Properties

Label 90.12.c.d.19.5
Level $90$
Weight $12$
Character 90.19
Analytic conductor $69.151$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12288,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 2686231540547x^{8} + 128219731460991388255453x^{4} + 14060999354420335522970873124 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{48}\cdot 3^{16}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.5
Root \(12.8677 + 12.8677i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.12.c.d.19.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} -1024.00 q^{4} +(3091.89 + 6266.44i) q^{5} -73452.1i q^{7} +32768.0i q^{8} +(200526. - 98940.6i) q^{10} +7526.04 q^{11} -1.55212e6i q^{13} -2.35047e6 q^{14} +1.04858e6 q^{16} +7.69810e6i q^{17} +1.25808e7 q^{19} +(-3.16610e6 - 6.41684e6i) q^{20} -240833. i q^{22} -81143.4i q^{23} +(-2.97085e7 + 3.87504e7i) q^{25} -4.96678e7 q^{26} +7.52149e7i q^{28} +5.08338e7 q^{29} -3.12711e7 q^{31} -3.35544e7i q^{32} +2.46339e8 q^{34} +(4.60283e8 - 2.27106e8i) q^{35} -6.52001e8i q^{37} -4.02586e8i q^{38} +(-2.05339e8 + 1.01315e8i) q^{40} -1.26492e7 q^{41} -1.47070e8i q^{43} -7.70667e6 q^{44} -2.59659e6 q^{46} -2.34643e9i q^{47} -3.41788e9 q^{49} +(1.24001e9 + 9.50672e8i) q^{50} +1.58937e9i q^{52} -4.42169e8i q^{53} +(2.32697e7 + 4.71615e7i) q^{55} +2.40688e9 q^{56} -1.62668e9i q^{58} -1.02170e10 q^{59} +2.42801e8 q^{61} +1.00068e9i q^{62} -1.07374e9 q^{64} +(9.72626e9 - 4.79899e9i) q^{65} -2.47307e9i q^{67} -7.88285e9i q^{68} +(-7.26739e9 - 1.47291e10i) q^{70} +2.58822e10 q^{71} -1.06223e10i q^{73} -2.08640e10 q^{74} -1.28827e10 q^{76} -5.52803e8i q^{77} -2.10021e10 q^{79} +(3.24209e9 + 6.57084e9i) q^{80} +4.04774e8i q^{82} +3.03743e10i q^{83} +(-4.82397e10 + 2.38017e10i) q^{85} -4.70625e9 q^{86} +2.46613e8i q^{88} -7.74179e10 q^{89} -1.14006e11 q^{91} +8.30909e7i q^{92} -7.50857e10 q^{94} +(3.88985e10 + 7.88369e10i) q^{95} -1.50020e11i q^{97} +1.09372e11i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12288 q^{4} + 56448 q^{10} + 12582912 q^{16} - 489648 q^{19} - 125575548 q^{25} + 47933952 q^{31} + 341743872 q^{34} - 57802752 q^{40} + 3346675200 q^{46} - 6178917036 q^{49} - 11944070688 q^{55}+ \cdots - 10041254400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 0 0
\(4\) −1024.00 −0.500000
\(5\) 3091.89 + 6266.44i 0.442476 + 0.896780i
\(6\) 0 0
\(7\) 73452.1i 1.65183i −0.563796 0.825914i \(-0.690660\pi\)
0.563796 0.825914i \(-0.309340\pi\)
\(8\) 32768.0i 0.353553i
\(9\) 0 0
\(10\) 200526. 98940.6i 0.634119 0.312878i
\(11\) 7526.04 0.0140899 0.00704493 0.999975i \(-0.497758\pi\)
0.00704493 + 0.999975i \(0.497758\pi\)
\(12\) 0 0
\(13\) 1.55212e6i 1.15941i −0.814827 0.579704i \(-0.803168\pi\)
0.814827 0.579704i \(-0.196832\pi\)
\(14\) −2.35047e6 −1.16802
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 7.69810e6i 1.31497i 0.753470 + 0.657483i \(0.228379\pi\)
−0.753470 + 0.657483i \(0.771621\pi\)
\(18\) 0 0
\(19\) 1.25808e7 1.16564 0.582819 0.812602i \(-0.301950\pi\)
0.582819 + 0.812602i \(0.301950\pi\)
\(20\) −3.16610e6 6.41684e6i −0.221238 0.448390i
\(21\) 0 0
\(22\) 240833.i 0.00996304i
\(23\) 81143.4i 0.00262876i −0.999999 0.00131438i \(-0.999582\pi\)
0.999999 0.00131438i \(-0.000418380\pi\)
\(24\) 0 0
\(25\) −2.97085e7 + 3.87504e7i −0.608430 + 0.793607i
\(26\) −4.96678e7 −0.819826
\(27\) 0 0
\(28\) 7.52149e7i 0.825914i
\(29\) 5.08338e7 0.460218 0.230109 0.973165i \(-0.426092\pi\)
0.230109 + 0.973165i \(0.426092\pi\)
\(30\) 0 0
\(31\) −3.12711e7 −0.196180 −0.0980898 0.995178i \(-0.531273\pi\)
−0.0980898 + 0.995178i \(0.531273\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 0 0
\(34\) 2.46339e8 0.929821
\(35\) 4.60283e8 2.27106e8i 1.48133 0.730894i
\(36\) 0 0
\(37\) 6.52001e8i 1.54575i −0.634560 0.772874i \(-0.718819\pi\)
0.634560 0.772874i \(-0.281181\pi\)
\(38\) 4.02586e8i 0.824230i
\(39\) 0 0
