.209448\pi\)
\(662\) 1.51512e8 + 1.51512e8i 0.522245 + 0.522245i
\(663\) 0 0
\(664\) 1.91785e8i 0.655104i
\(665\) −2.34062e8 3.22961e7i −0.795913 0.109821i
\(666\) 0 0
\(667\) −1.15117e8 1.15117e8i −0.387938 0.387938i
\(668\) −2.36276e7 + 2.36276e7i −0.0792667 + 0.0792667i
\(669\) 0 0
\(670\) −2.42599e8 + 1.83768e8i −0.806610 + 0.611006i
\(671\) 2.91628e8 0.965299
\(672\) 0 0
\(673\) 2.86067e8 2.86067e8i 0.938474 0.938474i −0.0597400 0.998214i \(-0.519027\pi\)
0.998214 + 0.0597400i \(0.0190272\pi\)
\(674\) 1.79548e8i 0.586411i
\(675\) 0 0
\(676\) 1.08541e8 0.351362
\(677\) −2.60104e8 2.60104e8i −0.838266 0.838266i 0.150365 0.988631i \(-0.451955\pi\)
−0.988631 + 0.150365i \(0.951955\pi\)
\(678\) 0 0
\(679\) 2.38815e8i 0.762872i
\(680\) −9.02442e7 1.19135e8i −0.287007 0.378888i
\(681\) 0 0
\(682\) −7.08898e7 7.08898e7i −0.223476 0.223476i
\(683\) 9.24222e7 9.24222e7i 0.290078 0.290078i −0.547033 0.837111i \(-0.684243\pi\)
0.837111 + 0.547033i \(0.184243\pi\)
\(684\) 0 0
\(685\) −6.05614e6 + 4.38911e7i −0.0188419 + 0.136554i
\(686\) 2.24560e8 0.695602
\(687\) 0 0
\(688\) 1.27863e7 1.27863e7i 0.0392625 0.0392625i
\(689\) 6.75648e8i 2.06568i
\(690\) 0 0
\(691\) 4.54828e8 1.37852 0.689261 0.724513i \(-0.257935\pi\)
0.689261 + 0.724513i \(0.257935\pi\)
\(692\) −1.60461e8 1.60461e8i −0.484230 0.484230i
\(693\) 0 0
\(694\) 2.41564e8i 0.722692i
\(695\) −4.89498e8 + 3.70794e8i −1.45813 + 1.10453i
\(696\) 0 0
\(697\) 2.36739e8 + 2.36739e8i 0.699150 + 0.699150i
\(698\) −3.12909e8 + 3.12909e8i −0.920135 + 0.920135i
\(699\) 0 0
\(700\) −5.03136e7 8.97028e7i −0.146687 0.261524i
\(701\) 3.98272e8 1.15618 0.578090 0.815973i \(-0.303798\pi\)
0.578090 + 0.815973i \(0.303798\pi\)
\(702\) 0 0
\(703\) −1.37438e8 + 1.37438e8i −0.395586 + 0.395586i
\(704\) 3.39839e7i 0.0973991i
\(705\) 0 0
\(706\) 7.56520e7 0.214984
\(707\) 4.21879e7 + 4.21879e7i 0.119380 + 0.119380i
\(708\) 0 0
\(709\) 1.94492e8i 0.545711i −0.962055 0.272855i \(-0.912032\pi\)
0.962055 0.272855i \(-0.0879680\pi\)
\(710\) 2.78741e7 2.02014e8i 0.0778801 0.564425i
\(711\) 0 0
\(712\) −8.82943e7 8.82943e7i −0.244621 0.244621i
\(713\) 2.32025e8 2.32025e8i 0.640128 0.640128i
\(714\) 0 0
\(715\) 3.68163e8 + 5.07995e7i 1.00721 + 0.138977i
\(716\) 2.48659e8 0.677430
\(717\) 0 0
\(718\) −8.55984e7 + 8.55984e7i −0.231256 + 0.231256i
\(719\) 5.36699e8i 1.44392i 0.691934 + 0.721961i \(0.256759\pi\)
−0.691934 + 0.721961i \(0.743241\pi\)
\(720\) 0 0
\(721\) 8.47977e7 0.226245
\(722\) −1.49591e8 1.49591e8i −0.397460 0.397460i
\(723\) 0 0
