Properties

Label 90.14.a.m.1.2
Level $90$
Weight $14$
Character 90.1
Self dual yes
Analytic conductor $96.508$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,14,Mod(1,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,128,0,8192,31250,0,-236912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.5078360567\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5778852 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2403.42\) of defining polynomial
Character \(\chi\) \(=\) 90.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+64.0000 q^{2} +4096.00 q^{4} +15625.0 q^{5} +170015. q^{7} +262144. q^{8} +1.00000e6 q^{10} +6.06791e6 q^{11} +3.29464e7 q^{13} +1.08810e7 q^{14} +1.67772e7 q^{16} -5.09064e7 q^{17} -3.38083e8 q^{19} +6.40000e7 q^{20} +3.88346e8 q^{22} +9.47034e8 q^{23} +2.44141e8 q^{25} +2.10857e9 q^{26} +6.96381e8 q^{28} -5.81785e9 q^{29} +3.79039e9 q^{31} +1.07374e9 q^{32} -3.25801e9 q^{34} +2.65648e9 q^{35} +2.84389e10 q^{37} -2.16373e10 q^{38} +4.09600e9 q^{40} -2.20260e10 q^{41} +3.49140e10 q^{43} +2.48541e10 q^{44} +6.06102e10 q^{46} -5.50002e10 q^{47} -6.79839e10 q^{49} +1.56250e10 q^{50} +1.34949e11 q^{52} +3.46323e9 q^{53} +9.48110e10 q^{55} +4.45684e10 q^{56} -3.72342e11 q^{58} -2.80284e11 q^{59} +5.28916e11 q^{61} +2.42585e11 q^{62} +6.87195e10 q^{64} +5.14788e11 q^{65} -7.51430e9 q^{67} -2.08513e11 q^{68} +1.70015e11 q^{70} -1.83209e11 q^{71} +2.21482e12 q^{73} +1.82009e12 q^{74} -1.38479e12 q^{76} +1.03163e12 q^{77} -6.58669e11 q^{79} +2.62144e11 q^{80} -1.40966e12 q^{82} +4.01969e12 q^{83} -7.95413e11 q^{85} +2.23450e12 q^{86} +1.59067e12 q^{88} +2.09375e12 q^{89} +5.60138e12 q^{91} +3.87905e12 q^{92} -3.52001e12 q^{94} -5.28254e12 q^{95} -8.64949e12 q^{97} -4.35097e12 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 128 q^{2} + 8192 q^{4} + 31250 q^{5} - 236912 q^{7} + 524288 q^{8} + 2000000 q^{10} - 4018560 q^{11} + 13391116 q^{13} - 15162368 q^{14} + 33554432 q^{16} + 47615052 q^{17} - 90569648 q^{19} + 128000000 q^{20}+ \cdots + 45860598912 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 64.0000 0.707107
\(3\) 0 0
\(4\) 4096.00 0.500000
\(5\) 15625.0 0.447214
\(6\) 0 0
\(7\) 170015. 0.546198 0.273099 0.961986i \(-0.411951\pi\)
0.273099 + 0.961986i \(0.411951\pi\)
\(8\) 262144. 0.353553
\(9\) 0 0
\(10\) 1.00000e6 0.316228
\(11\) 6.06791e6 1.03273 0.516365 0.856369i \(-0.327285\pi\)
0.516365 + 0.856369i \(0.327285\pi\)
\(12\) 0 0
\(13\) 3.29464e7 1.89311 0.946556 0.322539i \(-0.104536\pi\)
0.946556 + 0.322539i \(0.104536\pi\)
\(14\) 1.08810e7 0.386220
\(15\) 0 0
\(16\) 1.67772e7 0.250000
\(17\) −5.09064e7 −0.511511 −0.255755 0.966742i \(-0.582324\pi\)
−0.255755 + 0.966742i \(0.582324\pi\)
\(18\) 0 0
\(19\) −3.38083e8 −1.64864 −0.824318 0.566127i \(-0.808441\pi\)
−0.824318 + 0.566127i \(0.808441\pi\)
\(20\) 6.40000e7 0.223607
\(21\) 0 0
\(22\) 3.88346e8 0.730250
\(23\) 9.47034e8 1.33393 0.666967 0.745087i \(-0.267592\pi\)
0.666967 + 0.745087i \(0.267592\pi\)
\(24\) 0 0
\(25\) 2.44141e8 0.200000
\(26\) 2.10857e9 1.33863
\(27\) 0 0
\(28\) 6.96381e8 0.273099
\(29\) −5.81785e9 −1.81625 −0.908125 0.418700i \(-0.862486\pi\)
−0.908125 + 0.418700i \(0.862486\pi\)
\(30\) 0 0
\(31\) 3.79039e9 0.767065 0.383533 0.923527i \(-0.374707\pi\)
0.383533 + 0.923527i \(0.374707\pi\)
\(32\) 1.07374e9 0.176777
\(33\) 0 0
\(34\) −3.25801e9 −0.361693
\(35\) 2.65648e9 0.244267
\(36\) 0 0
\(37\) 2.84389e10 1.82222 0.911112 0.412160i \(-0.135225\pi\)
0.911112 + 0.412160i \(0.135225\pi\)
\(38\) −2.16373e10 −1.16576
\(39\) 0 0
\(40\) 4.09600e9 0.158114
\(41\) −2.20260e10 −0.724169 −0.362085 0.932145i \(-0.617935\pi\)
−0.362085 + 0.932145i \(0.617935\pi\)
\(42\) 0 0
\(43\) 3.49140e10 0.842276 0.421138 0.906996i \(-0.361631\pi\)
0.421138 + 0.906996i \(0.361631\pi\)
\(44\) 2.48541e10 0.516365
\(45\) 0 0
\(46\) 6.06102e10 0.943234
\(47\) −5.50002e10 −0.744265 −0.372133 0.928180i \(-0.621373\pi\)
−0.372133 + 0.928180i \(0.621373\pi\)
\(48\) 0 0
\(49\) −6.79839e10 −0.701668
\(50\) 1.56250e10 0.141421
\(51\) 0 0
\(52\) 1.34949e11 0.946556
\(53\) 3.46323e9 0.0214629 0.0107314 0.999942i \(-0.496584\pi\)
0.0107314 + 0.999942i \(0.496584\pi\)
\(54\) 0 0
\(55\) 9.48110e10 0.461850
\(56\) 4.45684e10 0.193110
\(57\) 0 0
\(58\) −3.72342e11 −1.28428
\(59\) −2.80284e11 −0.865088 −0.432544 0.901613i \(-0.642384\pi\)
−0.432544 + 0.901613i \(0.642384\pi\)
\(60\) 0 0
\(61\) 5.28916e11 1.31445 0.657223 0.753696i \(-0.271731\pi\)
0.657223 + 0.753696i \(0.271731\pi\)
\(62\) 2.42585e11 0.542397
\(63\) 0 0
\(64\) 6.87195e10 0.125000
\(65\) 5.14788e11 0.846625
\(66\) 0 0
\(67\) −7.51430e9 −0.0101485 −0.00507426 0.999987i \(-0.501615\pi\)
−0.00507426 + 0.999987i \(0.501615\pi\)
\(68\) −2.08513e11 −0.255755
\(69\) 0 0
\(70\) 1.70015e11 0.172723
