Properties

Label 240.7.bg.b.193.2
Level $240$
Weight $7$
Character 240.193
Analytic conductor $55.213$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,7,Mod(97,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.97"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 240.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.2129800688\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1602x^{6} + 816401x^{4} + 140305200x^{2} + 7638760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.2
Root \(25.3784i\) of defining polynomial
Character \(\chi\) \(=\) 240.193
Dual form 240.7.bg.b.97.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.0227 - 11.0227i) q^{3} +(75.4773 - 99.6402i) q^{5} +(-145.451 + 145.451i) q^{7} +243.000i q^{9} -1037.11 q^{11} +(2027.16 + 2027.16i) q^{13} +(-1930.27 + 266.341i) q^{15} +(4670.49 - 4670.49i) q^{17} -9189.32i q^{19} +3206.54 q^{21} +(13577.9 + 13577.9i) q^{23} +(-4231.35 - 15041.2i) q^{25} +(2678.52 - 2678.52i) q^{27} -8478.24i q^{29} -17088.4 q^{31} +(11431.7 + 11431.7i) q^{33} +(3514.53 + 25471.1i) q^{35} +(-14956.3 + 14956.3i) q^{37} -44689.5i q^{39} +50688.1 q^{41} +(12486.6 + 12486.6i) q^{43} +(24212.6 + 18341.0i) q^{45} +(25787.6 - 25787.6i) q^{47} +75336.8i q^{49} -102963. q^{51} +(-166649. - 166649. i) q^{53} +(-78277.9 + 103337. i) q^{55} +(-101291. + 101291. i) q^{57} -247188. i q^{59} -281194. q^{61} +(-35344.7 - 35344.7i) q^{63} +(354991. - 48982.0i) q^{65} +(304343. - 304343. i) q^{67} -299331. i q^{69} +288398. q^{71} +(-487894. - 487894. i) q^{73} +(-119153. + 212435. i) q^{75} +(150848. - 150848. i) q^{77} -222009. i q^{79} -59049.0 q^{81} +(-749160. - 749160. i) q^{83} +(-112853. - 817885. i) q^{85} +(-93453.1 + 93453.1i) q^{87} +689800. i q^{89} -589705. q^{91} +(188360. + 188360. i) q^{93} +(-915626. - 693585. i) q^{95} +(820944. - 820944. i) q^{97} -252017. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 60 q^{5} - 388 q^{7} + 4192 q^{11} + 7884 q^{13} - 1296 q^{15} - 1372 q^{17} + 4536 q^{21} - 14888 q^{23} + 17932 q^{25} - 2240 q^{31} + 3564 q^{33} + 78232 q^{35} - 69996 q^{37} + 169064 q^{41} - 164136 q^{43}+ \cdots - 854736 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.0227 11.0227i −0.408248 0.408248i
\(4\) 0 0
\(5\) 75.4773 99.6402i 0.603818 0.797122i
\(6\) 0 0
\(7\) −145.451 + 145.451i −0.424057 + 0.424057i −0.886598 0.462541i \(-0.846938\pi\)
0.462541 + 0.886598i \(0.346938\pi\)
\(8\) 0 0
\(9\) 243.000i 0.333333i
\(10\) 0 0
\(11\) −1037.11 −0.779193 −0.389596 0.920986i \(-0.627385\pi\)
−0.389596 + 0.920986i \(0.627385\pi\)
\(12\) 0 0
\(13\) 2027.16 + 2027.16i 0.922693 + 0.922693i 0.997219 0.0745260i \(-0.0237444\pi\)
−0.0745260 + 0.997219i \(0.523744\pi\)
\(14\) 0 0
\(15\) −1930.27 + 266.341i −0.571931 + 0.0789158i
\(16\) 0 0
\(17\) 4670.49 4670.49i 0.950640 0.950640i −0.0481978 0.998838i \(-0.515348\pi\)
0.998838 + 0.0481978i \(0.0153478\pi\)
\(18\) 0 0
\(19\) 9189.32i 1.33975i −0.742476 0.669873i \(-0.766349\pi\)
0.742476 0.669873i \(-0.233651\pi\)
\(20\) 0 0
\(21\) 3206.54 0.346241
\(22\) 0 0
\(23\) 13577.9 + 13577.9i 1.11597 + 1.11597i 0.992327 + 0.123638i \(0.0394561\pi\)
0.123638 + 0.992327i \(0.460544\pi\)
\(24\) 0 0
\(25\) −4231.35 15041.2i −0.270807 0.962634i
\(26\) 0 0
\(27\) 2678.52 2678.52i 0.136083 0.136083i
\(28\) 0 0
\(29\) 8478.24i 0.347625i −0.984779 0.173813i \(-0.944391\pi\)
0.984779 0.173813i \(-0.0556087\pi\)
\(30\) 0 0
\(31\) −17088.4 −0.573609 −0.286805 0.957989i \(-0.592593\pi\)
−0.286805 + 0.957989i \(0.592593\pi\)
\(32\) 0 0
\(33\) 11431.7 + 11431.7i 0.318104 + 0.318104i
\(34\) 0 0
\(35\) 3514.53 + 25471.1i 0.0819716 + 0.594078i
\(36\) 0 0
\(37\) −14956.3 + 14956.3i −0.295269 + 0.295269i −0.839158 0.543888i \(-0.816952\pi\)
0.543888 + 0.839158i \(0.316952\pi\)
\(38\) 0 0
\(39\) 44689.5i 0.753376i
\(40\) 0 0
\(41\) 50688.1 0.735452 0.367726 0.929934i \(-0.380136\pi\)
0.367726 + 0.929934i \(0.380136\pi\)
\(42\) 0 0
\(43\) 12486.6 + 12486.6i 0.157050 + 0.157050i 0.781258 0.624208i \(-0.214578\pi\)
−0.624208 + 0.781258i \(0.714578\pi\)
\(44\) 0 0
\(45\) 24212.6 + 18341.0i 0.265707 + 0.201273i
\(46\) 0 0
\(47\) 25787.6 25787.6i 0.248380 0.248380i −0.571925 0.820306i \(-0.693803\pi\)
0.820306 + 0.571925i \(0.193803\pi\)
\(48\) 0 0
\(49\) 75336.8i 0.640352i
\(50\) 0 0
\(51\) −102963. −0.776194
\(52\) 0 0
\(53\) −166649. 166649.i −1.11937 1.11937i −0.991833 0.127542i \(-0.959291\pi\)
−0.127542 0.991833i \(-0.540709\pi\)
\(54\) 0 0
\(55\) −78277.9 + 103337.i −0.470491 + 0.621111i
\(56\) 0 0
\(57\) −101291. + 101291.i −0.546949 + 0.546949i
\(58\) 0 0
\(59\) 247188.i 1.20357i −0.798658 0.601785i \(-0.794456\pi\)
0.798658 0.601785i \(-0.205544\pi\)
\(60\) 0 0
\(61\) −281194. −1.23884 −0.619422 0.785058i \(-0.712633\pi\)
−0.619422 + 0.785058i \(0.712633\pi\)
\(62\) 0 0
\(63\) −35344.7 35344.7i −0.141352 0.141352i
\(64\) 0 0
\(65\) 354991. 48982.0i 1.29264 0.178360i
\(66\) 0 0
\(67\) 304343. 304343.i 1.01190 1.01190i 0.0119749 0.999928i \(-0.496188\pi\)
0.999928 0.0119749i \(-0.00381184\pi\)
\(68\) 0 0
\(69\) 299331.i 0.911182i
\(70\) 0 0
\(71\) 288398. 0.805780 0.402890 0.915248i \(-0.368006\pi\)
0.402890 + 0.915248i \(0.368006\pi\)
\(72\) 0 0
\(73\) −487894. 487894.i −1.25417 1.25417i −0.953833 0.300338i \(-0.902900\pi\)