\(724\) 2.23423e8i 0.588726i
\(725\) 1.27522e8 + 3.58744e7i 0.334636 + 0.0941393i
\(726\) 0 0
\(727\) 6.70897e7 + 6.70897e7i 0.174603 + 0.174603i 0.788998 0.614395i \(-0.210600\pi\)
−0.614395 + 0.788998i \(0.710600\pi\)
\(728\) −7.54823e7 + 7.54823e7i −0.195637 + 0.195637i
\(729\) 0 0
\(730\) 2.94599e8 + 3.88911e8i 0.757292 + 0.999727i
\(731\) 1.16637e8 0.298596
\(732\) 0 0
\(733\) −2.35707e7 + 2.35707e7i −0.0598495 + 0.0598495i −0.736398 0.676549i \(-0.763475\pi\)
0.676549 + 0.736398i \(0.263475\pi\)
\(734\) 1.03727e8i 0.262302i
\(735\) 0 0
\(736\) −1.11231e8 −0.278991
\(737\) 3.15636e8 + 3.15636e8i 0.788467 + 0.788467i
\(738\) 0 0
\(739\) 5.18563e8i 1.28490i −0.766329 0.642448i \(-0.777919\pi\)
0.766329 0.642448i \(-0.222081\pi\)
\(740\) −8.38114e7 1.15644e7i −0.206827 0.0285383i
\(741\) 0 0
\(742\) 1.93915e8 + 1.93915e8i 0.474678 + 0.474678i
\(743\) 2.89312e8 2.89312e8i 0.705343 0.705343i −0.260209 0.965552i \(-0.583792\pi\)
0.965552 + 0.260209i \(0.0837916\pi\)
\(744\) 0 0
\(745\) −3.76631e8 + 2.85298e8i −0.910851 + 0.689968i
\(746\) 3.13882e7 0.0756048
\(747\) 0 0
\(748\) −1.55001e8 + 1.55001e8i −0.370366 + 0.370366i
\(749\) 2.30476e8i 0.548504i
\(750\) 0 0
\(751\) 3.00670e8 0.709857 0.354928 0.934893i \(-0.384505\pi\)
0.354928 + 0.934893i \(0.384505\pi\)
\(752\) −2.64065e7 2.64065e7i −0.0620950 0.0620950i
\(753\) 0 0
\(754\) 1.37494e8i 0.320752i
\(755\) −9.04319e7 1.19382e8i −0.210126 0.277395i
\(756\) 0 0
\(757\) −4.36582e8 4.36582e8i −1.00642 1.00642i −0.999979 0.00643784i \(-0.997951\pi\)
−0.00643784 0.999979i \(-0.502049\pi\)
\(758\) 1.44468e8 1.44468e8i 0.331714 0.331714i
\(759\) 0 0
\(760\) 2.84212e7 2.05979e8i 0.0647444 0.469226i
\(761\) −5.85378e8 −1.32826 −0.664128 0.747619i \(-0.731197\pi\)
−0.664128 + 0.747619i \(0.731197\pi\)
\(762\) 0 0
\(763\) 2.41316e7 2.41316e7i 0.0543267 0.0543267i
\(764\) 5.61988e7i 0.126022i
\(765\) 0 0
\(766\) 6.19568e6 0.0137849
\(767\) 5.01089e8 + 5.01089e8i 1.11053 + 1.11053i
\(768\) 0 0
\(769\) 10186.9i 2.24008e-5i −1.00000 1.12004e-5i \(-0.999996\pi\)
1.00000 1.12004e-5i \(-3.56520e-6\pi\)
\(770\) −1.20245e8 + 9.10850e7i −0.263386 + 0.199515i
\(771\) 0 0
\(772\) −2.71657e8 2.71657e8i −0.590432 0.590432i
\(773\) 1.49946e8 1.49946e8i 0.324636 0.324636i −0.525906 0.850542i \(-0.676274\pi\)
0.850542 + 0.525906i \(0.176274\pi\)
\(774\) 0 0
\(775\) −7.23070e7 + 2.57029e8i −0.155337 + 0.552175i
\(776\) −2.10162e8 −0.449747
\(777\) 0 0
\(778\) −1.82639e8 + 1.82639e8i −0.387843 + 0.387843i
\(779\) 4.65789e8i 0.985319i