\(71\) −1.83209e11 −0.169734 −0.0848670 0.996392i \(-0.527047\pi\)
−0.0848670 + 0.996392i \(0.527047\pi\)
\(72\) 0 0
\(73\) 2.21482e12 1.71293 0.856467 0.516202i \(-0.172654\pi\)
0.856467 + 0.516202i \(0.172654\pi\)
\(74\) 1.82009e12 1.28851
\(75\) 0 0
\(76\) −1.38479e12 −0.824318
\(77\) 1.03163e12 0.564074
\(78\) 0 0
\(79\) −6.58669e11 −0.304853 −0.152427 0.988315i \(-0.548709\pi\)
−0.152427 + 0.988315i \(0.548709\pi\)
\(80\) 2.62144e11 0.111803
\(81\) 0 0
\(82\) −1.40966e12 −0.512065
\(83\) 4.01969e12 1.34954 0.674768 0.738030i \(-0.264244\pi\)
0.674768 + 0.738030i \(0.264244\pi\)
\(84\) 0 0
\(85\) −7.95413e11 −0.228755
\(86\) 2.23450e12 0.595579
\(87\) 0 0
\(88\) 1.59067e12 0.365125
\(89\) 2.09375e12 0.446571 0.223285 0.974753i \(-0.428322\pi\)
0.223285 + 0.974753i \(0.428322\pi\)
\(90\) 0 0
\(91\) 5.60138e12 1.03401
\(92\) 3.87905e12 0.666967
\(93\) 0 0
\(94\) −3.52001e12 −0.526275
\(95\) −5.28254e12 −0.737292
\(96\) 0 0
\(97\) −8.64949e12 −1.05432 −0.527162 0.849765i \(-0.676744\pi\)
−0.527162 + 0.849765i \(0.676744\pi\)
\(98\) −4.35097e12 −0.496154
\(99\) 0 0
\(100\) 1.00000e12 0.100000
\(101\) −9.92703e12 −0.930530 −0.465265 0.885172i \(-0.654041\pi\)
−0.465265 + 0.885172i \(0.654041\pi\)
\(102\) 0 0
\(103\) 9.95146e12 0.821192 0.410596 0.911817i \(-0.365321\pi\)
0.410596 + 0.911817i \(0.365321\pi\)
\(104\) 8.63670e12 0.669316
\(105\) 0 0
\(106\) 2.21646e11 0.0151765
\(107\) 1.03046e13 0.663801 0.331900 0.943314i \(-0.392310\pi\)
0.331900 + 0.943314i \(0.392310\pi\)
\(108\) 0 0
\(109\) 2.36639e13 1.35149 0.675747 0.737134i \(-0.263821\pi\)
0.675747 + 0.737134i \(0.263821\pi\)
\(110\) 6.06791e12 0.326578
\(111\) 0 0
\(112\) 2.85238e12 0.136549
\(113\) 2.70737e12 0.122331 0.0611656 0.998128i \(-0.480518\pi\)
0.0611656 + 0.998128i \(0.480518\pi\)
\(114\) 0 0
\(115\) 1.47974e13 0.596554
\(116\) −2.38299e13 −0.908125
\(117\) 0 0
\(118\) −1.79382e13 −0.611709
\(119\) −8.65485e12 −0.279386
\(120\) 0 0
\(121\) 2.29677e12 0.0665292
\(122\) 3.38506e13 0.929454
\(123\) 0 0
\(124\) 1.55254e13 0.383533
\(125\) 3.81470e12 0.0894427
\(126\) 0 0
\(127\) 6.46305e12 0.136683 0.0683413 0.997662i \(-0.478229\pi\)
0.0683413 + 0.997662i \(0.478229\pi\)
\(128\) 4.39805e12 0.0883883
\(129\) 0 0
\(130\) 3.29464e13 0.598655
\(131\) 8.36401e12 0.144594 0.0722972 0.997383i \(-0.476967\pi\)
0.0722972 + 0.997383i \(0.476967\pi\)
\(132\) 0 0
\(133\) −5.74791e13 −0.900481
\(134\) −4.80915e11 −0.00717608
\(135\) 0 0
\(136\) −1.33448e13 −0.180846
\(137\) 1.23769e14 1.59930 0.799649 0.600468i \(-0.205019\pi\)
0.799649 + 0.600468i \(0.205019\pi\)
\(138\) 0 0
\(139\) −1.98109e13 −0.232975 −0.116487 0.993192i \(-0.537163\pi\)
−0.116487 + 0.993192i \(0.537163\pi\)
\(140\) 1.08810e13 0.122133
\(141\) 0 0
\(142\) −1.17254e13 −0.120020
\(143\) 1.99916e14 1.95507
\(144\) 0 0
\(145\) −9.09039e13 −0.812251
\(146\) 1.41749e14 1.21123
\(147\) 0 0
\(148\) 1.16486e14 0.911112
\(149\) 1.36275e14 1.02024 0.510122 0.860102i \(-0.329600\pi\)
0.510122 + 0.860102i \(0.329600\pi\)
\(150\) 0 0
\(151\) 1.46787e14 1.00771 0.503856 0.863788i \(-0.331914\pi\)
0.503856 + 0.863788i \(0.331914\pi\)
\(152\) −8.86264e13 −0.582881
\(153\) 0 0
\(154\) 6.60246e13 0.398861
\(155\) 5.92248e13 0.343042
\(156\) 0 0
\(157\) −2.46869e14 −1.31559 −0.657793 0.753199i \(-0.728510\pi\)
−0.657793 + 0.753199i \(0.728510\pi\)
\(158\) −4.21548e13 −0.215564
\(159\) 0 0
\(160\) 1.67772e13 0.0790569
\(161\) 1.61010e14 0.728592
\(162\) 0 0
\(163\) −9.21834e13 −0.384976 −0.192488 0.981299i \(-0.561656\pi\)
−0.192488 + 0.981299i \(0.561656\pi\)
\(164\) −9.02184e13 −0.362085
\(165\) 0 0
\(166\) 2.57260e14 0.954266
\(167\) 7.83286e13 0.279424 0.139712 0.990192i \(-0.455382\pi\)
0.139712 + 0.990192i \(0.455382\pi\)
\(168\) 0 0
\(169\) 7.82591e14 2.58387
\(170\) −5.09064e13 −0.161754
\(171\) 0 0
\(172\) 1.43008e14 0.421138
\(173\) −4.49950e14 −1.27604 −0.638020 0.770020i \(-0.720246\pi\)
−0.638020 + 0.770020i \(0.720246\pi\)
\(174\) 0 0
\(175\) 4.15075e13 0.109240
\(176\) 1.01803e14 0.258182
\(177\) 0 0
\(178\) 1.34000e14 0.315773
\(179\) 1.39179e14 0.316249 0.158124 0.987419i \(-0.449455\pi\)
0.158124 + 0.987419i \(0.449455\pi\)
\(180\) 0 0
\(181\) −5.20706e14 −1.10073 −0.550367 0.834923i \(-0.685512\pi\)
−0.550367 + 0.834923i \(0.685512\pi\)
\(182\) 3.58488e14 0.731158
\(183\) 0 0
\(184\) 2.48259e14 0.471617
\(185\) 4.44358e14 0.814923
\(186\) 0 0
\(187\) −3.08895e14 −0.528252
\(188\) −2.25281e14 −0.372133
\(189\) 0 0
\(190\) −3.38083e14 −0.521344
\(191\) −1.09463e15 −1.63136 −0.815682 0.578501i \(-0.803638\pi\)
−0.815682 + 0.578501i \(0.803638\pi\)
\(192\) 0 0
\(193\) 6.26624e14 0.872739 0.436370 0.899767i \(-0.356264\pi\)
0.436370 + 0.899767i \(0.356264\pi\)
\(194\) −5.53567e14 −0.745520