−0.300338 0.953833i \(-0.597100\pi\)
\(74\) 0 0
\(75\) −119153. + 212435.i −0.282437 + 0.503550i
\(76\) 0 0
\(77\) 150848. 150848.i 0.330422 0.330422i
\(78\) 0 0
\(79\) 222009.i 0.450286i −0.974326 0.225143i \(-0.927715\pi\)
0.974326 0.225143i \(-0.0722850\pi\)
\(80\) 0 0
\(81\) −59049.0 −0.111111
\(82\) 0 0
\(83\) −749160. 749160.i −1.31021 1.31021i −0.921260 0.388948i \(-0.872839\pi\)
−0.388948 0.921260i \(-0.627161\pi\)
\(84\) 0 0
\(85\) −112853. 817885.i −0.183762 1.33179i
\(86\) 0 0
\(87\) −93453.1 + 93453.1i −0.141917 + 0.141917i
\(88\) 0 0
\(89\) 689800.i 0.978482i 0.872149 + 0.489241i \(0.162726\pi\)
−0.872149 + 0.489241i \(0.837274\pi\)
\(90\) 0 0
\(91\) −589705. −0.782548
\(92\) 0 0
\(93\) 188360. + 188360.i 0.234175 + 0.234175i
\(94\) 0 0
\(95\) −915626. 693585.i −1.06794 0.808963i
\(96\) 0 0
\(97\) 820944. 820944.i 0.899494 0.899494i −0.0958974 0.995391i \(-0.530572\pi\)
0.995391 + 0.0958974i \(0.0305721\pi\)
\(98\) 0 0
\(99\) 252017.i 0.259731i
\(100\) 0 0
\(101\) −290048. −0.281518 −0.140759 0.990044i \(-0.544954\pi\)
−0.140759 + 0.990044i \(0.544954\pi\)
\(102\) 0 0
\(103\) −291498. 291498.i −0.266762 0.266762i 0.561032 0.827794i \(-0.310404\pi\)
−0.827794 + 0.561032i \(0.810404\pi\)
\(104\) 0 0
\(105\) 242021. 319500.i 0.209067 0.275996i
\(106\) 0 0
\(107\) −792277. + 792277.i −0.646734 + 0.646734i −0.952202 0.305468i \(-0.901187\pi\)
0.305468 + 0.952202i \(0.401187\pi\)
\(108\) 0 0
\(109\) 165909.i 0.128112i 0.997946 + 0.0640559i \(0.0204036\pi\)
−0.997946 + 0.0640559i \(0.979596\pi\)
\(110\) 0 0
\(111\) 329717. 0.241086
\(112\) 0 0
\(113\) −750389. 750389.i −0.520057 0.520057i 0.397532 0.917589i \(-0.369867\pi\)
−0.917589 + 0.397532i \(0.869867\pi\)
\(114\) 0 0
\(115\) 2.37774e6 328083.i 1.56340 0.215720i
\(116\) 0 0
\(117\) −492599. + 492599.i −0.307564 + 0.307564i
\(118\) 0 0
\(119\) 1.35866e6i 0.806250i
\(120\) 0 0
\(121\) −695974. −0.392859
\(122\) 0 0
\(123\) −558720. 558720.i −0.300247 0.300247i
\(124\) 0 0
\(125\) −1.81808e6 713653.i −0.930854 0.365390i
\(126\) 0 0
\(127\) −583066. + 583066.i −0.284647 + 0.284647i −0.834959 0.550312i \(-0.814509\pi\)
0.550312 + 0.834959i \(0.314509\pi\)
\(128\) 0 0
\(129\) 275272.i 0.128231i
\(130\) 0 0
\(131\) 4.18868e6 1.86321 0.931607 0.363466i \(-0.118407\pi\)
0.931607 + 0.363466i \(0.118407\pi\)
\(132\) 0 0
\(133\) 1.33660e6 + 1.33660e6i 0.568128 + 0.568128i
\(134\) 0 0
\(135\) −64720.8 469055.i −0.0263053 0.190644i
\(136\) 0 0
\(137\) 250638. 250638.i 0.0974731 0.0974731i −0.656689 0.754162i \(-0.728043\pi\)
0.754162 + 0.656689i \(0.228043\pi\)
\(138\) 0 0
\(139\) 4.91265e6i 1.82924i −0.404309 0.914622i \(-0.632488\pi\)
0.404309 0.914622i \(-0.367512\pi\)
\(140\) 0 0
\(141\) −568497. −0.202801
\(142\) 0 0
\(143\) −2.10237e6 2.10237e6i −0.718956 0.718956i
\(144\) 0 0
\(145\) −844774. 639914.i −0.277100 0.209903i
\(146\) 0 0
\(147\) 830415. 830415.i 0.261423 0.261423i
\(148\) 0 0
\(149\) 3.77991e6i 1.14268i −0.820715 0.571338i \(-0.806425\pi\)
0.820715 0.571338i \(-0.193575\pi\)
\(150\) 0 0
\(151\) −1.19813e6 −0.347996 −0.173998 0.984746i \(-0.555669\pi\)
−0.173998 + 0.984746i \(0.555669\pi\)
\(152\) 0 0
\(153\) 1.13493e6 + 1.13493e6i 0.316880 + 0.316880i
\(154\) 0 0
\(155\) −1.28979e6 + 1.70269e6i −0.346356 + 0.457236i
\(156\) 0 0
\(157\) 2.93950e6 2.93950e6i 0.759582 0.759582i −0.216664 0.976246i \(-0.569518\pi\)
0.976246 + 0.216664i \(0.0695176\pi\)
\(158\) 0 0
\(159\) 3.67385e6i 0.913966i
\(160\) 0 0
\(161\) −3.94986e6 −0.946465
\(162\) 0 0
\(163\) −3.63502e6 3.63502e6i −0.839351 0.839351i 0.149422 0.988774i \(-0.452259\pi\)
−0.988774 + 0.149422i \(0.952259\pi\)
\(164\) 0 0
\(165\) 2.00189e6 276223.i 0.445645 0.0614906i
\(166\) 0 0
\(167\) 738364. 738364.i 0.158533 0.158533i −0.623383 0.781917i \(-0.714242\pi\)
0.781917 + 0.623383i \(0.214242\pi\)
\(168\) 0 0
\(169\) 3.39192e6i 0.702725i
\(170\) 0 0
\(171\) 2.23300e6 0.446582
\(172\) 0 0
\(173\) 5.01441e6 + 5.01441e6i 0.968459 + 0.968459i 0.999518 0.0310584i \(-0.00988779\pi\)
−0.0310584 + 0.999518i \(0.509888\pi\)
\(174\) 0 0
\(175\) 2.80321e6 + 1.57230e6i 0.523048 + 0.293374i
\(176\) 0 0
\(177\) −2.72468e6 + 2.72468e6i −0.491355 + 0.491355i
\(178\) 0 0
\(179\) 7.77058e6i 1.35486i 0.735587 + 0.677430i \(0.236906\pi\)
−0.735587 + 0.677430i \(0.763094\pi\)
\(180\) 0 0
\(181\) 6.98198e6 1.17745 0.588726 0.808333i \(-0.299630\pi\)
0.588726 + 0.808333i \(0.299630\pi\)
\(182\) 0 0
\(183\) 3.09952e6 + 3.09952e6i 0.505756 + 0.505756i
\(184\) 0 0
\(185\) 361387. + 2.61911e6i 0.0570766 + 0.413655i
\(186\) 0 0
\(187\) −4.84379e6 + 4.84379e6i −0.740732 + 0.740732i
\(188\) 0 0
\(189\) 779188.i 0.115414i
\(190\) 0 0
\(191\) −1.75621e6 −0.252044 −0.126022 0.992027i \(-0.540221\pi\)
−0.126022 + 0.992027i \(0.540221\pi\)
\(192\) 0 0
\(193\) −8.48929e6 8.48929e6i −1.18086 1.18086i −0.979521 0.201343i \(-0.935470\pi\)
−0.201343 0.979521i \(-0.564530\pi\)
\(194\) 0 0
\(195\) −4.45287e6 3.37304e6i −0.600532 0.454902i
\(196\) 0 0
\(197\) −7.08383e6 + 7.08383e6i −0.926552 + 0.926552i −0.997481 0.0709298i \(-0.977403\pi\)
0.0709298 + 0.997481i \(0.477403\pi\)
\(198\) 0 0
\(199\) 2.34311e6i 0.297326i −0.988888 0.148663i \(-0.952503\pi\)
0.988888 0.148663i \(-0.0474970\pi\)
\(200\) 0 0
\(201\) −6.70937e6 −0.826216
\(202\) 0 0