\(780\) 0 0
\(781\) −2.99099e8 −0.627858
\(782\) −5.07326e8 5.07326e8i −1.06088 1.06088i
\(783\) 0 0
\(784\) 7.71449e7i 0.160088i
\(785\) 7.10270e7 5.14758e8i 0.146830 1.06413i
\(786\) 0 0
\(787\) 3.29898e8 + 3.29898e8i 0.676793 + 0.676793i 0.959273 0.282481i \(-0.0911573\pi\)
−0.282481 + 0.959273i \(0.591157\pi\)
\(788\) −2.26683e8 + 2.26683e8i −0.463276 + 0.463276i
\(789\) 0 0
\(790\) −1.55511e8 2.14575e7i −0.315412 0.0435210i
\(791\) 2.18290e8 0.441067
\(792\) 0 0
\(793\) −5.70025e8 + 5.70025e8i −1.14307 + 1.14307i
\(794\) 4.06885e8i 0.812849i
\(795\) 0 0
\(796\) 7.49795e7 0.148663
\(797\) 2.30664e8 + 2.30664e8i 0.455622 + 0.455622i 0.897215 0.441593i \(-0.145587\pi\)
−0.441593 + 0.897215i \(0.645587\pi\)
\(798\) 0 0
\(799\) 2.40881e8i 0.472240i
\(800\) 7.89402e7 4.42769e7i 0.154180 0.0864784i
\(801\) 0 0
\(802\) 1.38798e8 + 1.38798e8i 0.269066 + 0.269066i
\(803\) 5.05997e8 5.05997e8i 0.977241 0.977241i
\(804\) 0 0
\(805\) −2.98125e8 3.93565e8i −0.571493 0.754448i
\(806\) 2.77127e8 0.529265
\(807\) 0 0
\(808\) −3.71262e7 + 3.71262e7i −0.0703795 + 0.0703795i
\(809\) 1.15009e8i 0.217213i 0.994085 + 0.108607i \(0.0346389\pi\)
−0.994085 + 0.108607i \(0.965361\pi\)
\(810\) 0 0
\(811\) 7.36769e8 1.38124 0.690619 0.723218i \(-0.257338\pi\)
0.690619 + 0.723218i \(0.257338\pi\)
\(812\) 3.94615e7 + 3.94615e7i 0.0737064 + 0.0737064i
\(813\) 0 0
\(814\) 1.24090e8i 0.230072i
\(815\) −6.36556e8 8.78327e7i −1.17588 0.162250i
\(816\) 0 0
\(817\) 1.14743e8 + 1.14743e8i 0.210407 + 0.210407i
\(818\) 2.65287e7 2.65287e7i 0.0484680 0.0484680i
\(819\) 0 0
\(820\) −1.61618e8 + 1.22426e8i −0.293123 + 0.222040i
\(821\) −5.00735e8 −0.904854 −0.452427 0.891802i \(-0.649442\pi\)
−0.452427 + 0.891802i \(0.649442\pi\)
\(822\) 0 0
\(823\) 6.80752e6 6.80752e6i 0.0122121 0.0122121i −0.700974 0.713186i \(-0.747251\pi\)
0.713186 + 0.700974i \(0.247251\pi\)
\(824\) 7.46236e7i 0.133381i
\(825\) 0 0
\(826\) −2.87631e8 −0.510382
\(827\) 2.59523e7 + 2.59523e7i 0.0458838 + 0.0458838i 0.729676 0.683793i \(-0.239671\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(828\) 0 0
\(829\) 3.24193e8i 0.569037i −0.958671 0.284518i \(-0.908166\pi\)
0.958671 0.284518i \(-0.0918337\pi\)
\(830\) 4.52356e8 + 5.97172e8i 0.791127 + 1.04440i
\(831\) 0 0
\(832\) −6.64259e7 6.64259e7i −0.115337 0.115337i
\(833\) −3.51860e8 + 3.51860e8i −0.608744 + 0.608744i
\(834\) 0 0
\(835\) 1.78410e7 1.29300e8i 0.0306451 0.222096i
\(836\) −3.04969e8 −0.521960
\(837\) 0 0
\(838\) −7.50269e7 + 7.50269e7i −0.127493 + 0.127493i