\(40\) −2.05339e8 + 1.01315e8i −0.317060 + 0.156439i
\(41\) −1.26492e7 −0.0170511 −0.00852553 0.999964i \(-0.502714\pi\)
−0.00852553 + 0.999964i \(0.502714\pi\)
\(42\) 0 0
\(43\) 1.47070e8i 0.152563i −0.997086 0.0762814i \(-0.975695\pi\)
0.997086 0.0762814i \(-0.0243047\pi\)
\(44\) −7.70667e6 −0.00704493
\(45\) 0 0
\(46\) −2.59659e6 −0.00185881
\(47\) 2.34643e9i 1.49235i −0.665753 0.746173i \(-0.731889\pi\)
0.665753 0.746173i \(-0.268111\pi\)
\(48\) 0 0
\(49\) −3.41788e9 −1.72854
\(50\) 1.24001e9 + 9.50672e8i 0.561165 + 0.430225i
\(51\) 0 0
\(52\) 1.58937e9i 0.579704i
\(53\) 4.42169e8i 0.145235i −0.997360 0.0726174i \(-0.976865\pi\)
0.997360 0.0726174i \(-0.0231352\pi\)
\(54\) 0 0
\(55\) 2.32697e7 + 4.71615e7i 0.00623443 + 0.0126355i
\(56\) 2.40688e9 0.584009
\(57\) 0 0
\(58\) 1.62668e9i 0.325423i
\(59\) −1.02170e10 −1.86054 −0.930268 0.366881i \(-0.880426\pi\)
−0.930268 + 0.366881i \(0.880426\pi\)
\(60\) 0 0
\(61\) 2.42801e8 0.0368075 0.0184037 0.999831i \(-0.494142\pi\)
0.0184037 + 0.999831i \(0.494142\pi\)
\(62\) 1.00068e9i 0.138720i
\(63\) 0 0
\(64\) −1.07374e9 −0.125000
\(65\) 9.72626e9 4.79899e9i 1.03973 0.513010i
\(66\) 0 0
\(67\) 2.47307e9i 0.223782i −0.993720 0.111891i \(-0.964309\pi\)
0.993720 0.111891i \(-0.0356907\pi\)
\(68\) 7.88285e9i 0.657483i
\(69\) 0 0
\(70\) −7.26739e9 1.47291e10i −0.516820 1.04746i
\(71\) 2.58822e10 1.70247 0.851236 0.524783i \(-0.175853\pi\)
0.851236 + 0.524783i \(0.175853\pi\)
\(72\) 0 0
\(73\) 1.06223e10i 0.599710i −0.953985 0.299855i \(-0.903062\pi\)
0.953985 0.299855i \(-0.0969384\pi\)
\(74\) −2.08640e10 −1.09301
\(75\) 0 0
\(76\) −1.28827e10 −0.582819
\(77\) 5.52803e8i 0.0232740i
\(78\) 0 0
\(79\) −2.10021e10 −0.767915 −0.383957 0.923351i \(-0.625439\pi\)
−0.383957 + 0.923351i \(0.625439\pi\)
\(80\) 3.24209e9 + 6.57084e9i 0.110619 + 0.224195i
\(81\) 0 0
\(82\) 4.04774e8i 0.0120569i
\(83\) 3.03743e10i 0.846401i 0.906036 + 0.423201i \(0.139093\pi\)
−0.906036 + 0.423201i \(0.860907\pi\)
\(84\) 0 0
\(85\) −4.82397e10 + 2.38017e10i −1.17923 + 0.581840i
\(86\) −4.70625e9 −0.107878
\(87\) 0 0
\(88\) 2.46613e8i 0.00498152i
\(89\) −7.74179e10 −1.46959 −0.734796 0.678289i \(-0.762722\pi\)
−0.734796 + 0.678289i \(0.762722\pi\)
\(90\) 0 0
\(91\) −1.14006e11 −1.91514
\(92\) 8.30909e7i 0.00131438i
\(93\) 0 0
\(94\) −7.50857e10 −1.05525
\(95\) 3.88985e10 + 7.88369e10i 0.515767 + 1.04532i
\(96\) 0 0
\(97\) 1.50020e11i 1.77381i −0.461957 0.886903i \(-0.652852\pi\)
0.461957 0.886903i \(-0.347148\pi\)
\(98\) 1.09372e11i 1.22226i
\(99\) 0 0
\(100\) 3.04215e10 3.96804e10i 0.304215 0.396804i
\(101\) −1.24779e11 −1.18133 −0.590667 0.806915i \(-0.701135\pi\)
−0.590667 + 0.806915i \(0.701135\pi\)
\(102\) 0 0
\(103\) 1.62826e11i 1.38395i −0.721922 0.691975i \(-0.756741\pi\)
0.721922 0.691975i \(-0.243259\pi\)
\(104\) 5.08598e10 0.409913
\(105\) 0 0
\(106\) −1.41494e10 −0.102697
\(107\) 9.85560e10i 0.679317i −0.940549 0.339658i \(-0.889689\pi\)
0.940549 0.339658i \(-0.110311\pi\)
\(108\) 0 0
\(109\) −2.91563e11 −1.81504 −0.907522 0.420005i \(-0.862028\pi\)
−0.907522 + 0.420005i \(0.862028\pi\)
\(110\) 1.50917e9 7.44631e8i 0.00893466 0.00440841i
\(111\) 0 0
\(112\) 7.70201e10i 0.412957i
\(113\) 1.84740e11i 0.943254i −0.881798 0.471627i \(-0.843667\pi\)
0.881798 0.471627i \(-0.156333\pi\)
\(114\) 0 0
\(115\) 5.08481e8 2.50887e8i 0.00235742 0.00116316i
\(116\) −5.20538e10 −0.230109
\(117\) 0 0
\(118\) 3.26945e11i 1.31560i
\(119\) 5.65441e11 2.17210
\(120\) 0 0
\(121\) −2.85255e11 −0.999801
\(122\) 7.76963e9i 0.0260268i
\(123\) 0 0
\(124\) 3.20216e10 0.0980898
\(125\) −3.34683e11 6.63546e10i −0.980907 0.194476i
\(126\) 0 0
\(127\) 5.68121e11i 1.52588i 0.646470 + 0.762939i \(0.276245\pi\)
−0.646470 + 0.762939i \(0.723755\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 0 0
\(130\) −1.53568e11 3.11240e11i −0.362753 0.735204i