\(203\) 1.23317e6 + 1.23317e6i 0.147413 + 0.147413i
\(204\) 0 0
\(205\) 3.82580e6 5.05058e6i 0.444080 0.586245i
\(206\) 0 0
\(207\) −3.29944e6 + 3.29944e6i −0.371988 + 0.371988i
\(208\) 0 0
\(209\) 9.53029e6i 1.04392i
\(210\) 0 0
\(211\) 4.10418e6 0.436897 0.218448 0.975848i \(-0.429900\pi\)
0.218448 + 0.975848i \(0.429900\pi\)
\(212\) 0 0
\(213\) −3.17892e6 3.17892e6i −0.328958 0.328958i
\(214\) 0 0
\(215\) 2.18662e6 301712.i 0.220018 0.0303583i
\(216\) 0 0
\(217\) 2.48553e6 2.48553e6i 0.243243 0.243243i
\(218\) 0 0
\(219\) 1.07558e7i 1.02403i
\(220\) 0 0
\(221\) 1.89356e7 1.75430
\(222\) 0 0
\(223\) 9.84643e6 + 9.84643e6i 0.887901 + 0.887901i 0.994321 0.106421i \(-0.0339390\pi\)
−0.106421 + 0.994321i \(0.533939\pi\)
\(224\) 0 0
\(225\) 3.65500e6 1.02822e6i 0.320878 0.0902689i
\(226\) 0 0
\(227\) −447932. + 447932.i −0.0382943 + 0.0382943i −0.725995 0.687700i \(-0.758620\pi\)
0.687700 + 0.725995i \(0.258620\pi\)
\(228\) 0 0
\(229\) 2.13385e7i 1.77688i 0.458991 + 0.888441i \(0.348211\pi\)
−0.458991 + 0.888441i \(0.651789\pi\)
\(230\) 0 0
\(231\) −3.32551e6 −0.269788
\(232\) 0 0
\(233\) 1.19508e6 + 1.19508e6i 0.0944775 + 0.0944775i 0.752766 0.658288i \(-0.228719\pi\)
−0.658288 + 0.752766i \(0.728719\pi\)
\(234\) 0 0
\(235\) −623103. 4.51586e6i −0.0480127 0.347966i
\(236\) 0 0
\(237\) −2.44714e6 + 2.44714e6i −0.183829 + 0.183829i
\(238\) 0 0
\(239\) 2.07007e6i 0.151632i 0.997122 + 0.0758160i \(0.0241562\pi\)
−0.997122 + 0.0758160i \(0.975844\pi\)
\(240\) 0 0
\(241\) 2.35841e7 1.68487 0.842437 0.538795i \(-0.181120\pi\)
0.842437 + 0.538795i \(0.181120\pi\)
\(242\) 0 0
\(243\) 650880. + 650880.i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 7.50658e6 + 5.68622e6i 0.510439 + 0.386656i
\(246\) 0 0
\(247\) 1.86282e7 1.86282e7i 1.23617 1.23617i
\(248\) 0 0
\(249\) 1.65155e7i 1.06978i
\(250\) 0 0
\(251\) 8.83541e6 0.558734 0.279367 0.960184i \(-0.409875\pi\)
0.279367 + 0.960184i \(0.409875\pi\)
\(252\) 0 0
\(253\) −1.40818e7 1.40818e7i −0.869552 0.869552i
\(254\) 0 0
\(255\) −7.77137e6 + 1.02593e7i −0.468680 + 0.618721i
\(256\) 0 0
\(257\) −6.09969e6 + 6.09969e6i −0.359342 + 0.359342i −0.863570 0.504228i \(-0.831777\pi\)
0.504228 + 0.863570i \(0.331777\pi\)
\(258\) 0 0
\(259\) 4.35082e6i 0.250422i
\(260\) 0 0
\(261\) 2.06021e6 0.115875
\(262\) 0 0
\(263\) 4.35686e6 + 4.35686e6i 0.239500 + 0.239500i 0.816643 0.577143i \(-0.195832\pi\)
−0.577143 + 0.816643i \(0.695832\pi\)
\(264\) 0 0
\(265\) −2.91832e7 + 4.02673e6i −1.56818 + 0.216379i
\(266\) 0 0
\(267\) 7.60346e6 7.60346e6i 0.399464 0.399464i
\(268\) 0 0
\(269\) 1.36102e7i 0.699208i −0.936898 0.349604i \(-0.886316\pi\)
0.936898 0.349604i \(-0.113684\pi\)
\(270\) 0 0
\(271\) 8.20889e6 0.412455 0.206228 0.978504i \(-0.433881\pi\)
0.206228 + 0.978504i \(0.433881\pi\)
\(272\) 0 0
\(273\) 6.50015e6 + 6.50015e6i 0.319474 + 0.319474i
\(274\) 0 0
\(275\) 4.38836e6 + 1.55993e7i 0.211010 + 0.750077i
\(276\) 0 0
\(277\) 2.56480e7 2.56480e7i 1.20674 1.20674i 0.234665 0.972076i \(-0.424601\pi\)
0.972076 0.234665i \(-0.0753995\pi\)
\(278\) 0 0
\(279\) 4.15248e6i 0.191203i
\(280\) 0 0
\(281\) −2.47592e7 −1.11588 −0.557940 0.829881i \(-0.688408\pi\)
−0.557940 + 0.829881i \(0.688408\pi\)
\(282\) 0 0
\(283\) 1.00351e7 + 1.00351e7i 0.442753 + 0.442753i 0.892936 0.450183i \(-0.148641\pi\)
−0.450183 + 0.892936i \(0.648641\pi\)
\(284\) 0 0
\(285\) 2.44749e6 + 1.77379e7i 0.105727 + 0.766243i
\(286\) 0 0
\(287\) −7.37266e6 + 7.37266e6i −0.311873 + 0.311873i
\(288\) 0 0
\(289\) 1.94895e7i 0.807433i
\(290\) 0 0
\(291\) −1.80980e7 −0.734434
\(292\) 0 0
\(293\) 1.88230e6 + 1.88230e6i 0.0748319 + 0.0748319i 0.743532 0.668700i \(-0.233149\pi\)
−0.668700 + 0.743532i \(0.733149\pi\)
\(294\) 0 0
\(295\) −2.46299e7 1.86571e7i −0.959392 0.726737i
\(296\) 0 0
\(297\) −2.77790e6 + 2.77790e6i −0.106035 + 0.106035i
\(298\) 0 0
\(299\) 5.50493e7i 2.05939i
\(300\) 0 0
\(301\) −3.63238e6 −0.133196
\(302\) 0 0
\(303\) 3.19712e6 + 3.19712e6i 0.114929 + 0.114929i
\(304\) 0 0
\(305\) −2.12238e7 + 2.80183e7i −0.748037 + 0.987510i
\(306\) 0 0
\(307\) 3.23684e7 3.23684e7i 1.11868 1.11868i 0.126747 0.991935i \(-0.459547\pi\)
0.991935 0.126747i \(-0.0404535\pi\)
\(308\) 0 0
\(309\) 6.42620e6i 0.217810i
\(310\) 0 0
\(311\) −1.96913e7 −0.654625 −0.327313 0.944916i \(-0.606143\pi\)
−0.327313 + 0.944916i \(0.606143\pi\)
\(312\) 0 0
\(313\) 1.21275e7 + 1.21275e7i 0.395493 + 0.395493i 0.876640 0.481147i \(-0.159780\pi\)
−0.481147 + 0.876640i \(0.659780\pi\)
\(314\) 0 0
\(315\) −6.18947e6 + 854031.i −0.198026 + 0.0273239i
\(316\) 0 0
\(317\) 2.36698e7 2.36698e7i 0.743048 0.743048i −0.230116 0.973163i \(-0.573910\pi\)
0.973163 + 0.230116i \(0.0739104\pi\)
\(318\) 0 0
\(319\) 8.79282e6i 0.270867i
\(320\) 0 0
\(321\) 1.74661e7 0.528056
\(322\) 0 0
\(323\) −4.29187e7 4.29187e7i −1.27362 1.27362i
\(324\) 0 0
\(325\) 2.19132e7 3.90684e7i 0.638344 1.13809i
\(326\) 0 0
\(327\) 1.82876e6 1.82876e6i 0.0523014 0.0523014i
\(328\) 0 0
\(329\) 7.50167e6i 0.210654i
\(330\) 0 0
\(331\) −3.78781e7 −1.04449 −0.522245 0.852796i \(-0.674905\pi\)
−0.522245 + 0.852796i \(0.674905\pi\)
\(332\) 0 0
\(333\) −3.63438e6 3.63438e6i −0.0984231 0.0984231i
\(334\) 0 0
\(335\) −7.35382e6 5.32958e7i −0.195604 1.41762i
\(336\) 0 0