\(195\) 0 0
\(196\) −2.78462e14 −0.350834
\(197\) 3.32275e14 0.405012 0.202506 0.979281i \(-0.435091\pi\)
0.202506 + 0.979281i \(0.435091\pi\)
\(198\) 0 0
\(199\) 5.22579e13 0.0596495 0.0298248 0.999555i \(-0.490505\pi\)
0.0298248 + 0.999555i \(0.490505\pi\)
\(200\) 6.40000e13 0.0707107
\(201\) 0 0
\(202\) −6.35330e14 −0.657984
\(203\) −9.89121e14 −0.992031
\(204\) 0 0
\(205\) −3.44156e14 −0.323858
\(206\) 6.36893e14 0.580670
\(207\) 0 0
\(208\) 5.52749e14 0.473278
\(209\) −2.05145e15 −1.70259
\(210\) 0 0
\(211\) −1.36362e15 −1.06379 −0.531896 0.846810i \(-0.678520\pi\)
−0.531896 + 0.846810i \(0.678520\pi\)
\(212\) 1.41854e13 0.0107314
\(213\) 0 0
\(214\) 6.59496e14 0.469378
\(215\) 5.45531e14 0.376677
\(216\) 0 0
\(217\) 6.44422e14 0.418969
\(218\) 1.51449e15 0.955650
\(219\) 0 0
\(220\) 3.88346e14 0.230925
\(221\) −1.67718e15 −0.968347
\(222\) 0 0
\(223\) −2.47259e15 −1.34639 −0.673196 0.739464i \(-0.735079\pi\)
−0.673196 + 0.739464i \(0.735079\pi\)
\(224\) 1.82552e14 0.0965550
\(225\) 0 0
\(226\) 1.73271e14 0.0865012
\(227\) 1.16478e15 0.565034 0.282517 0.959262i \(-0.408831\pi\)
0.282517 + 0.959262i \(0.408831\pi\)
\(228\) 0 0
\(229\) −2.63317e15 −1.20656 −0.603279 0.797530i \(-0.706140\pi\)
−0.603279 + 0.797530i \(0.706140\pi\)
\(230\) 9.47034e14 0.421827
\(231\) 0 0
\(232\) −1.52511e15 −0.642141
\(233\) −1.81315e15 −0.742369 −0.371185 0.928559i \(-0.621048\pi\)
−0.371185 + 0.928559i \(0.621048\pi\)
\(234\) 0 0
\(235\) −8.59377e14 −0.332846
\(236\) −1.14804e15 −0.432544
\(237\) 0 0
\(238\) −5.53911e14 −0.197556
\(239\) −5.57074e15 −1.93342 −0.966710 0.255874i \(-0.917637\pi\)
−0.966710 + 0.255874i \(0.917637\pi\)
\(240\) 0 0
\(241\) −6.85386e14 −0.225333 −0.112666 0.993633i \(-0.535939\pi\)
−0.112666 + 0.993633i \(0.535939\pi\)
\(242\) 1.46993e14 0.0470433
\(243\) 0 0
\(244\) 2.16644e15 0.657223
\(245\) −1.06225e15 −0.313796
\(246\) 0 0
\(247\) −1.11386e16 −3.12105
\(248\) 9.93627e14 0.271199
\(249\) 0 0
\(250\) 2.44141e14 0.0632456
\(251\) −7.27308e14 −0.183586 −0.0917929 0.995778i \(-0.529260\pi\)
−0.0917929 + 0.995778i \(0.529260\pi\)
\(252\) 0 0
\(253\) 5.74651e15 1.37759
\(254\) 4.13635e14 0.0966492
\(255\) 0 0
\(256\) 2.81475e14 0.0625000
\(257\) 2.83845e14 0.0614491 0.0307245 0.999528i \(-0.490219\pi\)
0.0307245 + 0.999528i \(0.490219\pi\)
\(258\) 0 0
\(259\) 4.83504e15 0.995294
\(260\) 2.10857e15 0.423313
\(261\) 0 0
\(262\) 5.35297e14 0.102244
\(263\) 3.35049e15 0.624303 0.312152 0.950032i \(-0.398950\pi\)
0.312152 + 0.950032i \(0.398950\pi\)
\(264\) 0 0
\(265\) 5.41129e13 0.00959848
\(266\) −3.67866e15 −0.636736
\(267\) 0 0
\(268\) −3.07786e13 −0.00507426
\(269\) −7.65805e15 −1.23233 −0.616167 0.787615i \(-0.711315\pi\)
−0.616167 + 0.787615i \(0.711315\pi\)
\(270\) 0 0
\(271\) 4.60099e14 0.0705588 0.0352794 0.999377i \(-0.488768\pi\)
0.0352794 + 0.999377i \(0.488768\pi\)
\(272\) −8.54068e14 −0.127878
\(273\) 0 0
\(274\) 7.92124e15 1.13087
\(275\) 1.48142e15 0.206546
\(276\) 0 0
\(277\) −7.55123e15 −1.00438 −0.502191 0.864757i \(-0.667473\pi\)
−0.502191 + 0.864757i \(0.667473\pi\)
\(278\) −1.26790e15 −0.164738
\(279\) 0 0
\(280\) 6.96381e14 0.0863614
\(281\) −5.96982e15 −0.723386 −0.361693 0.932297i \(-0.617801\pi\)
−0.361693 + 0.932297i \(0.617801\pi\)
\(282\) 0 0
\(283\) 1.32479e16 1.53297 0.766486 0.642260i \(-0.222003\pi\)
0.766486 + 0.642260i \(0.222003\pi\)
\(284\) −7.50426e14 −0.0848670
\(285\) 0 0
\(286\) 1.27946e16 1.38244
\(287\) −3.74474e15 −0.395539
\(288\) 0 0
\(289\) −7.31311e15 −0.738357
\(290\) −5.81785e15 −0.574348
\(291\) 0 0
\(292\) 9.07192e15 0.856467
\(293\) 4.74056e15 0.437714 0.218857 0.975757i \(-0.429767\pi\)
0.218857 + 0.975757i \(0.429767\pi\)
\(294\) 0 0
\(295\) −4.37944e15 −0.386879
\(296\) 7.45509e15 0.644253
\(297\) 0 0
\(298\) 8.72157e15 0.721421
\(299\) 3.12014e16 2.52529
\(300\) 0 0
\(301\) 5.93590e15 0.460049
\(302\) 9.39435e15 0.712560
\(303\) 0 0
\(304\) −5.67209e15 −0.412159
\(305\) 8.26431e15 0.587838
\(306\) 0 0
\(307\) −3.78865e15 −0.258276 −0.129138 0.991627i \(-0.541221\pi\)
−0.129138 + 0.991627i \(0.541221\pi\)
\(308\) 4.22558e15 0.282037
\(309\) 0 0
\(310\) 3.79039e15 0.242567
\(311\) −1.46650e16 −0.919050 −0.459525 0.888165i \(-0.651980\pi\)
−0.459525 + 0.888165i \(0.651980\pi\)
\(312\) 0 0
\(313\) −5.58982e15 −0.336016 −0.168008 0.985786i \(-0.553733\pi\)
−0.168008 + 0.985786i \(0.553733\pi\)
\(314\) −1.57996e16 −0.930260
\(315\) 0 0
\(316\) −2.69791e15 −0.152427
\(317\) 1.75354e16 0.970578 0.485289 0.874354i \(-0.338714\pi\)
0.485289 + 0.874354i \(0.338714\pi\)
\(318\) 0 0
\(319\) −3.53022e16 −1.87569
\(320\) 1.07374e15 0.0559017
\(321\) 0 0
\(322\) 1.03046e16 0.515192
\(323\) 1.72106e16 0.843295
\(324\) 0 0
\(325\) 8.04356e15 0.378622
\(326\) −5.89974e15 −0.272219