\(131\) 3.55666e11 0.805472 0.402736 0.915316i \(-0.368059\pi\)
0.402736 + 0.915316i \(0.368059\pi\)
\(132\) 0 0
\(133\) 9.24086e11i 1.92543i
\(134\) −7.91382e10 −0.158238
\(135\) 0 0
\(136\) −2.52251e11 −0.464910
\(137\) 8.53191e11i 1.51037i −0.655512 0.755184i \(-0.727547\pi\)
0.655512 0.755184i \(-0.272453\pi\)
\(138\) 0 0
\(139\) −4.72251e9 −0.00771954 −0.00385977 0.999993i \(-0.501229\pi\)
−0.00385977 + 0.999993i \(0.501229\pi\)
\(140\) −4.71330e11 + 2.32557e11i −0.740663 + 0.365447i
\(141\) 0 0
\(142\) 8.28230e11i 1.20383i
\(143\) 1.16813e10i 0.0163359i
\(144\) 0 0
\(145\) 1.57173e11 + 3.18547e11i 0.203635 + 0.412714i
\(146\) −3.39913e11 −0.424059
\(147\) 0 0
\(148\) 6.67649e11i 0.772874i
\(149\) 7.08422e11 0.790256 0.395128 0.918626i \(-0.370700\pi\)
0.395128 + 0.918626i \(0.370700\pi\)
\(150\) 0 0
\(151\) 1.05336e12 1.09195 0.545977 0.837800i \(-0.316159\pi\)
0.545977 + 0.837800i \(0.316159\pi\)
\(152\) 4.12248e11i 0.412115i
\(153\) 0 0
\(154\) −1.76897e10 −0.0164572
\(155\) −9.66870e10 1.95959e11i −0.0868048 0.175930i
\(156\) 0 0
\(157\) 6.60161e11i 0.552334i 0.961110 + 0.276167i \(0.0890643\pi\)
−0.961110 + 0.276167i \(0.910936\pi\)
\(158\) 6.72066e11i 0.542998i
\(159\) 0 0
\(160\) 2.10267e11 1.03747e11i 0.158530 0.0782194i
\(161\) −5.96015e9 −0.00434225
\(162\) 0 0
\(163\) 7.70358e11i 0.524397i 0.965014 + 0.262199i \(0.0844476\pi\)
−0.965014 + 0.262199i \(0.915552\pi\)
\(164\) 1.29528e10 0.00852553
\(165\) 0 0
\(166\) 9.71977e11 0.598496
\(167\) 2.02077e12i 1.20386i −0.798548 0.601932i \(-0.794398\pi\)
0.798548 0.601932i \(-0.205602\pi\)
\(168\) 0 0
\(169\) −6.16912e11 −0.344228
\(170\) 7.61654e11 + 1.54367e12i 0.411423 + 0.833845i
\(171\) 0 0
\(172\) 1.50600e11i 0.0762814i
\(173\) 3.17723e11i 0.155882i −0.996958 0.0779409i \(-0.975165\pi\)
0.996958 0.0779409i \(-0.0248346\pi\)
\(174\) 0 0
\(175\) 2.84629e12 + 2.18215e12i 1.31090 + 1.00502i
\(176\) 7.89163e9 0.00352247
\(177\) 0 0
\(178\) 2.47737e12i 1.03916i
\(179\) −3.06145e12 −1.24519 −0.622594 0.782545i \(-0.713921\pi\)
−0.622594 + 0.782545i \(0.713921\pi\)
\(180\) 0 0
\(181\) 4.56365e12 1.74614 0.873071 0.487592i \(-0.162125\pi\)
0.873071 + 0.487592i \(0.162125\pi\)
\(182\) 3.64820e12i 1.35421i
\(183\) 0 0
\(184\) 2.65891e9 0.000929406
\(185\) 4.08572e12 2.01592e12i 1.38620 0.683956i
\(186\) 0 0
\(187\) 5.79362e10i 0.0185277i
\(188\) 2.40274e12i 0.746173i
\(189\) 0 0
\(190\) 2.52278e12 1.24475e12i 0.739154 0.364702i
\(191\) 7.03056e11 0.200127 0.100064 0.994981i \(-0.468095\pi\)
0.100064 + 0.994981i \(0.468095\pi\)
\(192\) 0 0
\(193\) 2.53512e12i 0.681449i −0.940163 0.340725i \(-0.889328\pi\)
0.940163 0.340725i \(-0.110672\pi\)
\(194\) −4.80065e12 −1.25427
\(195\) 0 0
\(196\) 3.49991e12 0.864268
\(197\) 4.35291e12i 1.04524i 0.852566 + 0.522619i \(0.175045\pi\)
−0.852566 + 0.522619i \(0.824955\pi\)
\(198\) 0 0
\(199\) 3.47856e12 0.790146 0.395073 0.918650i \(-0.370719\pi\)
0.395073 + 0.918650i \(0.370719\pi\)
\(200\) −1.26977e12 9.73488e11i −0.280583 0.215113i
\(201\) 0 0
\(202\) 3.99292e12i 0.835329i
\(203\) 3.73385e12i 0.760200i
\(204\) 0 0
\(205\) −3.91100e10 7.92654e10i −0.00754468 0.0152911i
\(206\) −5.21045e12 −0.978600
\(207\) 0 0
\(208\) 1.62751e12i 0.289852i
\(209\) 9.46837e10 0.0164237
\(210\) 0 0
\(211\) −2.13191e12 −0.350926 −0.175463 0.984486i \(-0.556142\pi\)
−0.175463 + 0.984486i \(0.556142\pi\)
\(212\) 4.52781e11i 0.0726174i
\(213\) 0 0
\(214\) −3.15379e12 −0.480350
\(215\) 9.21608e11 4.54726e11i 0.136815 0.0675054i
\(216\) 0 0
\(217\) 2.29693e12i 0.324055i
\(218\) 9.33003e12i 1.28343i
\(219\) 0 0
\(220\) −2.38282e10 4.82934e10i −0.00311721 0.00631776i
\(221\) 1.19484e13 1.52458
\(222\) 0 0
\(223\) 1.23875e13i 1.50420i 0.659048 + 0.752101i \(0.270959\pi\)
−0.659048 + 0.752101i \(0.729041\pi\)
\(224\) −2.46464e12 −0.292005
\(225\) 0 0
\(226\) −5.91167e12 −0.666981