\(839\) 5.69147e8i 0.963692i 0.876256 + 0.481846i \(0.160034\pi\)
−0.876256 + 0.481846i \(0.839966\pi\)
\(840\) 0 0
\(841\) 5.22943e8 0.879157
\(842\) 4.05570e8 + 4.05570e8i 0.679406 + 0.679406i
\(843\) 0 0
\(844\) 1.31334e8i 0.218448i
\(845\) −3.37972e8 + 2.56013e8i −0.560157 + 0.424318i
\(846\) 0 0
\(847\) −1.01230e8 1.01230e8i −0.166594 0.166594i
\(848\) −1.70649e8 + 1.70649e8i −0.279844 + 0.279844i
\(849\) 0 0
\(850\) 5.61997e8 + 1.58100e8i 0.915118 + 0.257440i
\(851\) −4.06151e8 −0.659021
\(852\) 0 0
\(853\) 2.70461e7 2.70461e7i 0.0435770 0.0435770i −0.684982 0.728560i \(-0.740190\pi\)
0.728560 + 0.684982i \(0.240190\pi\)
\(854\) 3.27201e8i 0.525340i
\(855\) 0 0
\(856\) 2.02823e8 0.323367
\(857\) −1.75013e8 1.75013e8i −0.278052 0.278052i 0.554279 0.832331i \(-0.312994\pi\)
−0.832331 + 0.554279i \(0.812994\pi\)
\(858\) 0 0
\(859\) 3.42840e8i 0.540894i 0.962735 + 0.270447i \(0.0871716\pi\)
−0.962735 + 0.270447i \(0.912828\pi\)
\(860\) −9.65479e6 + 6.99718e7i −0.0151792 + 0.110009i
\(861\) 0 0
\(862\) 1.01735e8 + 1.01735e8i 0.158836 + 0.158836i
\(863\) −7.99150e8 + 7.99150e8i −1.24336 + 1.24336i −0.284757 + 0.958600i \(0.591913\pi\)
−0.958600 + 0.284757i \(0.908087\pi\)
\(864\) 0 0
\(865\) 8.78111e8 + 1.21163e8i 1.35675 + 0.187206i
\(866\) −3.87906e8 −0.597273
\(867\) 0 0
\(868\) −7.95369e7 + 7.95369e7i −0.121621 + 0.121621i
\(869\) 2.30247e8i 0.350860i
\(870\) 0 0
\(871\) −1.23390e9 −1.86735
\(872\) 2.12363e7 + 2.12363e7i 0.0320280 + 0.0320280i
\(873\) 0 0
\(874\) 9.98177e8i 1.49511i
\(875\) 3.68243e8 + 1.60640e8i 0.549681 + 0.239789i
\(876\) 0 0
\(877\) 5.77037e8 + 5.77037e8i 0.855470 + 0.855470i 0.990800 0.135331i \(-0.0432097\pi\)
−0.135331 + 0.990800i \(0.543210\pi\)
\(878\) −1.51173e8 + 1.51173e8i −0.223353 + 0.223353i
\(879\) 0 0
\(880\) −8.01566e7 1.05818e8i −0.117623 0.155278i
\(881\) 2.68153e8 0.392153 0.196077 0.980589i \(-0.437180\pi\)
0.196077 + 0.980589i \(0.437180\pi\)
\(882\) 0 0
\(883\) 4.48535e8 4.48535e8i 0.651499 0.651499i −0.301855 0.953354i \(-0.597606\pi\)
0.953354 + 0.301855i \(0.0976057\pi\)
\(884\) 6.05941e8i 0.877149i
\(885\) 0 0
\(886\) 1.72979e8 0.248710
\(887\) −4.07398e8 4.07398e8i −0.583779 0.583779i 0.352161 0.935940i \(-0.385447\pi\)
−0.935940 + 0.352161i \(0.885447\pi\)
\(888\) 0 0
\(889\) 1.69616e8i 0.241413i
\(890\) 4.83184e8 + 6.66703e7i 0.685398 + 0.0945720i
\(891\) 0 0
\(892\) −3.15086e8 3.15086e8i −0.443950 0.443950i
\(893\) 2.36970e8 2.36970e8i 0.332766 0.332766i
\(894\) 0 0
\(895\) −7.74263e8 + 5.86503e8i −1.07999 + 0.818089i
