Properties

Label 90.7.g
Level $90$
Weight $7$
Character orbit 90.g
Rep. character $\chi_{90}(37,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $30$
Newform subspaces $6$
Sturm bound $126$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 90.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(126\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(90, [\chi])\).

Total New Old
Modular forms 232 30 202
Cusp forms 200 30 170
Eisenstein series 32 0 32

Trace form

\( 30 q + 8 q^{2} + 180 q^{5} + 120 q^{7} - 256 q^{8} - 408 q^{10} + 2776 q^{11} + 3786 q^{13} - 30720 q^{16} - 6638 q^{17} + 8512 q^{20} + 20544 q^{22} - 51680 q^{23} + 23634 q^{25} + 49584 q^{26} - 3840 q^{28}+ \cdots + 3320776 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(90, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
90.7.g.a 90.g 5.c $2$ $20.705$ \(\Q(\sqrt{-1}) \) None 10.7.c.a \(8\) \(0\) \(150\) \(-494\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4 i+4)q^{2}+32 i q^{4}+(-100 i+75)q^{5}+\cdots\)
90.7.g.b 90.g 5.c $4$ $20.705$ \(\Q(i, \sqrt{129})\) None 10.7.c.b \(-16\) \(0\) \(-330\) \(-202\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4-4\beta _{1})q^{2}+2^{5}\beta _{1}q^{4}+(-82+\cdots)q^{5}+\cdots\)
90.7.g.c 90.g 5.c $4$ $20.705$ \(\Q(i, \sqrt{6})\) None 30.7.f.a \(-16\) \(0\) \(420\) \(596\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4-4\beta _{2})q^{2}+2^{5}\beta _{2}q^{4}+(105+\cdots)q^{5}+\cdots\)
90.7.g.d 90.g 5.c $6$ $20.705$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 90.7.g.d \(-24\) \(0\) \(6\) \(-84\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4+4\beta _{1})q^{2}-2^{5}\beta _{1}q^{4}+(1-12\beta _{1}+\cdots)q^{5}+\cdots\)
90.7.g.e 90.g 5.c $6$ $20.705$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 90.7.g.d \(24\) \(0\) \(-6\) \(-84\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4-4\beta _{1})q^{2}-2^{5}\beta _{1}q^{4}+(-1+12\beta _{1}+\cdots)q^{5}+\cdots\)
90.7.g.f 90.g 5.c $8$ $20.705$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 30.7.f.b \(32\) \(0\) \(-60\) \(388\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4+4\beta _{1})q^{2}+2^{5}\beta _{1}q^{4}+(-7+23\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{7}^{\mathrm{old}}(90, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(90, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)