\(227\) 1.67475e13i 1.84420i −0.386947 0.922102i \(-0.626470\pi\)
0.386947 0.922102i \(-0.373530\pi\)
\(228\) 0 0
\(229\) −1.51109e13 −1.58561 −0.792804 0.609477i \(-0.791379\pi\)
−0.792804 + 0.609477i \(0.791379\pi\)
\(230\) −8.02838e9 1.62714e10i −0.000822479 0.00166695i
\(231\) 0 0
\(232\) 1.66572e12i 0.162712i
\(233\) 1.41596e13i 1.35080i −0.737450 0.675402i \(-0.763970\pi\)
0.737450 0.675402i \(-0.236030\pi\)
\(234\) 0 0
\(235\) 1.47038e13 7.25491e12i 1.33831 0.660327i
\(236\) 1.04622e13 0.930268
\(237\) 0 0
\(238\) 1.80941e13i 1.53590i
\(239\) 1.07836e13 0.894486 0.447243 0.894413i \(-0.352406\pi\)
0.447243 + 0.894413i \(0.352406\pi\)
\(240\) 0 0
\(241\) 8.28234e12 0.656235 0.328117 0.944637i \(-0.393586\pi\)
0.328117 + 0.944637i \(0.393586\pi\)
\(242\) 9.12816e12i 0.706966i
\(243\) 0 0
\(244\) −2.48628e11 −0.0184037
\(245\) −1.05677e13 2.14179e13i −0.764835 1.55012i
\(246\) 0 0
\(247\) 1.95269e13i 1.35145i
\(248\) 1.02469e12i 0.0693600i
\(249\) 0 0
\(250\) −2.12335e12 + 1.07098e13i −0.137515 + 0.693606i
\(251\) −1.19447e13 −0.756778 −0.378389 0.925647i \(-0.623522\pi\)
−0.378389 + 0.925647i \(0.623522\pi\)
\(252\) 0 0
\(253\) 6.10689e8i 3.70388e-5i
\(254\) 1.81799e13 1.07896
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 9.52996e12i 0.530223i 0.964218 + 0.265112i \(0.0854088\pi\)
−0.964218 + 0.265112i \(0.914591\pi\)
\(258\) 0 0
\(259\) −4.78908e13 −2.55331
\(260\) −9.95969e12 + 4.91416e12i −0.519867 + 0.256505i
\(261\) 0 0
\(262\) 1.13813e13i 0.569555i
\(263\) 1.71489e13i 0.840387i 0.907435 + 0.420194i \(0.138038\pi\)
−0.907435 + 0.420194i \(0.861962\pi\)
\(264\) 0 0
\(265\) 2.77083e12 1.36714e12i 0.130244 0.0642629i
\(266\) −2.95708e13 −1.36149
\(267\) 0 0
\(268\) 2.53242e12i 0.111891i
\(269\) 2.83124e13 1.22557 0.612786 0.790249i \(-0.290049\pi\)
0.612786 + 0.790249i \(0.290049\pi\)
\(270\) 0 0
\(271\) −2.55352e13 −1.06123 −0.530614 0.847614i \(-0.678039\pi\)
−0.530614 + 0.847614i \(0.678039\pi\)
\(272\) 8.07204e12i 0.328741i
\(273\) 0 0
\(274\) −2.73021e13 −1.06799
\(275\) −2.23587e11 + 2.91637e11i −0.00857270 + 0.0111818i
\(276\) 0 0
\(277\) 3.03063e12i 0.111659i 0.998440 + 0.0558295i \(0.0177803\pi\)
−0.998440 + 0.0558295i \(0.982220\pi\)
\(278\) 1.51120e11i 0.00545854i
\(279\) 0 0
\(280\) 7.44181e12 + 1.50826e13i 0.258410 + 0.523728i
\(281\) −2.92771e13 −0.996882 −0.498441 0.866924i \(-0.666094\pi\)
−0.498441 + 0.866924i \(0.666094\pi\)
\(282\) 0 0
\(283\) 2.10195e12i 0.0688331i −0.999408 0.0344165i \(-0.989043\pi\)
0.999408 0.0344165i \(-0.0109573\pi\)
\(284\) −2.65034e13 −0.851236
\(285\) 0 0
\(286\) −3.73802e11 −0.0115512
\(287\) 9.29109e11i 0.0281654i
\(288\) 0 0
\(289\) −2.49888e13 −0.729133
\(290\) 1.01935e13 5.02952e12i 0.291833 0.143992i
\(291\) 0 0
\(292\) 1.08772e13i 0.299855i
\(293\) 5.65820e13i 1.53076i 0.643580 + 0.765379i \(0.277448\pi\)
−0.643580 + 0.765379i \(0.722552\pi\)
\(294\) 0 0
\(295\) −3.15899e13 6.40244e13i −0.823242 1.66849i
\(296\) 2.13648e13 0.546504
\(297\) 0 0
\(298\) 2.26695e13i 0.558795i
\(299\) −1.25944e11 −0.00304780
\(300\) 0 0
\(301\) −1.08026e13 −0.252007
\(302\) 3.37076e13i 0.772128i
\(303\) 0 0
\(304\) 1.31919e13 0.291409
\(305\) 7.50715e11 + 1.52150e12i 0.0162864 + 0.0330082i
\(306\) 0 0
\(307\) 1.15587e13i 0.241906i −0.992658 0.120953i \(-0.961405\pi\)
0.992658 0.120953i \(-0.0385950\pi\)
\(308\) 5.66071e11i 0.0116370i
\(309\) 0 0
\(310\) −6.27068e12 + 3.09398e12i −0.124401 + 0.0613802i
\(311\) 5.01602e13 0.977637 0.488818 0.872386i \(-0.337428\pi\)
0.488818 + 0.872386i \(0.337428\pi\)
\(312\) 0 0
\(313\) 1.99446e13i 0.375260i −0.982240 0.187630i \(-0.939919\pi\)
0.982240 0.187630i \(-0.0600806\pi\)
\(314\) 2.11252e13 0.390559
\(315\) 0 0
\(316\) 2.15061e13 0.383957
\(317\) 5.04299e13i 0.884834i −0.896809 0.442417i \(-0.854121\pi\)
0.896809 0.442417i \(-0.145879\pi\)
\(318\) 0 0
\(319\) 3.82577e11 0.00648441