\(896\) 3.81292e7 0.0530071
\(897\) 0 0
\(898\) −3.77423e8 + 3.77423e8i −0.521193 + 0.521193i
\(899\) 1.44879e8i 0.199401i
\(900\) 0 0
\(901\) −1.55667e9 −2.12825
\(902\) 2.10276e8 + 2.10276e8i 0.286529 + 0.286529i
\(903\) 0 0
\(904\) 1.92100e8i 0.260028i
\(905\) −5.26981e8 6.95686e8i −0.710967 0.938572i
\(906\) 0 0
\(907\) −1.38639e8 1.38639e8i −0.185808 0.185808i 0.608073 0.793881i \(-0.291943\pi\)
−0.793881 + 0.608073i \(0.791943\pi\)
\(908\) 1.43338e7 1.43338e7i 0.0191471 0.0191471i
\(909\) 0 0
\(910\) 5.69960e7 4.13071e8i 0.0756346 0.548152i
\(911\) −7.12128e8 −0.941896 −0.470948 0.882161i \(-0.656088\pi\)
−0.470948 + 0.882161i \(0.656088\pi\)
\(912\) 0 0
\(913\) 7.76957e8 7.76957e8i 1.02090 1.02090i
\(914\) 2.58732e8i 0.338853i
\(915\) 0 0
\(916\) 6.82834e8 0.888441
\(917\) 6.09249e8 + 6.09249e8i 0.790108 + 0.790108i
\(918\) 0 0
\(919\) 4.34345e8i 0.559613i 0.960056 + 0.279807i \(0.0902704\pi\)
−0.960056 + 0.279807i \(0.909730\pi\)
\(920\) 3.46345e8 2.62356e8i 0.444780 0.336920i
\(921\) 0 0
\(922\) −3.50852e8 3.50852e8i −0.447643 0.447643i
\(923\) 5.84627e8 5.84627e8i 0.743488 0.743488i
\(924\) 0 0
\(925\) 2.88245e8 1.61674e8i 0.364197 0.204275i
\(926\) 3.93360e8 0.495402
\(927\) 0 0
\(928\) −3.47269e7 + 3.47269e7i −0.0434532 + 0.0434532i
\(929\) 3.67090e8i 0.457852i 0.973444 + 0.228926i \(0.0735213\pi\)
−0.973444 + 0.228926i \(0.926479\pi\)
\(930\) 0 0
\(931\) −6.92294e8 −0.857909
\(932\) −3.82425e7 3.82425e7i −0.0472388 0.0472388i
\(933\) 0 0
\(934\) 7.61836e8i 0.935020i
\(935\) 1.17040e8 8.48233e8i 0.143186 1.03772i
\(936\) 0 0
\(937\) 1.11262e8 + 1.11262e8i 0.135248 + 0.135248i 0.771490 0.636242i \(-0.219512\pi\)
−0.636242 + 0.771490i \(0.719512\pi\)
\(938\) 3.54137e8 3.54137e8i 0.429104 0.429104i
\(939\) 0 0
\(940\) 1.44507e8 + 1.99393e7i 0.173983 + 0.0240064i
\(941\) 7.63794e8 0.916659 0.458329 0.888782i \(-0.348448\pi\)
0.458329 + 0.888782i \(0.348448\pi\)
\(942\) 0 0
\(943\) −6.88241e8 + 6.88241e8i −0.820739 + 0.820739i
\(944\) 2.53120e8i 0.300892i
\(945\) 0 0
\(946\) 1.03599e8 0.122372
\(947\) −1.13872e8 1.13872e8i −0.134081 0.134081i 0.636881 0.770962i \(-0.280224\pi\)
−0.770962 + 0.636881i \(0.780224\pi\)
\(948\) 0 0
\(949\) 1.97807e9i 2.31443i
\(950\) 3.97339e8 + 7.08405e8i 0.463436 + 0.826248i
\(951\) 0 0
\(952\) 1.73908e8 + 1.73908e8i 0.201563 + 0.201563i
\(953\) −9.79865e8 + 9.79865e8i −1.13211 + 1.13211i −0.142280 + 0.989826i \(0.545443\pi\)
−0.989826 + 0.142280i \(0.954557\pi\)
\(954\) 0 0
\(955\) 1.32554e8 + 1.74989e8i 0.152189 + 0.200910i
