Properties

Label 90.14.a.m
Level $90$
Weight $14$
Character orbit 90.a
Self dual yes
Analytic conductor $96.508$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,14,Mod(1,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,128,0,8192,31250,0,-236912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.5078360567\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5778852 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 60\sqrt{23115409}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 64 q^{2} + 4096 q^{4} + 15625 q^{5} + ( - \beta - 118456) q^{7} + 262144 q^{8} + 1000000 q^{10} + ( - 28 \beta - 2009280) q^{11} + ( - 91 \beta + 6695558) q^{13} + ( - 64 \beta - 7581184) q^{14} + 16777216 q^{16}+ \cdots + (15162368 \beta + 22930299456) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 128 q^{2} + 8192 q^{4} + 31250 q^{5} - 236912 q^{7} + 524288 q^{8} + 2000000 q^{10} - 4018560 q^{11} + 13391116 q^{13} - 15162368 q^{14} + 33554432 q^{16} + 47615052 q^{17} - 90569648 q^{19} + 128000000 q^{20}+ \cdots + 45860598912 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2404.42
−2403.42
64.0000 0 4096.00 15625.0 0 −406927. 262144. 0 1.00000e6
1.2 64.0000 0 4096.00 15625.0 0 170015. 262144. 0 1.00000e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.14.a.m 2
3.b odd 2 1 30.14.a.g 2
15.d odd 2 1 150.14.a.n 2
15.e even 4 2 150.14.c.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.14.a.g 2 3.b odd 2 1
90.14.a.m 2 1.a even 1 1 trivial
150.14.a.n 2 15.d odd 2 1
150.14.c.j 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7}^{2} + 236912T_{7} - 69183648464 \) Copy content Toggle raw display
\( T_{11}^{2} + 4018560T_{11} - 61203724243200 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 64)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 15625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 69183648464 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 61203724243200 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 644276830013036 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 50\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 83\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 74\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 21\!\cdots\!04 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 30\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 55\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 14\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 27\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 79\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 31\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 38\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 18\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 12\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 60\!\cdots\!36 \) Copy content Toggle raw display
show more
show less