\(320\) −3.31990e12 6.72854e12i −0.0553095 0.112098i
\(321\) 0 0
\(322\) 1.90725e11i 0.00307044i
\(323\) 9.68482e13i 1.53277i
\(324\) 0 0
\(325\) 6.01452e13 + 4.61111e13i 0.920115 + 0.705419i
\(326\) 2.46514e13 0.370805
\(327\) 0 0
\(328\) 4.14489e11i 0.00602846i
\(329\) −1.72350e14 −2.46510
\(330\) 0 0
\(331\) 9.34003e13 1.29209 0.646047 0.763297i \(-0.276421\pi\)
0.646047 + 0.763297i \(0.276421\pi\)
\(332\) 3.11033e13i 0.423201i
\(333\) 0 0
\(334\) −6.46648e13 −0.851260
\(335\) 1.54973e13 7.64647e12i 0.200683 0.0990180i
\(336\) 0 0
\(337\) 9.67398e13i 1.21239i 0.795318 + 0.606193i \(0.207304\pi\)
−0.795318 + 0.606193i \(0.792696\pi\)
\(338\) 1.97412e13i 0.243406i
\(339\) 0 0
\(340\) 4.93974e13 2.43729e13i 0.589617 0.290920i
\(341\) −2.35348e11 −0.00276415
\(342\) 0 0
\(343\) 1.05812e14i 1.20342i
\(344\) 4.81920e12 0.0539391
\(345\) 0 0
\(346\) −1.01671e13 −0.110225
\(347\) 2.98797e13i 0.318833i 0.987211 + 0.159417i \(0.0509613\pi\)
−0.987211 + 0.159417i \(0.949039\pi\)
\(348\) 0 0
\(349\) 8.29449e13 0.857531 0.428765 0.903416i \(-0.358949\pi\)
0.428765 + 0.903416i \(0.358949\pi\)
\(350\) 6.98288e13 9.10814e13i 0.710658 0.926948i
\(351\) 0 0
\(352\) 2.52532e11i 0.00249076i
\(353\) 2.77862e13i 0.269816i 0.990858 + 0.134908i \(0.0430739\pi\)
−0.990858 + 0.134908i \(0.956926\pi\)
\(354\) 0 0
\(355\) 8.00250e13 + 1.62189e14i 0.753303 + 1.52674i
\(356\) 7.92760e13 0.734796
\(357\) 0 0
\(358\) 9.79663e13i 0.880481i
\(359\) −6.00448e13 −0.531442 −0.265721 0.964050i \(-0.585610\pi\)
−0.265721 + 0.964050i \(0.585610\pi\)
\(360\) 0 0
\(361\) 4.17864e13 0.358711
\(362\) 1.46037e14i 1.23471i
\(363\) 0 0
\(364\) 1.16742e14 0.957572
\(365\) 6.65639e13 3.28429e13i 0.537809 0.265357i
\(366\) 0 0
\(367\) 1.58072e14i 1.23934i −0.784861 0.619672i \(-0.787266\pi\)
0.784861 0.619672i \(-0.212734\pi\)
\(368\) 8.50851e10i 0.000657189i
\(369\) 0 0
\(370\) −6.45093e13 1.30743e14i −0.483630 0.980189i
\(371\) −3.24782e13 −0.239903
\(372\) 0 0
\(373\) 1.82296e14i 1.30731i −0.756793 0.653655i \(-0.773235\pi\)
0.756793 0.653655i \(-0.226765\pi\)
\(374\) 1.85396e12 0.0131011
\(375\) 0 0
\(376\) 7.68878e13 0.527624
\(377\) 7.89000e13i 0.533580i
\(378\) 0 0
\(379\) 1.32427e14 0.869885 0.434942 0.900458i \(-0.356769\pi\)
0.434942 + 0.900458i \(0.356769\pi\)
\(380\) −3.98321e13 8.07290e13i −0.257883 0.522661i
\(381\) 0 0
\(382\) 2.24978e13i 0.141511i
\(383\) 2.66390e14i 1.65167i 0.563910 + 0.825836i \(0.309297\pi\)
−0.563910 + 0.825836i \(0.690703\pi\)
\(384\) 0 0
\(385\) 3.46411e12 1.70921e12i 0.0208717 0.0102982i
\(386\) −8.11238e13 −0.481857
\(387\) 0 0
\(388\) 1.53621e14i 0.886903i
\(389\) 3.31443e14 1.88663 0.943314 0.331903i \(-0.107691\pi\)
0.943314 + 0.331903i \(0.107691\pi\)
\(390\) 0 0
\(391\) 6.24650e11 0.00345672
\(392\) 1.11997e14i 0.611130i
\(393\) 0 0
\(394\) 1.39293e14 0.739095
\(395\) −6.49362e13 1.31608e14i −0.339784 0.688651i
\(396\) 0 0
\(397\) 2.66173e14i 1.35461i 0.735700 + 0.677307i \(0.236853\pi\)
−0.735700 + 0.677307i \(0.763147\pi\)
\(398\) 1.11314e14i 0.558718i
\(399\) 0 0
\(400\) −3.11516e13 + 4.06327e13i −0.152108 + 0.198402i
\(401\) −5.83506e13 −0.281029 −0.140514 0.990079i \(-0.544876\pi\)
−0.140514 + 0.990079i \(0.544876\pi\)
\(402\) 0 0
\(403\) 4.85365e13i 0.227452i
\(404\) 1.27773e14 0.590667
\(405\) 0 0
\(406\) −1.19483e14 −0.537543
\(407\) 4.90699e12i 0.0217794i
\(408\) 0 0
\(409\) 1.50629e14 0.650774 0.325387 0.945581i \(-0.394505\pi\)
0.325387 + 0.945581i \(0.394505\pi\)
\(410\) −2.53649e12 + 1.25152e12i −0.0108124 + 0.00533490i
\(411\) 0 0
\(412\) 1.66734e14i 0.691975i
\(413\) 7.50461e14i 3.07328i
\(414\) 0 0
\(415\) −1.90339e14 + 9.39140e13i −0.759036 + 0.374512i
\(416\) −5.20805e13 −0.204956
\(417\) 0 0
\(418\) 3.02988e12i 0.0116133i
\(419\) −1.12162e14 −0.424296 −0.212148 0.977238i \(-0.568046\pi\)
−0.212148 + 0.977238i \(0.568046\pi\)
\(420\) 0 0