\(327\) 0 0
\(328\) −5.77398e15 −0.256032
\(329\) −9.35085e15 −0.406516
\(330\) 0 0
\(331\) −2.66488e16 −1.11377 −0.556886 0.830589i \(-0.688004\pi\)
−0.556886 + 0.830589i \(0.688004\pi\)
\(332\) 1.64646e16 0.674768
\(333\) 0 0
\(334\) 5.01303e15 0.197582
\(335\) −1.17411e14 −0.00453855
\(336\) 0 0
\(337\) 2.82770e16 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(338\) 5.00858e16 1.82707
\(339\) 0 0
\(340\) −3.25801e15 −0.114377
\(341\) 2.29997e16 0.792171
\(342\) 0 0
\(343\) −2.80309e16 −0.929447
\(344\) 9.15250e15 0.297790
\(345\) 0 0
\(346\) −2.87968e16 −0.902297
\(347\) −4.37490e16 −1.34532 −0.672662 0.739950i \(-0.734849\pi\)
−0.672662 + 0.739950i \(0.734849\pi\)
\(348\) 0 0
\(349\) −9.77276e15 −0.289502 −0.144751 0.989468i \(-0.546238\pi\)
−0.144751 + 0.989468i \(0.546238\pi\)
\(350\) 2.65648e15 0.0772440
\(351\) 0 0
\(352\) 6.51536e15 0.182562
\(353\) −3.36370e16 −0.925297 −0.462649 0.886542i \(-0.653101\pi\)
−0.462649 + 0.886542i \(0.653101\pi\)
\(354\) 0 0
\(355\) −2.86265e15 −0.0759073
\(356\) 8.57601e15 0.223285
\(357\) 0 0
\(358\) 8.90746e15 0.223622
\(359\) 5.73427e16 1.41372 0.706861 0.707353i \(-0.250111\pi\)
0.706861 + 0.707353i \(0.250111\pi\)
\(360\) 0 0
\(361\) 7.22470e16 1.71800
\(362\) −3.33252e16 −0.778336
\(363\) 0 0
\(364\) 2.29433e16 0.517007
\(365\) 3.46066e16 0.766048
\(366\) 0 0
\(367\) 1.30762e15 0.0279352 0.0139676 0.999902i \(-0.495554\pi\)
0.0139676 + 0.999902i \(0.495554\pi\)
\(368\) 1.58886e16 0.333484
\(369\) 0 0
\(370\) 2.84389e16 0.576238
\(371\) 5.88800e14 0.0117230
\(372\) 0 0
\(373\) 5.05383e16 0.971658 0.485829 0.874054i \(-0.338518\pi\)
0.485829 + 0.874054i \(0.338518\pi\)
\(374\) −1.97693e16 −0.373531
\(375\) 0 0
\(376\) −1.44180e16 −0.263138
\(377\) −1.91677e17 −3.43836
\(378\) 0 0
\(379\) 3.58137e16 0.620719 0.310359 0.950619i \(-0.399551\pi\)
0.310359 + 0.950619i \(0.399551\pi\)
\(380\) −2.16373e16 −0.368646
\(381\) 0 0
\(382\) −7.00564e16 −1.15355
\(383\) 1.16220e17 1.88143 0.940713 0.339203i \(-0.110157\pi\)
0.940713 + 0.339203i \(0.110157\pi\)
\(384\) 0 0
\(385\) 1.61193e16 0.252262
\(386\) 4.01039e16 0.617120
\(387\) 0 0
\(388\) −3.54283e16 −0.527162
\(389\) −2.44732e16 −0.358112 −0.179056 0.983839i \(-0.557304\pi\)
−0.179056 + 0.983839i \(0.557304\pi\)
\(390\) 0 0
\(391\) −4.82101e16 −0.682322
\(392\) −1.78216e16 −0.248077
\(393\) 0 0
\(394\) 2.12656e16 0.286386
\(395\) −1.02917e16 −0.136335
\(396\) 0 0
\(397\) 7.19607e16 0.922481 0.461240 0.887275i \(-0.347405\pi\)
0.461240 + 0.887275i \(0.347405\pi\)
\(398\) 3.34451e15 0.0421786
\(399\) 0 0
\(400\) 4.09600e15 0.0500000
\(401\) −2.77695e16 −0.333526 −0.166763 0.985997i \(-0.553331\pi\)
−0.166763 + 0.985997i \(0.553331\pi\)
\(402\) 0 0
\(403\) 1.24880e17 1.45214
\(404\) −4.06611e16 −0.465265
\(405\) 0 0
\(406\) −6.33038e16 −0.701472
\(407\) 1.72565e17 1.88186
\(408\) 0 0
\(409\) −1.50306e17 −1.58772 −0.793859 0.608102i \(-0.791931\pi\)
−0.793859 + 0.608102i \(0.791931\pi\)
\(410\) −2.20260e16 −0.229002
\(411\) 0 0
\(412\) 4.07612e16 0.410596
\(413\) −4.76525e16 −0.472509
\(414\) 0 0
\(415\) 6.28076e16 0.603531
\(416\) 3.53759e16 0.334658
\(417\) 0 0
\(418\) −1.31293e17 −1.20392
\(419\) 9.26732e16 0.836687 0.418343 0.908289i \(-0.362611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(420\) 0 0
\(421\) 4.68568e16 0.410146 0.205073 0.978747i \(-0.434257\pi\)
0.205073 + 0.978747i \(0.434257\pi\)
\(422\) −8.72715e16 −0.752214
\(423\) 0 0
\(424\) 9.07864e14 0.00758827
\(425\) −1.24283e16 −0.102302
\(426\) 0 0
\(427\) 8.99236e16 0.717947
\(428\) 4.22078e16 0.331900
\(429\) 0 0
\(430\) 3.49140e16 0.266351
\(431\) −2.33764e17 −1.75661 −0.878304 0.478103i \(-0.841324\pi\)
−0.878304 + 0.478103i \(0.841324\pi\)
\(432\) 0 0
\(433\) −1.57411e17 −1.14779 −0.573897 0.818927i \(-0.694569\pi\)
−0.573897 + 0.818927i \(0.694569\pi\)
\(434\) 4.12430e16 0.296256
\(435\) 0 0
\(436\) 9.69273e16 0.675747
\(437\) −3.20176e17 −2.19917
\(438\) 0 0
\(439\) −2.21873e17 −1.47940 −0.739698 0.672939i \(-0.765032\pi\)
−0.739698 + 0.672939i \(0.765032\pi\)
\(440\) 2.48541e16 0.163289
\(441\) 0 0
\(442\) −1.07340e17 −0.684725
\(443\) −1.42772e17 −0.897470 −0.448735 0.893665i \(-0.648125\pi\)
−0.448735 + 0.893665i \(0.648125\pi\)
\(444\) 0 0
\(445\) 3.27149e16 0.199712
\(446\) −1.58246e17 −0.952042
\(447\) 0 0
\(448\) 1.16833e16 0.0682747
\(449\) 1.94696e17 1.12139 0.560693 0.828024i \(-0.310535\pi\)
0.560693 + 0.828024i \(0.310535\pi\)
\(450\) 0 0
\(451\) −1.33652e17 −0.747871
\(452\) 1.10894e16 0.0611656
\(453\) 0 0
\(454\) 7.45457e16 0.399539
\(455\) 8.75216e16 0.462425
\(456\) 0 0
\(457\) −2.06061e17 −1.05813 −0.529067 0.848580i \(-0.677458\pi\)
−0.529067 + 0.848580i \(0.677458\pi\)
\(458\) −1.68523e17 −0.853166
\(459\) 0 0
\(460\) 6.06102e16 0.298277