\(337\) −2.24435e7 + 2.24435e7i −0.586411 + 0.586411i −0.936657 0.350247i \(-0.886098\pi\)
0.350247 + 0.936657i \(0.386098\pi\)
\(338\) 0 0
\(339\) 1.65426e7i 0.424625i
\(340\) 0 0
\(341\) 1.77225e7 0.446952
\(342\) 0 0
\(343\) −2.80701e7 2.80701e7i −0.695602 0.695602i
\(344\) 0 0
\(345\) −2.98255e7 2.25927e7i −0.726323 0.550188i
\(346\) 0 0
\(347\) −3.01955e7 + 3.01955e7i −0.722692 + 0.722692i −0.969153 0.246461i \(-0.920732\pi\)
0.246461 + 0.969153i \(0.420732\pi\)
\(348\) 0 0
\(349\) 7.82272e7i 1.84027i −0.391600 0.920135i \(-0.628078\pi\)
0.391600 0.920135i \(-0.371922\pi\)
\(350\) 0 0
\(351\) 1.08595e7 0.251125
\(352\) 0 0
\(353\) −9.45650e6 9.45650e6i −0.214984 0.214984i 0.591397 0.806381i \(-0.298577\pi\)
−0.806381 + 0.591397i \(0.798577\pi\)
\(354\) 0 0
\(355\) 2.17675e7 2.87360e7i 0.486545 0.642305i
\(356\) 0 0
\(357\) 1.49761e7 1.49761e7i 0.329150 0.329150i
\(358\) 0 0
\(359\) 2.13996e7i 0.462511i −0.972893 0.231256i \(-0.925717\pi\)
0.972893 0.231256i \(-0.0742834\pi\)
\(360\) 0 0
\(361\) −3.73977e7 −0.794919
\(362\) 0 0
\(363\) 7.67151e6 + 7.67151e6i 0.160384 + 0.160384i
\(364\) 0 0
\(365\) −8.54388e7 + 1.17889e7i −1.75702 + 0.242436i
\(366\) 0 0
\(367\) 1.29658e7 1.29658e7i 0.262302 0.262302i −0.563687 0.825989i \(-0.690617\pi\)
0.825989 + 0.563687i \(0.190617\pi\)
\(368\) 0 0
\(369\) 1.23172e7i 0.245151i
\(370\) 0 0
\(371\) 4.84787e7 0.949356
\(372\) 0 0
\(373\) 3.92352e6 + 3.92352e6i 0.0756048 + 0.0756048i 0.743898 0.668293i \(-0.232975\pi\)
−0.668293 + 0.743898i \(0.732975\pi\)
\(374\) 0 0
\(375\) 1.21737e7 + 2.79065e7i 0.230850 + 0.529190i
\(376\) 0 0
\(377\) 1.71867e7 1.71867e7i 0.320752 0.320752i
\(378\) 0 0
\(379\) 3.61170e7i 0.663429i −0.943380 0.331714i \(-0.892373\pi\)
0.943380 0.331714i \(-0.107627\pi\)
\(380\) 0 0
\(381\) 1.28539e7 0.232413
\(382\) 0 0
\(383\) 774461. + 774461.i 0.0137849 + 0.0137849i 0.713966 0.700181i \(-0.246897\pi\)
−0.700181 + 0.713966i \(0.746897\pi\)
\(384\) 0 0
\(385\) −3.64494e6 2.64162e7i −0.0638716 0.462901i
\(386\) 0 0
\(387\) −3.03424e6 + 3.03424e6i −0.0523500 + 0.0523500i
\(388\) 0 0
\(389\) 4.56599e7i 0.775686i 0.921726 + 0.387843i \(0.126780\pi\)
−0.921726 + 0.387843i \(0.873220\pi\)
\(390\) 0 0
\(391\) 1.26831e8 2.12176
\(392\) 0 0
\(393\) −4.61705e7 4.61705e7i −0.760654 0.760654i
\(394\) 0 0
\(395\) −2.21210e7 1.67566e7i −0.358933 0.271891i
\(396\) 0 0
\(397\) 5.08606e7 5.08606e7i 0.812849 0.812849i −0.172211 0.985060i \(-0.555091\pi\)
0.985060 + 0.172211i \(0.0550912\pi\)
\(398\) 0 0
\(399\) 2.94659e7i 0.463875i
\(400\) 0 0
\(401\) −3.46994e7 −0.538133 −0.269066 0.963122i \(-0.586715\pi\)
−0.269066 + 0.963122i \(0.586715\pi\)
\(402\) 0 0
\(403\) −3.46408e7 3.46408e7i −0.529265 0.529265i
\(404\) 0 0
\(405\) −4.45686e6 + 5.88366e6i −0.0670909 + 0.0885691i
\(406\) 0 0
\(407\) 1.55112e7 1.55112e7i 0.230072 0.230072i
\(408\) 0 0
\(409\) 6.63216e6i 0.0969360i 0.998825 + 0.0484680i \(0.0154339\pi\)
−0.998825 + 0.0484680i \(0.984566\pi\)
\(410\) 0 0
\(411\) −5.52541e6 −0.0795865
\(412\) 0 0
\(413\) 3.59538e7 + 3.59538e7i 0.510382 + 0.510382i
\(414\) 0 0
\(415\) −1.31191e8 + 1.81019e7i −1.83552 + 0.253268i
\(416\) 0 0
\(417\) −5.41507e7 + 5.41507e7i −0.746786 + 0.746786i
\(418\) 0 0
\(419\) 1.87567e7i 0.254985i −0.991840 0.127493i \(-0.959307\pi\)
0.991840 0.127493i \(-0.0406929\pi\)
\(420\) 0 0
\(421\) 1.01392e8 1.35881 0.679406 0.733762i \(-0.262237\pi\)
0.679406 + 0.733762i \(0.262237\pi\)
\(422\) 0 0
\(423\) 6.26638e6 + 6.26638e6i 0.0827934 + 0.0827934i
\(424\) 0 0
\(425\) −9.00121e7 5.04871e7i −1.17256 0.657679i
\(426\) 0 0
\(427\) 4.09001e7 4.09001e7i 0.525340 0.525340i
\(428\) 0 0
\(429\) 4.63477e7i 0.587025i
\(430\) 0 0
\(431\) 2.54338e7 0.317672 0.158836 0.987305i \(-0.449226\pi\)
0.158836 + 0.987305i \(0.449226\pi\)
\(432\) 0 0
\(433\) −4.84883e7 4.84883e7i −0.597273 0.597273i 0.342313 0.939586i \(-0.388790\pi\)
−0.939586 + 0.342313i \(0.888790\pi\)
\(434\) 0 0
\(435\) 2.25810e6 + 1.63653e7i 0.0274331 + 0.198818i
\(436\) 0 0
\(437\) 1.24772e8 1.24772e8i 1.49511 1.49511i
\(438\) 0 0
\(439\) 3.77933e7i 0.446706i 0.974738 + 0.223353i \(0.0717002\pi\)
−0.974738 + 0.223353i \(0.928300\pi\)
\(440\) 0 0
\(441\) −1.83068e7 −0.213451
\(442\) 0 0
\(443\) 2.16224e7 + 2.16224e7i 0.248710 + 0.248710i 0.820441 0.571731i \(-0.193728\pi\)
−0.571731 + 0.820441i \(0.693728\pi\)
\(444\) 0 0
\(445\) 6.87318e7 + 5.20642e7i 0.779970 + 0.590826i
\(446\) 0 0
\(447\) −4.16648e7 + 4.16648e7i −0.466495 + 0.466495i
\(448\) 0 0
\(449\) 9.43557e7i 1.04239i 0.853439 + 0.521193i \(0.174513\pi\)
−0.853439 + 0.521193i \(0.825487\pi\)
\(450\) 0 0
\(451\) −5.25689e7 −0.573059
\(452\) 0 0
\(453\) 1.32067e7 + 1.32067e7i 0.142069 + 0.142069i
\(454\) 0 0
\(455\) −4.45094e7 + 5.87584e7i −0.472517 + 0.623786i
\(456\) 0 0
\(457\) −3.23415e7 + 3.23415e7i −0.338853 + 0.338853i −0.855936 0.517083i \(-0.827018\pi\)
0.517083 + 0.855936i \(0.327018\pi\)
\(458\) 0 0
\(459\) 2.50200e7i 0.258731i
\(460\) 0 0
\(461\) 8.77131e7 0.895286 0.447643 0.894212i \(-0.352264\pi\)
0.447643 + 0.894212i \(0.352264\pi\)
\(462\) 0 0
\(463\) −4.91700e7 4.91700e7i −0.495402 0.495402i 0.414601 0.910003i \(-0.363921\pi\)
−0.910003 + 0.414601i \(0.863921\pi\)
\(464\) 0 0
\(465\) 3.29852e7 4.55133e6i 0.328065 0.0452668i
\(466\) 0 0