\(421\) −2.61767e14 −0.964635 −0.482318 0.875996i \(-0.660205\pi\)
−0.482318 + 0.875996i \(0.660205\pi\)
\(422\) 6.82211e13i 0.248142i
\(423\) 0 0
\(424\) 1.44890e13 0.0513483
\(425\) −2.98304e14 2.28699e14i −1.04357 0.800064i
\(426\) 0 0
\(427\) 1.78342e13i 0.0607996i
\(428\) 1.00921e14i 0.339658i
\(429\) 0 0
\(430\) −1.45512e13 2.94915e13i −0.0477335 0.0967430i
\(431\) −5.44798e14 −1.76446 −0.882228 0.470822i \(-0.843957\pi\)
−0.882228 + 0.470822i \(0.843957\pi\)
\(432\) 0 0
\(433\) 3.95370e14i 1.24830i −0.781303 0.624152i \(-0.785444\pi\)
0.781303 0.624152i \(-0.214556\pi\)
\(434\) 7.35017e13 0.229141
\(435\) 0 0
\(436\) 2.98561e14 0.907522
\(437\) 1.02085e12i 0.00306418i
\(438\) 0 0
\(439\) 1.61637e14 0.473135 0.236567 0.971615i \(-0.423978\pi\)
0.236567 + 0.971615i \(0.423978\pi\)
\(440\) −1.54539e12 + 7.62503e11i −0.00446733 + 0.00220420i
\(441\) 0 0
\(442\) 3.82347e14i 1.07804i
\(443\) 3.75361e14i 1.04527i 0.852556 + 0.522635i \(0.175051\pi\)
−0.852556 + 0.522635i \(0.824949\pi\)
\(444\) 0 0
\(445\) −2.39368e14 4.85135e14i −0.650259 1.31790i
\(446\) 3.96399e14 1.06363
\(447\) 0 0
\(448\) 7.88686e13i 0.206478i
\(449\) 9.66467e13 0.249938 0.124969 0.992161i \(-0.460117\pi\)
0.124969 + 0.992161i \(0.460117\pi\)
\(450\) 0 0
\(451\) −9.51983e10 −0.000240247
\(452\) 1.89173e14i 0.471627i
\(453\) 0 0
\(454\) −5.35921e14 −1.30405
\(455\) −3.52496e14 7.14414e14i −0.847405 1.71746i
\(456\) 0 0
\(457\) 1.18646e14i 0.278430i 0.990262 + 0.139215i \(0.0444579\pi\)
−0.990262 + 0.139215i \(0.955542\pi\)
\(458\) 4.83549e14i 1.12119i
\(459\) 0 0
\(460\) −5.20684e11 + 2.56908e11i −0.00117871 + 0.000581581i
\(461\) 6.78976e14 1.51879 0.759397 0.650627i \(-0.225494\pi\)
0.759397 + 0.650627i \(0.225494\pi\)
\(462\) 0 0
\(463\) 1.56158e14i 0.341090i 0.985350 + 0.170545i \(0.0545529\pi\)
−0.985350 + 0.170545i \(0.945447\pi\)
\(464\) 5.33031e13 0.115054
\(465\) 0 0
\(466\) −4.53106e14 −0.955163
\(467\) 3.48325e14i 0.725675i 0.931852 + 0.362837i \(0.118192\pi\)
−0.931852 + 0.362837i \(0.881808\pi\)
\(468\) 0 0
\(469\) −1.81652e14 −0.369649
\(470\) −2.32157e14 4.70521e14i −0.466922 0.946325i
\(471\) 0 0
\(472\) 3.34791e14i 0.657799i
\(473\) 1.10686e12i 0.00214959i
\(474\) 0 0
\(475\) −3.73757e14 + 4.87511e14i −0.709209 + 0.925059i
\(476\) −5.79012e14 −1.08605
\(477\) 0 0
\(478\) 3.45074e14i 0.632497i
\(479\) 2.00750e13 0.0363756 0.0181878 0.999835i \(-0.494210\pi\)
0.0181878 + 0.999835i \(0.494210\pi\)
\(480\) 0 0
\(481\) −1.01198e15 −1.79215
\(482\) 2.65035e14i 0.464028i
\(483\) 0 0
\(484\) 2.92101e14 0.499901
\(485\) 9.40095e14 4.63847e14i 1.59071 0.784866i
\(486\) 0 0
\(487\) 7.97827e14i 1.31977i −0.751365 0.659887i \(-0.770604\pi\)
0.751365 0.659887i \(-0.229396\pi\)
\(488\) 7.95610e12i 0.0130134i
\(489\) 0 0
\(490\) −6.85374e14 + 3.38167e14i −1.09610 + 0.540820i
\(491\) 7.97717e14 1.26154 0.630769 0.775970i \(-0.282739\pi\)
0.630769 + 0.775970i \(0.282739\pi\)
\(492\) 0 0
\(493\) 3.91323e14i 0.605170i
\(494\) −6.24861e14 −0.955620
\(495\) 0 0
\(496\) −3.27901e13 −0.0490449
\(497\) 1.90110e15i 2.81219i
\(498\) 0 0
\(499\) 1.38791e14 0.200820 0.100410 0.994946i \(-0.467984\pi\)
0.100410 + 0.994946i \(0.467984\pi\)
\(500\) 3.42715e14 + 6.79471e13i 0.490454 + 0.0972380i
\(501\) 0 0
\(502\) 3.82230e14i 0.535123i
\(503\) 9.58116e14i 1.32677i 0.748280 + 0.663383i \(0.230880\pi\)
−0.748280 + 0.663383i \(0.769120\pi\)
\(504\) 0 0
\(505\) −3.85802e14 7.81918e14i −0.522712 1.05940i
\(506\) −1.95421e10 −2.61904e−5
\(507\) 0 0
\(508\) 5.81755e14i 0.762939i
\(509\) −5.19145e14 −0.673505 −0.336752 0.941593i \(-0.609329\pi\)
−0.336752 + 0.941593i \(0.609329\pi\)
\(510\) 0 0
\(511\) −7.80228e14 −0.990618
\(512\) 3.51844e13i 0.0441942i
\(513\) 0 0
\(514\) 3.04959e14 0.374925
\(515\) 1.02034e15 5.03442e14i 1.24110 0.612364i
\(516\) 0 0
\(517\) 1.76593e13i 0.0210269i