\(461\) 3.50887e17 1.70260 0.851298 0.524682i \(-0.175816\pi\)
0.851298 + 0.524682i \(0.175816\pi\)
\(462\) 0 0
\(463\) 3.11707e16 0.147052 0.0735259 0.997293i \(-0.476575\pi\)
0.0735259 + 0.997293i \(0.476575\pi\)
\(464\) −9.76073e16 −0.454062
\(465\) 0 0
\(466\) −1.16042e17 −0.524934
\(467\) 3.16096e17 1.41013 0.705066 0.709141i \(-0.250917\pi\)
0.705066 + 0.709141i \(0.250917\pi\)
\(468\) 0 0
\(469\) −1.27754e15 −0.00554309
\(470\) −5.50002e16 −0.235357
\(471\) 0 0
\(472\) −7.34748e16 −0.305855
\(473\) 2.11855e17 0.869843
\(474\) 0 0
\(475\) −8.25397e16 −0.329727
\(476\) −3.54503e16 −0.139693
\(477\) 0 0
\(478\) −3.56527e17 −1.36713
\(479\) −7.59224e16 −0.287203 −0.143601 0.989636i \(-0.545868\pi\)
−0.143601 + 0.989636i \(0.545868\pi\)
\(480\) 0 0
\(481\) 9.36960e17 3.44967
\(482\) −4.38647e16 −0.159334
\(483\) 0 0
\(484\) 9.40756e15 0.0332646
\(485\) −1.35148e17 −0.471508
\(486\) 0 0
\(487\) −3.20670e17 −1.08923 −0.544615 0.838686i \(-0.683324\pi\)
−0.544615 + 0.838686i \(0.683324\pi\)
\(488\) 1.38652e17 0.464727
\(489\) 0 0
\(490\) −6.79839e16 −0.221887
\(491\) −4.08390e17 −1.31536 −0.657681 0.753296i \(-0.728463\pi\)
−0.657681 + 0.753296i \(0.728463\pi\)
\(492\) 0 0
\(493\) 2.96166e17 0.929031
\(494\) −7.12871e17 −2.20692
\(495\) 0 0
\(496\) 6.35921e16 0.191766
\(497\) −3.11483e16 −0.0927083
\(498\) 0 0
\(499\) −2.29462e17 −0.665361 −0.332680 0.943040i \(-0.607953\pi\)
−0.332680 + 0.943040i \(0.607953\pi\)
\(500\) 1.56250e16 0.0447214
\(501\) 0 0
\(502\) −4.65477e16 −0.129815
\(503\) −6.88434e17 −1.89527 −0.947633 0.319361i \(-0.896532\pi\)
−0.947633 + 0.319361i \(0.896532\pi\)
\(504\) 0 0
\(505\) −1.55110e17 −0.416145
\(506\) 3.67777e17 0.974105
\(507\) 0 0
\(508\) 2.64726e16 0.0683413
\(509\) 2.88019e17 0.734101 0.367051 0.930201i \(-0.380368\pi\)
0.367051 + 0.930201i \(0.380368\pi\)
\(510\) 0 0
\(511\) 3.76553e17 0.935601
\(512\) 1.80144e16 0.0441942
\(513\) 0 0
\(514\) 1.81661e16 0.0434511
\(515\) 1.55492e17 0.367248
\(516\) 0 0
\(517\) −3.33736e17 −0.768624
\(518\) 3.09442e17 0.703779
\(519\) 0 0
\(520\) 1.34949e17 0.299327
\(521\) 3.07194e17 0.672926 0.336463 0.941697i \(-0.390769\pi\)
0.336463 + 0.941697i \(0.390769\pi\)
\(522\) 0 0
\(523\) 5.25192e17 1.12217 0.561083 0.827760i \(-0.310385\pi\)
0.561083 + 0.827760i \(0.310385\pi\)
\(524\) 3.42590e16 0.0722972
\(525\) 0 0
\(526\) 2.14431e17 0.441449
\(527\) −1.92955e17 −0.392362
\(528\) 0 0
\(529\) 3.92837e17 0.779382
\(530\) 3.46323e15 0.00678715
\(531\) 0 0
\(532\) −2.35434e17 −0.450240
\(533\) −7.25677e17 −1.37093
\(534\) 0 0
\(535\) 1.61010e17 0.296861
\(536\) −1.96983e15 −0.00358804
\(537\) 0 0
\(538\) −4.90115e17 −0.871392
\(539\) −4.12520e17 −0.724633
\(540\) 0 0
\(541\) −6.85158e16 −0.117492 −0.0587460 0.998273i \(-0.518710\pi\)
−0.0587460 + 0.998273i \(0.518710\pi\)
\(542\) 2.94463e16 0.0498926
\(543\) 0 0
\(544\) −5.46604e16 −0.0904232
\(545\) 3.69748e17 0.604406
\(546\) 0 0
\(547\) −7.30717e17 −1.16636 −0.583179 0.812344i \(-0.698191\pi\)
−0.583179 + 0.812344i \(0.698191\pi\)
\(548\) 5.06959e17 0.799649
\(549\) 0 0
\(550\) 9.48110e16 0.146050
\(551\) 1.96691e18 2.99433
\(552\) 0 0
\(553\) −1.11984e17 −0.166510
\(554\) −4.83279e17 −0.710206
\(555\) 0 0
\(556\) −8.11456e16 −0.116487
\(557\) 1.23097e18 1.74658 0.873291 0.487199i \(-0.161981\pi\)
0.873291 + 0.487199i \(0.161981\pi\)
\(558\) 0 0
\(559\) 1.15029e18 1.59452
\(560\) 4.45684e16 0.0610667
\(561\) 0 0
\(562\) −3.82069e17 −0.511511
\(563\) −4.06336e16 −0.0537751 −0.0268876 0.999638i \(-0.508560\pi\)
−0.0268876 + 0.999638i \(0.508560\pi\)
\(564\) 0 0
\(565\) 4.23026e16 0.0547082
\(566\) 8.47864e17 1.08398
\(567\) 0 0
\(568\) −4.80273e16 −0.0600100
\(569\) 2.95112e17 0.364550 0.182275 0.983248i \(-0.441654\pi\)
0.182275 + 0.983248i \(0.441654\pi\)
\(570\) 0 0
\(571\) 1.05610e18 1.27518 0.637590 0.770376i \(-0.279932\pi\)
0.637590 + 0.770376i \(0.279932\pi\)
\(572\) 8.18855e17 0.977536
\(573\) 0 0
\(574\) −2.39664e17 −0.279689
\(575\) 2.31209e17 0.266787
\(576\) 0 0
\(577\) 5.39539e17 0.608667 0.304334 0.952566i \(-0.401566\pi\)
0.304334 + 0.952566i \(0.401566\pi\)
\(578\) −4.68039e17 −0.522097
\(579\) 0 0
\(580\) −3.72342e17 −0.406126
\(581\) 6.83406e17 0.737113
\(582\) 0 0
\(583\) 2.10145e16 0.0221653
\(584\) 5.80603e17 0.605614
\(585\) 0 0
\(586\) 3.03396e17 0.309510
\(587\) 8.49866e16 0.0857438 0.0428719 0.999081i \(-0.486349\pi\)
0.0428719 + 0.999081i \(0.486349\pi\)
\(588\) 0 0
\(589\) −1.28146e18 −1.26461
\(590\) −2.80284e17 −0.273565
\(591\) 0 0
\(592\) 4.77126e17 0.455556
\(593\) 4.33934e17 0.409796 0.204898 0.978783i \(-0.434314\pi\)
0.204898 + 0.978783i \(0.434314\pi\)
\(594\) 0 0
\(595\) −1.35232e17 −0.124945
\(596\) 5.58180e17 0.510122
\(597\) 0 0
\(598\) 1.99689e18 1.78565
