Properties

Label 2-90-1.1-c13-0-11
Degree $2$
Conductor $90$
Sign $1$
Analytic cond. $96.5078$
Root an. cond. $9.82384$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·2-s + 4.09e3·4-s + 1.56e4·5-s + 1.70e5·7-s + 2.62e5·8-s + 1.00e6·10-s + 6.06e6·11-s + 3.29e7·13-s + 1.08e7·14-s + 1.67e7·16-s − 5.09e7·17-s − 3.38e8·19-s + 6.40e7·20-s + 3.88e8·22-s + 9.47e8·23-s + 2.44e8·25-s + 2.10e9·26-s + 6.96e8·28-s − 5.81e9·29-s + 3.79e9·31-s + 1.07e9·32-s − 3.25e9·34-s + 2.65e9·35-s + 2.84e10·37-s − 2.16e10·38-s + 4.09e9·40-s − 2.20e10·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.447·5-s + 0.546·7-s + 0.353·8-s + 0.316·10-s + 1.03·11-s + 1.89·13-s + 0.386·14-s + 0.250·16-s − 0.511·17-s − 1.64·19-s + 0.223·20-s + 0.730·22-s + 1.33·23-s + 0.199·25-s + 1.33·26-s + 0.273·28-s − 1.81·29-s + 0.767·31-s + 0.176·32-s − 0.361·34-s + 0.244·35-s + 1.82·37-s − 1.16·38-s + 0.158·40-s − 0.724·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90\)    =    \(2 \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(96.5078\)
Root analytic conductor: \(9.82384\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 90,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(5.015021858\)
\(L(\frac12)\) \(\approx\) \(5.015021858\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 64T \)
3 \( 1 \)
5 \( 1 - 1.56e4T \)
good7 \( 1 - 1.70e5T + 9.68e10T^{2} \)
11 \( 1 - 6.06e6T + 3.45e13T^{2} \)
13 \( 1 - 3.29e7T + 3.02e14T^{2} \)
17 \( 1 + 5.09e7T + 9.90e15T^{2} \)
19 \( 1 + 3.38e8T + 4.20e16T^{2} \)
23 \( 1 - 9.47e8T + 5.04e17T^{2} \)
29 \( 1 + 5.81e9T + 1.02e19T^{2} \)
31 \( 1 - 3.79e9T + 2.44e19T^{2} \)
37 \( 1 - 2.84e10T + 2.43e20T^{2} \)
41 \( 1 + 2.20e10T + 9.25e20T^{2} \)
43 \( 1 - 3.49e10T + 1.71e21T^{2} \)
47 \( 1 + 5.50e10T + 5.46e21T^{2} \)
53 \( 1 - 3.46e9T + 2.60e22T^{2} \)
59 \( 1 + 2.80e11T + 1.04e23T^{2} \)
61 \( 1 - 5.28e11T + 1.61e23T^{2} \)
67 \( 1 + 7.51e9T + 5.48e23T^{2} \)
71 \( 1 + 1.83e11T + 1.16e24T^{2} \)
73 \( 1 - 2.21e12T + 1.67e24T^{2} \)
79 \( 1 + 6.58e11T + 4.66e24T^{2} \)
83 \( 1 - 4.01e12T + 8.87e24T^{2} \)
89 \( 1 - 2.09e12T + 2.19e25T^{2} \)
97 \( 1 + 8.64e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.31498734075581191899484002670, −10.93375245214196358365069386690, −9.259317813070838562069830868822, −8.288699237840976414601022173810, −6.67204673541375069170574623237, −5.97184931713374338844459700821, −4.55456510521502712932410666826, −3.59592234561946669702751907118, −2.05218082830931223823705038442, −1.07150956033166232483533623629, 1.07150956033166232483533623629, 2.05218082830931223823705038442, 3.59592234561946669702751907118, 4.55456510521502712932410666826, 5.97184931713374338844459700821, 6.67204673541375069170574623237, 8.288699237840976414601022173810, 9.259317813070838562069830868822, 10.93375245214196358365069386690, 11.31498734075581191899484002670

Graph of the $Z$-function along the critical line