\(467\) 9.52295e7 9.52295e7i 0.935020 0.935020i −0.0629938 0.998014i \(-0.520065\pi\)
0.998014 + 0.0629938i \(0.0200648\pi\)
\(468\) 0 0
\(469\) 8.85342e7i 0.858208i
\(470\) 0 0
\(471\) −6.48025e7 −0.620196
\(472\) 0 0
\(473\) −1.29499e7 1.29499e7i −0.122372 0.122372i
\(474\) 0 0
\(475\) −1.38218e8 + 3.88832e7i −1.28968 + 0.362812i
\(476\) 0 0
\(477\) 4.04958e7 4.04958e7i 0.373125 0.373125i
\(478\) 0 0
\(479\) 2.04024e8i 1.85642i 0.372062 + 0.928208i \(0.378651\pi\)
−0.372062 + 0.928208i \(0.621349\pi\)
\(480\) 0 0
\(481\) −6.06374e7 −0.544886
\(482\) 0 0
\(483\) 4.35382e7 + 4.35382e7i 0.386393 + 0.386393i
\(484\) 0 0
\(485\) −1.98364e7 1.43762e8i −0.173875 1.26014i
\(486\) 0 0
\(487\) 1.00420e8 1.00420e8i 0.869424 0.869424i −0.122984 0.992409i \(-0.539247\pi\)
0.992409 + 0.122984i \(0.0392465\pi\)
\(488\) 0 0
\(489\) 8.01355e7i 0.685328i
\(490\) 0 0
\(491\) 7.28010e7 0.615025 0.307512 0.951544i \(-0.400503\pi\)
0.307512 + 0.951544i \(0.400503\pi\)
\(492\) 0 0
\(493\) −3.95976e7 3.95976e7i −0.330467 0.330467i
\(494\) 0 0
\(495\) −2.51110e7 1.90215e7i −0.207037 0.156830i
\(496\) 0 0
\(497\) −4.19478e7 + 4.19478e7i −0.341696 + 0.341696i
\(498\) 0 0
\(499\) 1.79824e8i 1.44726i 0.690188 + 0.723630i \(0.257528\pi\)
−0.690188 + 0.723630i \(0.742472\pi\)
\(500\) 0 0
\(501\) −1.62775e7 −0.129442
\(502\) 0 0
\(503\) 5.58642e7 + 5.58642e7i 0.438965 + 0.438965i 0.891664 0.452699i \(-0.149539\pi\)
−0.452699 + 0.891664i \(0.649539\pi\)
\(504\) 0 0
\(505\) −2.18921e7 + 2.89005e7i −0.169986 + 0.224404i
\(506\) 0 0
\(507\) 3.73881e7 3.73881e7i 0.286886 0.286886i
\(508\) 0 0
\(509\) 2.14366e6i 0.0162556i 0.999967 + 0.00812779i \(0.00258718\pi\)
−0.999967 + 0.00812779i \(0.997413\pi\)
\(510\) 0 0
\(511\) 1.41930e8 1.06368
\(512\) 0 0
\(513\) −2.46137e7 2.46137e7i −0.182316 0.182316i
\(514\) 0 0
\(515\) −5.10465e7 + 7.04345e6i −0.373718 + 0.0515661i
\(516\) 0 0
\(517\) −2.67444e7 + 2.67444e7i −0.193536 + 0.193536i
\(518\) 0 0
\(519\) 1.10545e8i 0.790744i
\(520\) 0 0
\(521\) −5.06571e7 −0.358201 −0.179101 0.983831i \(-0.557319\pi\)
−0.179101 + 0.983831i \(0.557319\pi\)
\(522\) 0 0
\(523\) 1.58594e7 + 1.58594e7i 0.110862 + 0.110862i 0.760362 0.649500i \(-0.225022\pi\)
−0.649500 + 0.760362i \(0.725022\pi\)
\(524\) 0 0
\(525\) −1.35680e7 4.82300e7i −0.0937643 0.333303i
\(526\) 0 0
\(527\) −7.98112e7 + 7.98112e7i −0.545296 + 0.545296i
\(528\) 0 0
\(529\) 2.20686e8i 1.49076i
\(530\) 0 0
\(531\) 6.00667e7 0.401190
\(532\) 0 0
\(533\) 1.02753e8 + 1.02753e8i 0.678597 + 0.678597i
\(534\) 0 0
\(535\) 1.91437e7 + 1.38742e8i 0.125016 + 0.906036i
\(536\) 0 0
\(537\) 8.56528e7 8.56528e7i 0.553119 0.553119i
\(538\) 0 0
\(539\) 7.81322e7i 0.498958i
\(540\) 0 0
\(541\) 4.43541e7 0.280119 0.140059 0.990143i \(-0.455271\pi\)
0.140059 + 0.990143i \(0.455271\pi\)
\(542\) 0 0
\(543\) −7.69603e7 7.69603e7i −0.480692 0.480692i
\(544\) 0 0
\(545\) 1.65312e7 + 1.25223e7i 0.102121 + 0.0773563i
\(546\) 0 0
\(547\) −1.89599e7 + 1.89599e7i −0.115844 + 0.115844i −0.762653 0.646808i \(-0.776103\pi\)
0.646808 + 0.762653i \(0.276103\pi\)
\(548\) 0 0
\(549\) 6.83302e7i 0.412948i
\(550\) 0 0
\(551\) −7.79092e7 −0.465730
\(552\) 0 0
\(553\) 3.22915e7 + 3.22915e7i 0.190947 + 0.190947i
\(554\) 0 0
\(555\) 2.48862e7 3.28531e7i 0.145572 0.192175i
\(556\) 0 0
\(557\) −1.03290e8 + 1.03290e8i −0.597712 + 0.597712i −0.939703 0.341991i \(-0.888899\pi\)
0.341991 + 0.939703i \(0.388899\pi\)
\(558\) 0 0
\(559\) 5.06245e7i 0.289818i
\(560\) 0 0
\(561\) 1.06783e8 0.604805
\(562\) 0 0
\(563\) −1.84599e8 1.84599e8i −1.03444 1.03444i −0.999385 0.0350521i \(-0.988840\pi\)
−0.0350521 0.999385i \(-0.511160\pi\)
\(564\) 0 0
\(565\) −1.31406e8 + 1.81316e7i −0.728569 + 0.100529i
\(566\) 0 0
\(567\) 8.58876e6 8.58876e6i 0.0471174 0.0471174i
\(568\) 0 0
\(569\) 9.69662e7i 0.526361i 0.964747 + 0.263180i \(0.0847715\pi\)
−0.964747 + 0.263180i \(0.915229\pi\)
\(570\) 0 0
\(571\) 8.24057e7 0.442638 0.221319 0.975201i \(-0.428964\pi\)
0.221319 + 0.975201i \(0.428964\pi\)
\(572\) 0 0
\(573\) 1.93582e7 + 1.93582e7i 0.102897 + 0.102897i
\(574\) 0 0
\(575\) 1.46775e8 2.61681e8i 0.772055 1.37648i
\(576\) 0 0
\(577\) 1.75260e8 1.75260e8i 0.912336 0.912336i −0.0841201 0.996456i \(-0.526808\pi\)
0.996456 + 0.0841201i \(0.0268079\pi\)
\(578\) 0 0
\(579\) 1.87150e8i 0.964171i
\(580\) 0 0
\(581\) 2.17933e8 1.11120
\(582\) 0 0
\(583\) 1.72833e8 + 1.72833e8i 0.872209 + 0.872209i
\(584\) 0 0
\(585\) 1.19026e7 + 8.62627e7i 0.0594532 + 0.430879i
\(586\) 0 0
\(587\) 5.98432e7 5.98432e7i 0.295870 0.295870i −0.543524 0.839394i \(-0.682910\pi\)
0.839394 + 0.543524i \(0.182910\pi\)
\(588\) 0 0
\(589\) 1.57031e8i 0.768490i
\(590\) 0 0
\(591\) 1.56166e8 0.756526
\(592\) 0 0
\(593\) 7.10812e7 + 7.10812e7i 0.340872 + 0.340872i 0.856695 0.515823i \(-0.172514\pi\)
−0.515823 + 0.856695i \(0.672514\pi\)
\(594\) 0 0
\(595\) 1.35377e8 + 1.02548e8i 0.642680 + 0.486829i
\(596\) 0 0
\(597\) −2.58274e7 + 2.58274e7i −0.121383 + 0.121383i
\(598\) 0 0
\(599\) 1.93410e8i 0.899911i 0.893051 + 0.449955i \(0.148560\pi\)
−0.893051 + 0.449955i \(0.851440\pi\)
\(600\) 0 0
\(601\) −2.04018e8 −0.939822 −0.469911 0.882714i \(-0.655714\pi\)
−0.469911 + 0.882714i \(0.655714\pi\)
\(602\) 0 0
\(603\) 7.39554e7 + 7.39554e7i 0.337301 + 0.337301i
\(604\) 0 0
\(605\) −5.25302e7 + 6.93470e7i −0.237215 + 0.313156i