\(599\) −1.08180e18 −0.956909 −0.478455 0.878112i \(-0.658803\pi\)
−0.478455 + 0.878112i \(0.658803\pi\)
\(600\) 0 0
\(601\) 8.22862e17 0.712267 0.356134 0.934435i \(-0.384095\pi\)
0.356134 + 0.934435i \(0.384095\pi\)
\(602\) 3.79898e17 0.325304
\(603\) 0 0
\(604\) 6.01238e17 0.503856
\(605\) 3.58870e16 0.0297528
\(606\) 0 0
\(607\) −6.79810e17 −0.551647 −0.275823 0.961208i \(-0.588951\pi\)
−0.275823 + 0.961208i \(0.588951\pi\)
\(608\) −3.63014e17 −0.291440
\(609\) 0 0
\(610\) 5.28916e17 0.415664
\(611\) −1.81206e18 −1.40898
\(612\) 0 0
\(613\) −9.66682e17 −0.735852 −0.367926 0.929855i \(-0.619932\pi\)
−0.367926 + 0.929855i \(0.619932\pi\)
\(614\) −2.42473e17 −0.182629
\(615\) 0 0
\(616\) 2.70437e17 0.199430
\(617\) −7.79322e17 −0.568674 −0.284337 0.958724i \(-0.591773\pi\)
−0.284337 + 0.958724i \(0.591773\pi\)
\(618\) 0 0
\(619\) −1.30527e18 −0.932636 −0.466318 0.884617i \(-0.654420\pi\)
−0.466318 + 0.884617i \(0.654420\pi\)
\(620\) 2.42585e17 0.171521
\(621\) 0 0
\(622\) −9.38559e17 −0.649866
\(623\) 3.55969e17 0.243916
\(624\) 0 0
\(625\) 5.96046e16 0.0400000
\(626\) −3.57749e17 −0.237599
\(627\) 0 0
\(628\) −1.01118e18 −0.657793
\(629\) −1.44772e18 −0.932087
\(630\) 0 0
\(631\) 2.48848e18 1.56944 0.784718 0.619853i \(-0.212808\pi\)
0.784718 + 0.619853i \(0.212808\pi\)
\(632\) −1.72666e17 −0.107782
\(633\) 0 0
\(634\) 1.12227e18 0.686302
\(635\) 1.00985e17 0.0611263
\(636\) 0 0
\(637\) −2.23983e18 −1.32834
\(638\) −2.25934e18 −1.32632
\(639\) 0 0
\(640\) 6.87195e16 0.0395285
\(641\) 1.11455e18 0.634634 0.317317 0.948320i \(-0.397218\pi\)
0.317317 + 0.948320i \(0.397218\pi\)
\(642\) 0 0
\(643\) 1.21634e18 0.678710 0.339355 0.940658i \(-0.389791\pi\)
0.339355 + 0.940658i \(0.389791\pi\)
\(644\) 6.59496e17 0.364296
\(645\) 0 0
\(646\) 1.10148e18 0.596299
\(647\) −3.56728e18 −1.91188 −0.955939 0.293567i \(-0.905158\pi\)
−0.955939 + 0.293567i \(0.905158\pi\)
\(648\) 0 0
\(649\) −1.70074e18 −0.893401
\(650\) 5.14788e17 0.267726
\(651\) 0 0
\(652\) −3.77583e17 −0.192488
\(653\) −1.05284e18 −0.531408 −0.265704 0.964055i \(-0.585604\pi\)
−0.265704 + 0.964055i \(0.585604\pi\)
\(654\) 0 0
\(655\) 1.30688e17 0.0646645
\(656\) −3.69535e17 −0.181042
\(657\) 0 0
\(658\) −5.98454e17 −0.287450
\(659\) 1.06619e18 0.507085 0.253542 0.967324i \(-0.418404\pi\)
0.253542 + 0.967324i \(0.418404\pi\)
\(660\) 0 0
\(661\) −3.83025e17 −0.178615 −0.0893075 0.996004i \(-0.528465\pi\)
−0.0893075 + 0.996004i \(0.528465\pi\)
\(662\) −1.70553e18 −0.787556
\(663\) 0 0
\(664\) 1.05374e18 0.477133
\(665\) −8.98111e17 −0.402707
\(666\) 0 0
\(667\) −5.50970e18 −2.42276
\(668\) 3.20834e17 0.139712
\(669\) 0 0
\(670\) −7.51430e15 −0.00320924
\(671\) 3.20941e18 1.35747
\(672\) 0 0
\(673\) −3.12295e18 −1.29559 −0.647793 0.761816i \(-0.724308\pi\)
−0.647793 + 0.761816i \(0.724308\pi\)
\(674\) 1.80973e18 0.743573
\(675\) 0 0
\(676\) 3.20549e18 1.29194
\(677\) −1.03569e18 −0.413431 −0.206716 0.978401i \(-0.566277\pi\)
−0.206716 + 0.978401i \(0.566277\pi\)
\(678\) 0 0
\(679\) −1.47054e18 −0.575869
\(680\) −2.08513e17 −0.0808769
\(681\) 0 0
\(682\) 1.47198e18 0.560149
\(683\) −2.86963e18 −1.08166 −0.540831 0.841131i \(-0.681890\pi\)
−0.540831 + 0.841131i \(0.681890\pi\)
\(684\) 0 0
\(685\) 1.93390e18 0.715228
\(686\) −1.79398e18 −0.657218
\(687\) 0 0
\(688\) 5.85760e17 0.210569
\(689\) 1.14101e17 0.0406316
\(690\) 0 0
\(691\) 1.70272e18 0.595026 0.297513 0.954718i \(-0.403843\pi\)
0.297513 + 0.954718i \(0.403843\pi\)
\(692\) −1.84299e18 −0.638020
\(693\) 0 0
\(694\) −2.79994e18 −0.951288
\(695\) −3.09546e17 −0.104190
\(696\) 0 0
\(697\) 1.12126e18 0.370420
\(698\) −6.25457e17 −0.204709
\(699\) 0 0
\(700\) 1.70015e17 0.0546198
\(701\) 1.89524e18 0.603249 0.301624 0.953427i \(-0.402471\pi\)
0.301624 + 0.953427i \(0.402471\pi\)
\(702\) 0 0
\(703\) −9.61470e18 −3.00418
\(704\) 4.16983e17 0.129091
\(705\) 0 0
\(706\) −2.15277e18 −0.654284
\(707\) −1.68774e18 −0.508253
\(708\) 0 0
\(709\) −1.81610e18 −0.536957 −0.268479 0.963286i \(-0.586521\pi\)
−0.268479 + 0.963286i \(0.586521\pi\)
\(710\) −1.83209e17 −0.0536746
\(711\) 0 0
\(712\) 5.48864e17 0.157887
\(713\) 3.58962e18 1.02322
\(714\) 0 0
\(715\) 3.12368e18 0.874335
\(716\) 5.70077e17 0.158124
\(717\) 0 0
\(718\) 3.66993e18 0.999652
\(719\) −4.07912e18 −1.10110 −0.550552 0.834801i \(-0.685583\pi\)
−0.550552 + 0.834801i \(0.685583\pi\)
\(720\) 0 0
\(721\) 1.69190e18 0.448533
\(722\) 4.62381e18 1.21481
\(723\) 0 0
\(724\) −2.13281e18 −0.550367
\(725\) −1.42037e18 −0.363250
\(726\) 0 0
\(727\) −3.30463e18 −0.830136 −0.415068 0.909790i \(-0.636242\pi\)
−0.415068 + 0.909790i \(0.636242\pi\)
\(728\) 1.46837e18 0.365579
\(729\) 0 0
\(730\) 2.21482e18 0.541677
\(731\) −1.77735e18 −0.430833
\(732\) 0 0