\(518\) 1.53251e15i 1.80546i
\(519\) 0 0
\(520\) 1.57253e14 + 3.18710e14i 0.181377 + 0.367602i
\(521\) −1.16468e15 −1.32922 −0.664612 0.747189i \(-0.731403\pi\)
−0.664612 + 0.747189i \(0.731403\pi\)
\(522\) 0 0
\(523\) 2.93884e13i 0.0328410i 0.999865 + 0.0164205i \(0.00522705\pi\)
−0.999865 + 0.0164205i \(0.994773\pi\)
\(524\) −3.64202e14 −0.402736
\(525\) 0 0
\(526\) 5.48764e14 0.594243
\(527\) 2.40728e14i 0.257969i
\(528\) 0 0
\(529\) 9.52803e14 0.999993
\(530\) −4.37485e13 8.86664e13i −0.0454407 0.0920962i
\(531\) 0 0
\(532\) 9.46264e14i 0.962717i
\(533\) 1.96330e13i 0.0197691i
\(534\) 0 0
\(535\) 6.17596e14 3.04725e14i 0.609198 0.300581i
\(536\) 8.10375e13 0.0791188
\(537\) 0 0
\(538\) 9.05997e14i 0.866611i
\(539\) −2.57231e13 −0.0243548
\(540\) 0 0
\(541\) 1.19815e15 1.11155 0.555773 0.831334i \(-0.312422\pi\)
0.555773 + 0.831334i \(0.312422\pi\)
\(542\) 8.17127e14i 0.750401i
\(543\) 0 0
\(544\) 2.58305e14 0.232455
\(545\) −9.01483e14 1.82706e15i −0.803113 1.62770i
\(546\) 0 0
\(547\) 7.13308e14i 0.622797i −0.950279 0.311399i \(-0.899203\pi\)
0.950279 0.311399i \(-0.100797\pi\)
\(548\) 8.73667e14i 0.755184i
\(549\) 0 0
\(550\) 9.33238e12 + 7.15480e12i 0.00790674 + 0.00606181i
\(551\) 6.39530e14 0.536447
\(552\) 0 0
\(553\) 1.54265e15i 1.26846i
\(554\) 9.69800e13 0.0789548
\(555\) 0 0
\(556\) 4.83585e12 0.00385977
\(557\) 1.18931e15i 0.939918i −0.882688 0.469959i \(-0.844269\pi\)
0.882688 0.469959i \(-0.155731\pi\)
\(558\) 0 0
\(559\) −2.28271e14 −0.176883
\(560\) 4.82642e14 2.38138e14i 0.370332 0.182724i
\(561\) 0 0
\(562\) 9.36868e14i 0.704902i
\(563\) 2.16625e15i 1.61403i 0.590529 + 0.807017i \(0.298919\pi\)
−0.590529 + 0.807017i \(0.701081\pi\)
\(564\) 0 0
\(565\) 1.15766e15 5.71195e14i 0.845891 0.417367i
\(566\) −6.72624e13 −0.0486723
\(567\) 0 0
\(568\) 8.48108e14i 0.601915i
\(569\) −9.56332e13 −0.0672188 −0.0336094 0.999435i \(-0.510700\pi\)
−0.0336094 + 0.999435i \(0.510700\pi\)
\(570\) 0 0
\(571\) −1.06033e15 −0.731041 −0.365521 0.930803i \(-0.619109\pi\)
−0.365521 + 0.930803i \(0.619109\pi\)
\(572\) 1.19617e13i 0.00816796i
\(573\) 0 0
\(574\) 2.97315e13 0.0199160
\(575\) 3.14434e12 + 2.41065e12i 0.00208620 + 0.00159941i
\(576\) 0 0
\(577\) 2.62145e15i 1.70637i 0.521605 + 0.853187i \(0.325333\pi\)
−0.521605 + 0.853187i \(0.674667\pi\)
\(578\) 7.99641e14i 0.515575i
\(579\) 0 0
\(580\) −1.60945e14 3.26192e14i −0.101818 0.206357i
\(581\) 2.23105e15 1.39811
\(582\) 0 0
\(583\) 3.32778e12i 0.00204634i
\(584\) 3.48071e14 0.212030
\(585\) 0 0
\(586\) 1.81062e15 1.08241
\(587\) 1.75497e15i 1.03935i −0.854365 0.519674i \(-0.826053\pi\)
0.854365 0.519674i \(-0.173947\pi\)
\(588\) 0 0
\(589\) −3.93416e14 −0.228674
\(590\) −2.04878e15 + 1.01088e15i −1.17980 + 0.582120i
\(591\) 0 0
\(592\) 6.83672e14i 0.386437i
\(593\) 1.57877e15i 0.884133i 0.896982 + 0.442066i \(0.145754\pi\)
−0.896982 + 0.442066i \(0.854246\pi\)
\(594\) 0 0
\(595\) 1.74828e15 + 3.54330e15i 0.961100 + 1.94789i
\(596\) −7.25424e14 −0.395128
\(597\) 0 0
\(598\) 4.03022e12i 0.00215512i
\(599\) 1.28636e15 0.681577 0.340789 0.940140i \(-0.389306\pi\)
0.340789 + 0.940140i \(0.389306\pi\)
\(600\) 0 0
\(601\) 3.43995e15 1.78955 0.894773 0.446522i \(-0.147337\pi\)
0.894773 + 0.446522i \(0.147337\pi\)
\(602\) 3.45684e14i 0.178196i
\(603\) 0 0
\(604\) −1.07864e15 −0.545977
\(605\) −8.81978e14 1.78753e15i −0.442388 0.896602i
\(606\) 0 0
\(607\) 3.76439e15i 1.85420i −0.374815 0.927100i \(-0.622294\pi\)
0.374815 0.927100i \(-0.377706\pi\)
\(608\) 4.22142e14i 0.206058i
\(609\) 0 0
\(610\) 4.86879e13 2.40229e13i 0.0233403 0.0115162i
\(611\) −3.64194e15 −1.73024
\(612\) 0 0
\(613\) 2.65739e14i 0.124000i −0.998076 0.0620001i \(-0.980252\pi\)
0.998076 0.0620001i \(-0.0197479\pi\)
\(614\) −3.69877e14 −0.171053
\(615\) 0 0
\(616\) 1.81143e13 0.00822862
\(617\) 1.63882e14i 0.0737842i −0.999319 0.0368921i \(-0.988254\pi\)