\(606\) 0 0
\(607\) −2.70178e8 + 2.70178e8i −1.20805 + 1.20805i −0.236388 + 0.971659i \(0.575964\pi\)
−0.971659 + 0.236388i \(0.924036\pi\)
\(608\) 0 0
\(609\) 2.71858e7i 0.120362i
\(610\) 0 0
\(611\) 1.04551e8 0.458357
\(612\) 0 0
\(613\) −1.48040e8 1.48040e8i −0.642685 0.642685i 0.308529 0.951215i \(-0.400163\pi\)
−0.951215 + 0.308529i \(0.900163\pi\)
\(614\) 0 0
\(615\) −9.78417e7 + 1.35003e7i −0.420628 + 0.0580388i
\(616\) 0 0
\(617\) −3.46749e7 + 3.46749e7i −0.147625 + 0.147625i −0.777056 0.629431i \(-0.783288\pi\)
0.629431 + 0.777056i \(0.283288\pi\)
\(618\) 0 0
\(619\) 3.42044e8i 1.44215i 0.692858 + 0.721074i \(0.256351\pi\)
−0.692858 + 0.721074i \(0.743649\pi\)
\(620\) 0 0
\(621\) 7.27375e7 0.303727
\(622\) 0 0
\(623\) −1.00332e8 1.00332e8i −0.414932 0.414932i
\(624\) 0 0
\(625\) −2.08332e8 + 1.27289e8i −0.853328 + 0.521375i
\(626\) 0 0
\(627\) 1.05050e8 1.05050e8i 0.426179 0.426179i
\(628\) 0 0
\(629\) 1.39706e8i 0.561390i
\(630\) 0 0
\(631\) −8.36979e7 −0.333140 −0.166570 0.986030i \(-0.553269\pi\)
−0.166570 + 0.986030i \(0.553269\pi\)
\(632\) 0 0
\(633\) −4.52391e7 4.52391e7i −0.178362 0.178362i
\(634\) 0 0
\(635\) 1.40886e7 + 1.02105e8i 0.0550233 + 0.398774i
\(636\) 0 0
\(637\) −1.52719e8 + 1.52719e8i −0.590848 + 0.590848i
\(638\) 0 0
\(639\) 7.00806e7i 0.268593i
\(640\) 0 0
\(641\) 1.80537e8 0.685475 0.342737 0.939431i \(-0.388646\pi\)
0.342737 + 0.939431i \(0.388646\pi\)
\(642\) 0 0
\(643\) −2.11026e8 2.11026e8i −0.793784 0.793784i 0.188324 0.982107i \(-0.439695\pi\)
−0.982107 + 0.188324i \(0.939695\pi\)
\(644\) 0 0
\(645\) −2.74281e7 2.07768e7i −0.102216 0.0774281i
\(646\) 0 0
\(647\) −1.30845e8 + 1.30845e8i −0.483109 + 0.483109i −0.906123 0.423014i \(-0.860972\pi\)
0.423014 + 0.906123i \(0.360972\pi\)
\(648\) 0 0
\(649\) 2.56360e8i 0.937812i
\(650\) 0 0
\(651\) −5.47945e7 −0.198607
\(652\) 0 0
\(653\) −3.15489e8 3.15489e8i −1.13304 1.13304i −0.989669 0.143371i \(-0.954206\pi\)
−0.143371 0.989669i \(-0.545794\pi\)
\(654\) 0 0
\(655\) 3.16150e8 4.17361e8i 1.12504 1.48521i
\(656\) 0 0
\(657\) 1.18558e8 1.18558e8i 0.418057 0.418057i
\(658\) 0 0
\(659\) 1.90964e8i 0.667260i 0.942704 + 0.333630i \(0.108274\pi\)
−0.942704 + 0.333630i \(0.891726\pi\)
\(660\) 0 0
\(661\) 4.57014e8 1.58243 0.791216 0.611536i \(-0.209448\pi\)
0.791216 + 0.611536i \(0.209448\pi\)
\(662\) 0 0
\(663\) −2.08722e8 2.08722e8i −0.716189 0.716189i
\(664\) 0 0
\(665\) 2.34062e8 3.22961e7i 0.795913 0.109821i
\(666\) 0 0
\(667\) 1.15117e8 1.15117e8i 0.387938 0.387938i
\(668\) 0 0
\(669\) 2.17069e8i 0.724968i
\(670\) 0 0
\(671\) 2.91628e8 0.965299
\(672\) 0 0
\(673\) 2.86067e8 + 2.86067e8i 0.938474 + 0.938474i 0.998214 0.0597400i \(-0.0190272\pi\)
−0.0597400 + 0.998214i \(0.519027\pi\)
\(674\) 0 0
\(675\) −5.16217e7 2.89542e7i −0.167850 0.0941458i
\(676\) 0 0
\(677\) 2.60104e8 2.60104e8i 0.838266 0.838266i −0.150365 0.988631i \(-0.548045\pi\)
0.988631 + 0.150365i \(0.0480448\pi\)
\(678\) 0 0
\(679\) 2.38815e8i 0.762872i
\(680\) 0 0
\(681\) 9.87483e6 0.0312672
\(682\) 0 0
\(683\) 9.24222e7 + 9.24222e7i 0.290078 + 0.290078i 0.837111 0.547033i \(-0.184243\pi\)
−0.547033 + 0.837111i \(0.684243\pi\)
\(684\) 0 0
\(685\) −6.05614e6 4.38911e7i −0.0188419 0.136554i
\(686\) 0 0
\(687\) 2.35208e8 2.35208e8i 0.725409 0.725409i
\(688\) 0 0
\(689\) 6.75648e8i 2.06568i
\(690\) 0 0
\(691\) −4.54828e8 −1.37852 −0.689261 0.724513i \(-0.742065\pi\)
−0.689261 + 0.724513i \(0.742065\pi\)
\(692\) 0 0
\(693\) 3.66562e7 + 3.66562e7i 0.110141 + 0.110141i
\(694\) 0 0
\(695\) −4.89498e8 3.70794e8i −1.45813 1.10453i
\(696\) 0 0
\(697\) 2.36739e8 2.36739e8i 0.699150 0.699150i
\(698\) 0 0
\(699\) 2.63460e7i 0.0771406i
\(700\) 0 0
\(701\) −3.98272e8 −1.15618 −0.578090 0.815973i \(-0.696202\pi\)
−0.578090 + 0.815973i \(0.696202\pi\)
\(702\) 0 0
\(703\) 1.37438e8 + 1.37438e8i 0.395586 + 0.395586i
\(704\) 0 0
\(705\) −4.29087e7 + 5.66452e7i −0.122455 + 0.161658i
\(706\) 0 0
\(707\) 4.21879e7 4.21879e7i 0.119380 0.119380i
\(708\) 0 0
\(709\) 1.94492e8i 0.545711i 0.962055 + 0.272855i \(0.0879680\pi\)
−0.962055 + 0.272855i \(0.912032\pi\)
\(710\) 0 0
\(711\) 5.39481e7 0.150095
\(712\) 0 0
\(713\) −2.32025e8 2.32025e8i −0.640128 0.640128i
\(714\) 0 0
\(715\) −3.68163e8 + 5.07995e7i −1.00721 + 0.138977i
\(716\) 0 0
\(717\) 2.28177e7 2.28177e7i 0.0619035 0.0619035i
\(718\) 0 0
\(719\) 5.36699e8i 1.44392i −0.691934 0.721961i \(-0.743241\pi\)
0.691934 0.721961i \(-0.256759\pi\)
\(720\) 0 0
\(721\) 8.47977e7 0.226245
\(722\) 0 0
\(723\) −2.59960e8 2.59960e8i −0.687847 0.687847i
\(724\) 0 0
\(725\) −1.27522e8 + 3.58744e7i −0.334636 + 0.0941393i
\(726\) 0 0
\(727\) −6.70897e7 + 6.70897e7i −0.174603 + 0.174603i −0.788998 0.614395i \(-0.789400\pi\)
0.614395 + 0.788998i \(0.289400\pi\)
\(728\) 0 0
\(729\) 1.43489e7i 0.0370370i
\(730\) 0 0
\(731\) 1.16637e8 0.298596
\(732\) 0 0
\(733\) −2.35707e7 2.35707e7i −0.0598495 0.0598495i 0.676549 0.736398i \(-0.263475\pi\)
−0.736398 + 0.676549i \(0.763475\pi\)
\(734\) 0 0
\(735\) −2.00653e7 1.45420e8i −0.0505339 0.366238i
\(736\) 0 0
\(737\) −3.15636e8 + 3.15636e8i −0.788467 + 0.788467i
\(738\) 0 0
\(739\) 5.18563e8i 1.28490i −0.766329 0.642448i \(-0.777919\pi\)
0.766329 0.642448i \(-0.222081\pi\)
\(740\) 0 0
\(741\) −4.10666e8 −1.00933