\(733\) −2.10951e18 −0.502350 −0.251175 0.967942i \(-0.580817\pi\)
−0.251175 + 0.967942i \(0.580817\pi\)
\(734\) 8.36876e16 0.0197532
\(735\) 0 0
\(736\) 1.01687e18 0.235809
\(737\) −4.55961e16 −0.0104807
\(738\) 0 0
\(739\) 3.64707e18 0.823673 0.411837 0.911258i \(-0.364887\pi\)
0.411837 + 0.911258i \(0.364887\pi\)
\(740\) 1.82009e18 0.407461
\(741\) 0 0
\(742\) 3.76832e16 0.00828939
\(743\) −4.43149e18 −0.966324 −0.483162 0.875531i \(-0.660512\pi\)
−0.483162 + 0.875531i \(0.660512\pi\)
\(744\) 0 0
\(745\) 2.12929e18 0.456267
\(746\) 3.23445e18 0.687066
\(747\) 0 0
\(748\) −1.26524e18 −0.264126
\(749\) 1.75194e18 0.362566
\(750\) 0 0
\(751\) 4.80237e18 0.976779 0.488389 0.872626i \(-0.337585\pi\)
0.488389 + 0.872626i \(0.337585\pi\)
\(752\) −9.22749e17 −0.186066
\(753\) 0 0
\(754\) −1.22673e19 −2.43129
\(755\) 2.29354e18 0.450663
\(756\) 0 0
\(757\) 5.04669e18 0.974729 0.487364 0.873199i \(-0.337958\pi\)
0.487364 + 0.873199i \(0.337958\pi\)
\(758\) 2.29208e18 0.438914
\(759\) 0 0
\(760\) −1.38479e18 −0.260672
\(761\) −1.68626e18 −0.314720 −0.157360 0.987541i \(-0.550298\pi\)
−0.157360 + 0.987541i \(0.550298\pi\)
\(762\) 0 0
\(763\) 4.02322e18 0.738183
\(764\) −4.48361e18 −0.815682
\(765\) 0 0
\(766\) 7.43805e18 1.33037
\(767\) −9.23435e18 −1.63771
\(768\) 0 0
\(769\) 1.11315e18 0.194104 0.0970519 0.995279i \(-0.469059\pi\)
0.0970519 + 0.995279i \(0.469059\pi\)
\(770\) 1.03163e18 0.178376
\(771\) 0 0
\(772\) 2.56665e18 0.436370
\(773\) 9.65963e18 1.62852 0.814261 0.580499i \(-0.197142\pi\)
0.814261 + 0.580499i \(0.197142\pi\)
\(774\) 0 0
\(775\) 9.25387e17 0.153413
\(776\) −2.26741e18 −0.372760
\(777\) 0 0
\(778\) −1.56629e18 −0.253223
\(779\) 7.44660e18 1.19389
\(780\) 0 0
\(781\) −1.11170e18 −0.175289
\(782\) −3.08545e18 −0.482474
\(783\) 0 0
\(784\) −1.14058e18 −0.175417
\(785\) −3.85733e18 −0.588348
\(786\) 0 0
\(787\) 1.40037e18 0.210091 0.105045 0.994467i \(-0.466501\pi\)
0.105045 + 0.994467i \(0.466501\pi\)
\(788\) 1.36100e18 0.202506
\(789\) 0 0
\(790\) −6.58669e17 −0.0964031
\(791\) 4.60293e17 0.0668170
\(792\) 0 0
\(793\) 1.74259e19 2.48839
\(794\) 4.60549e18 0.652292
\(795\) 0 0
\(796\) 2.14048e17 0.0298248
\(797\) −9.30010e18 −1.28531 −0.642656 0.766155i \(-0.722168\pi\)
−0.642656 + 0.766155i \(0.722168\pi\)
\(798\) 0 0
\(799\) 2.79986e18 0.380700
\(800\) 2.62144e17 0.0353553
\(801\) 0 0
\(802\) −1.77725e18 −0.235838
\(803\) 1.34393e19 1.76900
\(804\) 0 0
\(805\) 2.51578e18 0.325836
\(806\) 7.99230e18 1.02682
\(807\) 0 0
\(808\) −2.60231e18 −0.328992
\(809\) −3.89357e18 −0.488296 −0.244148 0.969738i \(-0.578508\pi\)
−0.244148 + 0.969738i \(0.578508\pi\)
\(810\) 0 0
\(811\) −1.53890e19 −1.89922 −0.949610 0.313434i \(-0.898521\pi\)
−0.949610 + 0.313434i \(0.898521\pi\)
\(812\) −4.05144e18 −0.496016
\(813\) 0 0
\(814\) 1.10441e19 1.33068
\(815\) −1.44037e18 −0.172166
\(816\) 0 0
\(817\) −1.18038e19 −1.38861
\(818\) −9.61955e18 −1.12269
\(819\) 0 0
\(820\) −1.40966e18 −0.161929
\(821\) −3.58141e18 −0.408153 −0.204077 0.978955i \(-0.565419\pi\)
−0.204077 + 0.978955i \(0.565419\pi\)
\(822\) 0 0
\(823\) −8.98746e18 −1.00818 −0.504090 0.863651i \(-0.668172\pi\)
−0.504090 + 0.863651i \(0.668172\pi\)
\(824\) 2.60871e18 0.290335
\(825\) 0 0
\(826\) −3.04976e18 −0.334114
\(827\) −1.73077e18 −0.188129 −0.0940643 0.995566i \(-0.529986\pi\)
−0.0940643 + 0.995566i \(0.529986\pi\)
\(828\) 0 0
\(829\) 7.78822e18 0.833362 0.416681 0.909053i \(-0.363193\pi\)
0.416681 + 0.909053i \(0.363193\pi\)
\(830\) 4.01969e18 0.426761
\(831\) 0 0
\(832\) 2.26406e18 0.236639
\(833\) 3.46082e18 0.358911
\(834\) 0 0
\(835\) 1.22388e18 0.124962
\(836\) −8.40276e18 −0.851297
\(837\) 0 0
\(838\) 5.93108e18 0.591627
\(839\) 3.26310e18 0.322981 0.161491 0.986874i \(-0.448370\pi\)
0.161491 + 0.986874i \(0.448370\pi\)
\(840\) 0 0
\(841\) 2.35867e19 2.29876
\(842\) 2.99883e18 0.290017
\(843\) 0 0
\(844\) −5.58538e18 −0.531896
\(845\) 1.22280e19 1.15554
\(846\) 0 0
\(847\) 3.90485e17 0.0363381
\(848\) 5.81033e16 0.00536571
\(849\) 0 0
\(850\) −7.95413e17 −0.0723385
\(851\) 2.69326e19 2.43073
\(852\) 0 0
\(853\) 5.82090e18 0.517394 0.258697 0.965958i \(-0.416707\pi\)
0.258697 + 0.965958i \(0.416707\pi\)
\(854\) 5.75511e18 0.507666
\(855\) 0 0
\(856\) 2.70130e18 0.234689
\(857\) 9.30539e18 0.802342 0.401171 0.916003i \(-0.368603\pi\)
0.401171 + 0.916003i \(0.368603\pi\)
\(858\) 0 0
\(859\) −1.20727e19 −1.02530 −0.512649 0.858598i \(-0.671336\pi\)
−0.512649 + 0.858598i \(0.671336\pi\)
\(860\) 2.23450e18 0.188339
\(861\) 0 0
\(862\) −1.49609e19 −1.24211
\(863\) 6.75985e18 0.557015 0.278508 0.960434i \(-0.410160\pi\)
0.278508 + 0.960434i \(0.410160\pi\)
\(864\) 0 0
\(865\) −7.03047e18 −0.570663
\(866\) −1.00743e19 −0.811613
\(867\) 0 0
\(868\) 2.63955e18 0.209485
\(869\) −3.99674e18 −0.314831
