Properties

Label 150.14.c.j
Level $150$
Weight $14$
Character orbit 150.c
Analytic conductor $160.846$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,14,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16384,0,-186624,0,0,-2125764,0,8037120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(160.846393428\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11557705x^{2} + 33395130437904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 64 \beta_1 q^{2} + 729 \beta_1 q^{3} - 4096 q^{4} - 46656 q^{6} + (\beta_{2} + 118456 \beta_1) q^{7} - 262144 \beta_1 q^{8} - 531441 q^{9} + (28 \beta_{3} + 2009280) q^{11} - 2985984 \beta_1 q^{12}+ \cdots + ( - 14880348 \beta_{3} - 1067813772480) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16384 q^{4} - 186624 q^{6} - 2125764 q^{9} + 8037120 q^{11} - 30324736 q^{14} + 67108864 q^{16} + 181139296 q^{19} - 345417696 q^{21} + 764411904 q^{24} - 1714062848 q^{26} - 4144620456 q^{29} + 23456813552 q^{31}+ \cdots - 4271255089920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 11557705x^{2} + 33395130437904 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 5778853\nu ) / 5778852 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 5\nu^{3} + 86682785\nu ) / 481571 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 120\nu^{2} + 693462300 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 60\beta_1 ) / 120 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 693462300 ) / 120 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5778853\beta_{2} + 1040193420\beta_1 ) / 120 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
2403.42i
2404.42i
2404.42i
2403.42i
64.0000i 729.000i −4096.00 0 −46656.0 406927.i 262144.i −531441. 0
49.2 64.0000i 729.000i −4096.00 0 −46656.0 170015.i 262144.i −531441. 0
49.3 64.0000i 729.000i −4096.00 0 −46656.0 170015.i 262144.i −531441. 0
49.4 64.0000i 729.000i −4096.00 0 −46656.0 406927.i 262144.i −531441. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.14.c.j 4
5.b even 2 1 inner 150.14.c.j 4
5.c odd 4 1 30.14.a.g 2
5.c odd 4 1 150.14.a.n 2
15.e even 4 1 90.14.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.14.a.g 2 5.c odd 4 1
90.14.a.m 2 15.e even 4 1
150.14.a.n 2 5.c odd 4 1
150.14.c.j 4 1.a even 1 1 trivial
150.14.c.j 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 194494592672T_{7}^{2} + 4786377214790329559296 \) acting on \(S_{14}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4096)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 531441)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 47\!\cdots\!96 \) Copy content Toggle raw display
$11$ \( (T^{2} + \cdots - 61203724243200)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 41\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 25\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 83\!\cdots\!24)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 55\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots - 21\!\cdots\!04)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots + 30\!\cdots\!44)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 30\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots + 10\!\cdots\!96)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 22\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 77\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 79\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 18\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 12\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 13\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 96\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 38\!\cdots\!84)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 34\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 12\!\cdots\!64)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 36\!\cdots\!96 \) Copy content Toggle raw display
show more
show less