\(742\) 0 0
\(743\) 2.89312e8 + 2.89312e8i 0.705343 + 0.705343i 0.965552 0.260209i \(-0.0837916\pi\)
−0.260209 + 0.965552i \(0.583792\pi\)
\(744\) 0 0
\(745\) −3.76631e8 2.85298e8i −0.910851 0.689968i
\(746\) 0 0
\(747\) 1.82046e8 1.82046e8i 0.436736 0.436736i
\(748\) 0 0
\(749\) 2.30476e8i 0.548504i
\(750\) 0 0
\(751\) −3.00670e8 −0.709857 −0.354928 0.934893i \(-0.615495\pi\)
−0.354928 + 0.934893i \(0.615495\pi\)
\(752\) 0 0
\(753\) −9.73901e7 9.73901e7i −0.228102 0.228102i
\(754\) 0 0
\(755\) −9.04319e7 + 1.19382e8i −0.210126 + 0.277395i
\(756\) 0 0
\(757\) −4.36582e8 + 4.36582e8i −1.00642 + 1.00642i −0.00643784 + 0.999979i \(0.502049\pi\)
−0.999979 + 0.00643784i \(0.997951\pi\)
\(758\) 0 0
\(759\) 3.10438e8i 0.709986i
\(760\) 0 0
\(761\) 5.85378e8 1.32826 0.664128 0.747619i \(-0.268803\pi\)
0.664128 + 0.747619i \(0.268803\pi\)
\(762\) 0 0
\(763\) −2.41316e7 2.41316e7i −0.0543267 0.0543267i
\(764\) 0 0
\(765\) 1.98746e8 2.74232e7i 0.443930 0.0612540i
\(766\) 0 0
\(767\) 5.01089e8 5.01089e8i 1.11053 1.11053i
\(768\) 0 0
\(769\) 10186.9i 2.24008e-5i 1.00000 1.12004e-5i \(3.56520e-6\pi\)
−1.00000 1.12004e-5i \(0.999996\pi\)
\(770\) 0 0
\(771\) 1.34470e8 0.293402
\(772\) 0 0
\(773\) −1.49946e8 1.49946e8i −0.324636 0.324636i 0.525906 0.850542i \(-0.323726\pi\)
−0.850542 + 0.525906i \(0.823726\pi\)
\(774\) 0 0
\(775\) 7.23070e7 + 2.57029e8i 0.155337 + 0.552175i
\(776\) 0 0
\(777\) −4.79578e7 + 4.79578e7i −0.102234 + 0.102234i
\(778\) 0 0
\(779\) 4.65789e8i 0.985319i
\(780\) 0 0
\(781\) −2.99099e8 −0.627858
\(782\) 0 0
\(783\) −2.27091e7 2.27091e7i −0.0473058 0.0473058i
\(784\) 0 0
\(785\) −7.10270e7 5.14758e8i −0.146830 1.06413i
\(786\) 0 0
\(787\) −3.29898e8 + 3.29898e8i −0.676793 + 0.676793i −0.959273 0.282481i \(-0.908843\pi\)
0.282481 + 0.959273i \(0.408843\pi\)
\(788\) 0 0
\(789\) 9.60487e7i 0.195551i
\(790\) 0 0
\(791\) 2.18290e8 0.441067
\(792\) 0 0
\(793\) −5.70025e8 5.70025e8i −1.14307 1.14307i
\(794\) 0 0
\(795\) 3.66063e8 + 2.77292e8i 0.728542 + 0.551869i
\(796\) 0 0
\(797\) −2.30664e8 + 2.30664e8i −0.455622 + 0.455622i −0.897215 0.441593i \(-0.854413\pi\)
0.441593 + 0.897215i \(0.354413\pi\)
\(798\) 0 0
\(799\) 2.40881e8i 0.472240i
\(800\) 0 0
\(801\) −1.67621e8 −0.326161
\(802\) 0 0
\(803\) 5.05997e8 + 5.05997e8i 0.977241 + 0.977241i
\(804\) 0 0
\(805\) −2.98125e8 + 3.93565e8i −0.571493 + 0.754448i
\(806\) 0 0
\(807\) −1.50021e8 + 1.50021e8i −0.285450 + 0.285450i
\(808\) 0 0
\(809\) 1.15009e8i 0.217213i 0.994085 + 0.108607i \(0.0346389\pi\)
−0.994085 + 0.108607i \(0.965361\pi\)
\(810\) 0 0
\(811\) −7.36769e8 −1.38124 −0.690619 0.723218i \(-0.742662\pi\)
−0.690619 + 0.723218i \(0.742662\pi\)
\(812\) 0 0
\(813\) −9.04842e7 9.04842e7i −0.168384 0.168384i
\(814\) 0 0
\(815\) −6.36556e8 + 8.78327e7i −1.17588 + 0.162250i
\(816\) 0 0
\(817\) 1.14743e8 1.14743e8i 0.210407 0.210407i
\(818\) 0 0
\(819\) 1.43298e8i 0.260849i
\(820\) 0 0
\(821\) 5.00735e8 0.904854 0.452427 0.891802i \(-0.350558\pi\)
0.452427 + 0.891802i \(0.350558\pi\)
\(822\) 0 0
\(823\) −6.80752e6 6.80752e6i −0.0122121 0.0122121i 0.700974 0.713186i \(-0.252749\pi\)
−0.713186 + 0.700974i \(0.752749\pi\)
\(824\) 0 0
\(825\) 1.23574e8 2.20318e8i 0.220073 0.392362i
\(826\) 0 0
\(827\) 2.59523e7 2.59523e7i 0.0458838 0.0458838i −0.683793 0.729676i \(-0.739671\pi\)
0.729676 + 0.683793i \(0.239671\pi\)
\(828\) 0 0
\(829\) 3.24193e8i 0.569037i 0.958671 + 0.284518i \(0.0918337\pi\)
−0.958671 + 0.284518i \(0.908166\pi\)
\(830\) 0 0
\(831\) −5.65421e8 −0.985300
\(832\) 0 0
\(833\) 3.51860e8 + 3.51860e8i 0.608744 + 0.608744i
\(834\) 0 0
\(835\) −1.78410e7 1.29300e8i −0.0306451 0.222096i
\(836\) 0 0
\(837\) −4.57715e7 + 4.57715e7i −0.0780583 + 0.0780583i
\(838\) 0 0
\(839\) 5.69147e8i 0.963692i −0.876256 0.481846i \(-0.839966\pi\)
0.876256 0.481846i \(-0.160034\pi\)
\(840\) 0 0
\(841\) 5.22943e8 0.879157
\(842\) 0 0
\(843\) 2.72913e8 + 2.72913e8i 0.455557 + 0.455557i
\(844\) 0 0
\(845\) 3.37972e8 + 2.56013e8i 0.560157 + 0.424318i
\(846\) 0 0
\(847\) 1.01230e8 1.01230e8i 0.166594 0.166594i
\(848\) 0 0
\(849\) 2.21227e8i 0.361506i
\(850\) 0 0
\(851\) −4.06151e8 −0.659021
\(852\) 0 0
\(853\) 2.70461e7 + 2.70461e7i 0.0435770 + 0.0435770i 0.728560 0.684982i \(-0.240190\pi\)
−0.684982 + 0.728560i \(0.740190\pi\)
\(854\) 0 0
\(855\) 1.68541e8 2.22497e8i 0.269654 0.355980i
\(856\) 0 0
\(857\) 1.75013e8 1.75013e8i 0.278052 0.278052i −0.554279 0.832331i \(-0.687006\pi\)
0.832331 + 0.554279i \(0.187006\pi\)
\(858\) 0 0
\(859\) 3.42840e8i 0.540894i 0.962735 + 0.270447i \(0.0871716\pi\)
−0.962735 + 0.270447i \(0.912828\pi\)
\(860\) 0 0
\(861\) 1.62533e8 0.254644
\(862\) 0 0
\(863\) −7.99150e8 7.99150e8i −1.24336 1.24336i −0.958600 0.284757i \(-0.908087\pi\)
−0.284757 0.958600i \(-0.591913\pi\)
\(864\) 0 0
\(865\) 8.78111e8 1.21163e8i 1.35675 0.187206i
\(866\) 0 0
\(867\) −2.14827e8 + 2.14827e8i −0.329633 + 0.329633i
\(868\) 0 0
\(869\) 2.30247e8i 0.350860i
\(870\) 0 0
\(871\) 1.23390e9 1.86735
\(872\) 0 0
\(873\) 1.99489e8 + 1.99489e8i 0.299831 + 0.299831i
\(874\) 0 0
\(875\) 3.68243e8 1.60640e8i 0.549681 0.239789i
\(876\) 0 0
\(877\) 5.77037e8 5.77037e8i 0.855470 0.855470i −0.135331 0.990800i \(-0.543210\pi\)
0.990800 + 0.135331i \(0.0432097\pi\)
\(878\) 0 0