\(956\) 6.62422e7 0.0758160
\(957\) 0 0
\(958\) 8.16097e8 8.16097e8i 0.928208 0.928208i
\(959\) 7.29112e7i 0.0826682i
\(960\) 0 0
\(961\) −5.95491e8 −0.670973
\(962\) −2.42550e8 2.42550e8i −0.272443 0.272443i
\(963\) 0 0
\(964\) 7.54690e8i 0.842437i
\(965\) 1.48662e9 + 2.05126e8i 1.65432 + 0.228265i
\(966\) 0 0
\(967\) −2.18628e8 2.18628e8i −0.241783 0.241783i 0.575804 0.817588i \(-0.304689\pi\)
−0.817588 + 0.575804i \(0.804689\pi\)
\(968\) 8.90846e7 8.90846e7i 0.0982147 0.0982147i
\(969\) 0 0
\(970\) 6.54392e8 4.95701e8i 0.717006 0.543131i
\(971\) 9.21253e8 1.00628 0.503142 0.864203i \(-0.332177\pi\)
0.503142 + 0.864203i \(0.332177\pi\)
\(972\) 0 0
\(973\) 7.14552e8 7.14552e8i 0.775703 0.775703i
\(974\) 8.03357e8i 0.869424i
\(975\) 0 0
\(976\) 2.87943e8 0.309711
\(977\) 1.10660e8 + 1.10660e8i 0.118661 + 0.118661i 0.763944 0.645283i \(-0.223260\pi\)
−0.645283 + 0.763944i \(0.723260\pi\)
\(978\) 0 0
\(979\) 7.15395e8i 0.762426i
\(980\) −1.81959e8 2.40210e8i −0.193328 0.255219i
\(981\) 0 0
\(982\) 2.91204e8 + 2.91204e8i 0.307512 + 0.307512i
\(983\) 5.81692e8 5.81692e8i 0.612397 0.612397i −0.331173 0.943570i \(-0.607445\pi\)
0.943570 + 0.331173i \(0.107445\pi\)
\(984\) 0 0
\(985\) 1.71166e8 1.24050e9i 0.179106 1.29804i
\(986\) −3.16780e8 −0.330467
\(987\) 0 0
\(988\) 5.96102e8 5.96102e8i 0.618087 0.618087i
\(989\) 3.39084e8i 0.350525i
\(990\) 0 0
\(991\) −2.16687e8 −0.222644 −0.111322 0.993784i \(-0.535509\pi\)
−0.111322 + 0.993784i \(0.535509\pi\)
\(992\) −6.99940e7 6.99940e7i −0.0717011 0.0717011i
\(993\) 0 0
\(994\) 3.35583e8i 0.341696i
\(995\) −2.33468e8 + 1.76852e8i −0.237005 + 0.179531i
\(996\) 0 0
\(997\) −3.07388e8 3.07388e8i −0.310172 0.310172i 0.534804 0.844976i \(-0.320385\pi\)
−0.844976 + 0.534804i \(0.820385\pi\)
\(998\) −7.19297e8 + 7.19297e8i −0.723630 + 0.723630i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.7.g.f.37.2 8
3.2 odd 2 30.7.f.b.7.4 8
5.2 odd 4 450.7.g.r.343.2 8
5.3 odd 4 inner 90.7.g.f.73.2 8
5.4 even 2 450.7.g.r.307.2 8
12.11 even 2 240.7.bg.b.97.2 8
15.2 even 4 150.7.f.h.43.1 8
15.8 even 4 30.7.f.b.13.4 yes 8
15.14 odd 2 150.7.f.h.7.1 8
60.23 odd 4 240.7.bg.b.193.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.7.f.b.7.4 8 3.2 odd 2
30.7.f.b.13.4 yes 8 15.8 even 4
90.7.g.f.37.2 8 1.1 even 1 trivial
90.7.g.f.73.2 8 5.3 odd 4 inner
150.7.f.h.7.1 8 15.14 odd 2
150.7.f.h.43.1 8 15.2 even 4
240.7.bg.b.97.2 8 12.11 even 2
240.7.bg.b.193.2 8 60.23 odd 4
450.7.g.r.307.2 8 5.4 even 2
450.7.g.r.343.2 8 5.2 odd 4