\(870\) 0 0
\(871\) −2.47569e17 −0.0192123
\(872\) 6.20335e18 0.477825
\(873\) 0 0
\(874\) −2.04913e19 −1.55505
\(875\) 6.48555e17 0.0488534
\(876\) 0 0
\(877\) −6.38272e18 −0.473706 −0.236853 0.971546i \(-0.576116\pi\)
−0.236853 + 0.971546i \(0.576116\pi\)
\(878\) −1.41998e19 −1.04609
\(879\) 0 0
\(880\) 1.59067e18 0.115463
\(881\) 1.38731e19 0.999609 0.499804 0.866138i \(-0.333405\pi\)
0.499804 + 0.866138i \(0.333405\pi\)
\(882\) 0 0
\(883\) −6.03335e18 −0.428365 −0.214183 0.976794i \(-0.568709\pi\)
−0.214183 + 0.976794i \(0.568709\pi\)
\(884\) −6.86975e18 −0.484174
\(885\) 0 0
\(886\) −9.13744e18 −0.634607
\(887\) 1.56332e19 1.07781 0.538907 0.842365i \(-0.318838\pi\)
0.538907 + 0.842365i \(0.318838\pi\)
\(888\) 0 0
\(889\) 1.09881e18 0.0746557
\(890\) 2.09375e18 0.141218
\(891\) 0 0
\(892\) −1.01277e19 −0.673196
\(893\) 1.85946e19 1.22702
\(894\) 0 0
\(895\) 2.17467e18 0.141431
\(896\) 7.47734e17 0.0482775
\(897\) 0 0
\(898\) 1.24605e19 0.792940
\(899\) −2.20519e19 −1.39318
\(900\) 0 0
\(901\) −1.76300e17 −0.0109785
\(902\) −8.55370e18 −0.528824
\(903\) 0 0
\(904\) 7.09720e17 0.0432506
\(905\) −8.13604e18 −0.492263
\(906\) 0 0
\(907\) −1.67708e19 −1.00025 −0.500123 0.865954i \(-0.666712\pi\)
−0.500123 + 0.865954i \(0.666712\pi\)
\(908\) 4.77092e18 0.282517
\(909\) 0 0
\(910\) 5.60138e18 0.326984
\(911\) −1.90416e19 −1.10366 −0.551828 0.833958i \(-0.686070\pi\)
−0.551828 + 0.833958i \(0.686070\pi\)
\(912\) 0 0
\(913\) 2.43911e19 1.39370
\(914\) −1.31879e19 −0.748213
\(915\) 0 0
\(916\) −1.07855e19 −0.603279
\(917\) 1.42201e18 0.0789771
\(918\) 0 0
\(919\) −1.55602e19 −0.852050 −0.426025 0.904711i \(-0.640086\pi\)
−0.426025 + 0.904711i \(0.640086\pi\)
\(920\) 3.87905e18 0.210914
\(921\) 0 0
\(922\) 2.24568e19 1.20392
\(923\) −6.03609e18 −0.321325
\(924\) 0 0
\(925\) 6.94309e18 0.364445
\(926\) 1.99493e18 0.103981
\(927\) 0 0
\(928\) −6.24687e18 −0.321071
\(929\) −2.03127e19 −1.03673 −0.518364 0.855160i \(-0.673459\pi\)
−0.518364 + 0.855160i \(0.673459\pi\)
\(930\) 0 0
\(931\) 2.29842e19 1.15680
\(932\) −7.42666e18 −0.371185
\(933\) 0 0
\(934\) 2.02302e19 0.997114
\(935\) −4.82649e18 −0.236241
\(936\) 0 0
\(937\) 3.27979e19 1.58321 0.791605 0.611033i \(-0.209246\pi\)
0.791605 + 0.611033i \(0.209246\pi\)
\(938\) −8.17628e16 −0.00391956
\(939\) 0 0
\(940\) −3.52001e18 −0.166423
\(941\) −2.39618e19 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(942\) 0 0
\(943\) −2.08593e19 −0.965994
\(944\) −4.70238e18 −0.216272
\(945\) 0 0
\(946\) 1.35587e19 0.615072
\(947\) 1.88259e19 0.848166 0.424083 0.905623i \(-0.360597\pi\)
0.424083 + 0.905623i \(0.360597\pi\)
\(948\) 0 0
\(949\) 7.29705e19 3.24278
\(950\) −5.28254e18 −0.233152
\(951\) 0 0
\(952\) −2.26882e18 −0.0987778
\(953\) −1.74009e19 −0.752431 −0.376215 0.926532i \(-0.622775\pi\)
−0.376215 + 0.926532i \(0.622775\pi\)
\(954\) 0 0
\(955\) −1.71036e19 −0.729568
\(956\) −2.28177e19 −0.966710
\(957\) 0 0
\(958\) −4.85903e18 −0.203083
\(959\) 2.10426e19 0.873532
\(960\) 0 0
\(961\) −1.00505e19 −0.411611
\(962\) 5.99654e19 2.43929
\(963\) 0 0
\(964\) −2.80734e18 −0.112666
\(965\) 9.79100e18 0.390301
\(966\) 0 0
\(967\) −3.44802e19 −1.35612 −0.678059 0.735007i \(-0.737179\pi\)
−0.678059 + 0.735007i \(0.737179\pi\)
\(968\) 6.02084e17 0.0235216
\(969\) 0 0
\(970\) −8.64949e18 −0.333406
\(971\) −4.55517e19 −1.74413 −0.872067 0.489387i \(-0.837220\pi\)
−0.872067 + 0.489387i \(0.837220\pi\)
\(972\) 0 0
\(973\) −3.36816e18 −0.127250
\(974\) −2.05229e19 −0.770202
\(975\) 0 0
\(976\) 8.87374e18 0.328612
\(977\) −3.55127e19 −1.30638 −0.653189 0.757194i \(-0.726569\pi\)
−0.653189 + 0.757194i \(0.726569\pi\)
\(978\) 0 0
\(979\) 1.27047e19 0.461186
\(980\) −4.35097e18 −0.156898
\(981\) 0 0
\(982\) −2.61370e19 −0.930102
\(983\) −5.22615e19 −1.84750 −0.923749 0.382998i \(-0.874892\pi\)
−0.923749 + 0.382998i \(0.874892\pi\)
\(984\) 0 0
\(985\) 5.19180e18 0.181127
\(986\) 1.89546e19 0.656924
\(987\) 0 0
\(988\) −4.56238e19 −1.56053
\(989\) 3.30647e19 1.12354
\(990\) 0 0
\(991\) −2.90393e18 −0.0973885 −0.0486943 0.998814i \(-0.515506\pi\)
−0.0486943 + 0.998814i \(0.515506\pi\)
\(992\) 4.06990e18 0.135599
\(993\) 0 0
\(994\) −1.99349e18 −0.0655546
\(995\) 8.16530e17 0.0266761
\(996\) 0 0
\(997\) −1.88720e19 −0.608555 −0.304278 0.952583i \(-0.598415\pi\)
−0.304278 + 0.952583i \(0.598415\pi\)
\(998\) −1.46856e19 −0.470481
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.14.a.m.1.2 2
3.2 odd 2 30.14.a.g.1.2 2
15.2 even 4 150.14.c.j.49.2 4
15.8 even 4 150.14.c.j.49.3 4
15.14 odd 2 150.14.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.14.a.g.1.2 2 3.2 odd 2
90.14.a.m.1.2 2 1.1 even 1 trivial
150.14.a.n.1.1 2 15.14 odd 2
150.14.c.j.49.2 4 15.2 even 4
150.14.c.j.49.3 4 15.8 even 4