\(879\) 4.14961e7i 0.0611000i
\(880\) 0 0
\(881\) −2.68153e8 −0.392153 −0.196077 0.980589i \(-0.562820\pi\)
−0.196077 + 0.980589i \(0.562820\pi\)
\(882\) 0 0
\(883\) −4.48535e8 4.48535e8i −0.651499 0.651499i 0.301855 0.953354i \(-0.402394\pi\)
−0.953354 + 0.301855i \(0.902394\pi\)
\(884\) 0 0
\(885\) 6.58362e7 + 4.77139e8i 0.0949807 + 0.688359i
\(886\) 0 0
\(887\) −4.07398e8 + 4.07398e8i −0.583779 + 0.583779i −0.935940 0.352161i \(-0.885447\pi\)
0.352161 + 0.935940i \(0.385447\pi\)
\(888\) 0 0
\(889\) 1.69616e8i 0.241413i
\(890\) 0 0
\(891\) 6.12400e7 0.0865770
\(892\) 0 0
\(893\) −2.36970e8 2.36970e8i −0.332766 0.332766i
\(894\) 0 0
\(895\) 7.74263e8 + 5.86503e8i 1.07999 + 0.818089i
\(896\) 0 0
\(897\) 6.06792e8 6.06792e8i 0.840741 0.840741i
\(898\) 0 0
\(899\) 1.44879e8i 0.199401i
\(900\) 0 0
\(901\) −1.55667e9 −2.12825
\(902\) 0 0
\(903\) 4.00386e7 + 4.00386e7i 0.0543771 + 0.0543771i
\(904\) 0 0
\(905\) 5.26981e8 6.95686e8i 0.710967 0.938572i
\(906\) 0 0
\(907\) 1.38639e8 1.38639e8i 0.185808 0.185808i −0.608073 0.793881i \(-0.708057\pi\)
0.793881 + 0.608073i \(0.208057\pi\)
\(908\) 0 0
\(909\) 7.04818e7i 0.0938394i
\(910\) 0 0
\(911\) −7.12128e8 −0.941896 −0.470948 0.882161i \(-0.656088\pi\)
−0.470948 + 0.882161i \(0.656088\pi\)
\(912\) 0 0
\(913\) 7.76957e8 + 7.76957e8i 1.02090 + 1.02090i
\(914\) 0 0
\(915\) 5.42781e8 7.48935e7i 0.708534 0.0977644i
\(916\) 0 0
\(917\) −6.09249e8 + 6.09249e8i −0.790108 + 0.790108i
\(918\) 0 0
\(919\) 4.34345e8i 0.559613i 0.960056 + 0.279807i \(0.0902704\pi\)
−0.960056 + 0.279807i \(0.909730\pi\)
\(920\) 0 0
\(921\) −7.13575e8 −0.913400
\(922\) 0 0
\(923\) 5.84627e8 + 5.84627e8i 0.743488 + 0.743488i
\(924\) 0 0
\(925\) 2.88245e8 + 1.61674e8i 0.364197 + 0.204275i
\(926\) 0 0
\(927\) 7.08341e7 7.08341e7i 0.0889208 0.0889208i
\(928\) 0 0
\(929\) 3.67090e8i 0.457852i 0.973444 + 0.228926i \(0.0735213\pi\)
−0.973444 + 0.228926i \(0.926479\pi\)
\(930\) 0 0
\(931\) 6.92294e8 0.857909
\(932\) 0 0
\(933\) 2.17051e8 + 2.17051e8i 0.267250 + 0.267250i
\(934\) 0 0
\(935\) 1.17040e8 + 8.48233e8i 0.143186 + 1.03772i
\(936\) 0 0
\(937\) 1.11262e8 1.11262e8i 0.135248 0.135248i −0.636242 0.771490i \(-0.719512\pi\)
0.771490 + 0.636242i \(0.219512\pi\)
\(938\) 0 0
\(939\) 2.67356e8i 0.322919i
\(940\) 0 0
\(941\) −7.63794e8 −0.916659 −0.458329 0.888782i \(-0.651552\pi\)
−0.458329 + 0.888782i \(0.651552\pi\)
\(942\) 0 0
\(943\) 6.88241e8 + 6.88241e8i 0.820739 + 0.820739i
\(944\) 0 0
\(945\) 7.76385e7 + 5.88110e7i 0.0919987 + 0.0696888i
\(946\) 0 0
\(947\) −1.13872e8 + 1.13872e8i −0.134081 + 0.134081i −0.770962 0.636881i \(-0.780224\pi\)
0.636881 + 0.770962i \(0.280224\pi\)
\(948\) 0 0
\(949\) 1.97807e9i 2.31443i
\(950\) 0 0
\(951\) −5.21810e8 −0.606696
\(952\) 0 0
\(953\) 9.79865e8 + 9.79865e8i 1.13211 + 1.13211i 0.989826 + 0.142280i \(0.0454434\pi\)
0.142280 + 0.989826i \(0.454557\pi\)
\(954\) 0 0
\(955\) −1.32554e8 + 1.74989e8i −0.152189 + 0.200910i
\(956\) 0 0
\(957\) 9.69207e7 9.69207e7i 0.110581 0.110581i
\(958\) 0 0
\(959\) 7.29112e7i 0.0826682i
\(960\) 0 0
\(961\) −5.95491e8 −0.670973
\(962\) 0 0
\(963\) −1.92523e8 1.92523e8i −0.215578 0.215578i
\(964\) 0 0
\(965\) −1.48662e9 + 2.05126e8i −1.65432 + 0.228265i
\(966\) 0 0
\(967\) 2.18628e8 2.18628e8i 0.241783 0.241783i −0.575804 0.817588i \(-0.695311\pi\)
0.817588 + 0.575804i \(0.195311\pi\)
\(968\) 0 0
\(969\) 9.46159e8i 1.03990i
\(970\) 0 0
\(971\) 9.21253e8 1.00628 0.503142 0.864203i \(-0.332177\pi\)
0.503142 + 0.864203i \(0.332177\pi\)
\(972\) 0 0
\(973\) 7.14552e8 + 7.14552e8i 0.775703 + 0.775703i
\(974\) 0 0
\(975\) −6.72181e8 + 1.89097e8i −0.725225 + 0.204019i
\(976\) 0 0
\(977\) −1.10660e8 + 1.10660e8i −0.118661 + 0.118661i −0.763944 0.645283i \(-0.776740\pi\)
0.645283 + 0.763944i \(0.276740\pi\)
\(978\) 0 0
\(979\) 7.15395e8i 0.762426i
\(980\) 0 0
\(981\) −4.03158e7 −0.0427039
\(982\) 0 0
\(983\) 5.81692e8 + 5.81692e8i 0.612397 + 0.612397i 0.943570 0.331173i \(-0.107445\pi\)
−0.331173 + 0.943570i \(0.607445\pi\)
\(984\) 0 0
\(985\) 1.71166e8 + 1.24050e9i 0.179106 + 1.29804i
\(986\) 0 0
\(987\) 8.26887e7 8.26887e7i 0.0859993 0.0859993i
\(988\) 0 0
\(989\) 3.39084e8i 0.350525i
\(990\) 0 0
\(991\) 2.16687e8 0.222644 0.111322 0.993784i \(-0.464491\pi\)
0.111322 + 0.993784i \(0.464491\pi\)
\(992\) 0 0
\(993\) 4.17519e8 + 4.17519e8i 0.426411 + 0.426411i
\(994\) 0 0
\(995\) −2.33468e8 1.76852e8i −0.237005 0.179531i
\(996\) 0 0
\(997\) −3.07388e8 + 3.07388e8i −0.310172 + 0.310172i −0.844976 0.534804i \(-0.820385\pi\)
0.534804 + 0.844976i \(0.320385\pi\)
\(998\) 0 0
\(999\) 8.01213e7i 0.0803621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.7.bg.b.193.2 8
4.3 odd 2 30.7.f.b.13.4 yes 8
5.2 odd 4 inner 240.7.bg.b.97.2 8
12.11 even 2 90.7.g.f.73.2 8
20.3 even 4 150.7.f.h.7.1 8
20.7 even 4 30.7.f.b.7.4 8
20.19 odd 2 150.7.f.h.43.1 8
60.23 odd 4 450.7.g.r.307.2 8
60.47 odd 4 90.7.g.f.37.2 8
60.59 even 2 450.7.g.r.343.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.7.f.b.7.4 8 20.7 even 4
30.7.f.b.13.4 yes 8 4.3 odd 2
90.7.g.f.37.2 8 60.47 odd 4
90.7.g.f.73.2 8 12.11 even 2
150.7.f.h.7.1 8 20.3 even 4
150.7.f.h.43.1 8 20.19 odd 2
240.7.bg.b.97.2 8 5.2 odd 4 inner
240.7.bg.b.193.2 8 1.1 even 1 trivial
450.7.g.r.307.2 8 60.23 odd 4
450.7.g.r.343.2 8 60.59 even 2