0.999319 0.0368921i \(-0.0117458\pi\)
\(618\) 0 0
\(619\) 3.96471e15 1.75353 0.876764 0.480920i \(-0.159697\pi\)
0.876764 + 0.480920i \(0.159697\pi\)
\(620\) 9.90074e13 + 2.00662e14i 0.0434024 + 0.0879650i
\(621\) 0 0
\(622\) 1.60513e15i 0.691293i
\(623\) 5.68651e15i 2.42751i
\(624\) 0 0
\(625\) −6.18996e14 2.30243e15i −0.259626 0.965709i
\(626\) −6.38228e14 −0.265349
\(627\) 0 0
\(628\) 6.76005e14i 0.276167i
\(629\) 5.01916e15 2.03260
\(630\) 0 0
\(631\) −8.76182e14 −0.348685 −0.174342 0.984685i \(-0.555780\pi\)
−0.174342 + 0.984685i \(0.555780\pi\)
\(632\) 6.88196e14i 0.271499i
\(633\) 0 0
\(634\) −1.61376e15 −0.625672
\(635\) −3.56010e15 + 1.75657e15i −1.36838 + 0.675165i
\(636\) 0 0
\(637\) 5.30496e15i 2.00408i
\(638\) 1.22425e13i 0.00458517i
\(639\) 0 0
\(640\) −2.15313e14 + 1.06237e14i −0.0792649 + 0.0391097i
\(641\) 4.91614e14 0.179434 0.0897171 0.995967i \(-0.471404\pi\)
0.0897171 + 0.995967i \(0.471404\pi\)
\(642\) 0 0
\(643\) 8.05370e14i 0.288958i 0.989508 + 0.144479i \(0.0461507\pi\)
−0.989508 + 0.144479i \(0.953849\pi\)
\(644\) 6.10320e12 0.00217113
\(645\) 0 0
\(646\) 3.09914e15 1.08383
\(647\) 1.76423e15i 0.611760i −0.952070 0.305880i \(-0.901049\pi\)
0.952070 0.305880i \(-0.0989506\pi\)
\(648\) 0 0
\(649\) −7.68937e13 −0.0262147
\(650\) 1.47556e15 1.92465e15i 0.498807 0.650620i
\(651\) 0 0
\(652\) 7.88846e14i 0.262199i
\(653\) 3.30911e15i 1.09066i −0.838222 0.545329i \(-0.816405\pi\)
0.838222 0.545329i \(-0.183595\pi\)
\(654\) 0 0
\(655\) 1.09968e15 + 2.22876e15i 0.356402 + 0.722332i
\(656\) −1.32636e13 −0.00426277
\(657\) 0 0
\(658\) 5.51520e15i 1.74309i
\(659\) −4.08284e15 −1.27966 −0.639828 0.768518i \(-0.720994\pi\)
−0.639828 + 0.768518i \(0.720994\pi\)
\(660\) 0 0
\(661\) −3.94938e15 −1.21737 −0.608683 0.793413i \(-0.708302\pi\)
−0.608683 + 0.793413i \(0.708302\pi\)
\(662\) 2.98881e15i 0.913649i
\(663\) 0 0
\(664\) −9.95304e14 −0.299248
\(665\) 5.79073e15 2.85718e15i 1.72669 0.851958i
\(666\) 0 0
\(667\) 4.12483e12i 0.00120980i
\(668\) 2.06927e15i 0.601932i
\(669\) 0 0
\(670\) −2.44687e14 4.95915e14i −0.0700163 0.141904i
\(671\) 1.82733e12 0.000518613
\(672\) 0 0
\(673\) 4.54748e15i 1.26966i −0.772651 0.634831i \(-0.781070\pi\)
0.772651 0.634831i \(-0.218930\pi\)
\(674\) 3.09567e15 0.857286
\(675\) 0 0
\(676\) 6.31718e14 0.172114
\(677\) 2.25251e14i 0.0608735i −0.999537 0.0304368i \(-0.990310\pi\)
0.999537 0.0304368i \(-0.00968982\pi\)
\(678\) 0 0
\(679\) −1.10193e16 −2.93002
\(680\) −7.79934e14 1.58072e15i −0.205712 0.416922i
\(681\) 0 0
\(682\) 7.53113e12i 0.00195455i
\(683\) 2.16550e15i 0.557499i −0.960364 0.278750i \(-0.910080\pi\)
0.960364 0.278750i \(-0.0899199\pi\)
\(684\) 0 0
\(685\) 5.34647e15 2.63798e15i 1.35447 0.668302i
\(686\) 3.38597e15 0.850943
\(687\) 0 0
\(688\) 1.54214e14i 0.0381407i
\(689\) −6.86299e14 −0.168387
\(690\) 0 0
\(691\) 2.56112e15 0.618445 0.309223 0.950990i \(-0.399931\pi\)
0.309223 + 0.950990i \(0.399931\pi\)
\(692\) 3.25349e14i 0.0779409i
\(693\) 0 0
\(694\) 9.56149e14 0.225449
\(695\) −1.46015e13 2.95933e13i −0.00341571 0.00692273i
\(696\) 0 0
\(697\) 9.73747e13i 0.0224216i
\(698\) 2.65424e15i 0.606366i
\(699\) 0 0
\(700\) −2.91461e15 2.23452e15i −0.655452 0.502511i
\(701\) −1.70243e15 −0.379858 −0.189929 0.981798i \(-0.560826\pi\)
−0.189929 + 0.981798i \(0.560826\pi\)
\(702\) 0 0
\(703\) 8.20269e15i 1.80178i
\(704\) −8.08103e12 −0.00176123
\(705\) 0 0
\(706\) 8.89157e14 0.190789
\(707\) 9.16525e15i 1.95136i
\(708\) 0 0
\(709\) −6.47024e15 −1.35633 −0.678166 0.734909i \(-0.737225\pi\)
−0.678166 + 0.734909i \(0.737225\pi\)
\(710\) 5.19006e15 2.56080e15i 1.07957 0.532666i
\(711\) 0 0
\(712\) 2.53683e15i 0.519579i
\(713\) 2.53745e12i 0.000515708i
\(714\) 0 0
\(715\) 7.32003e13 3.61174e13i 0.0146497 0.00722825i
\(716\) 3.13492e15 0.622594
\(717\) 0 0
\(718\) 1.92143e15i 0.375786i
\(719\) −7.19791e15 −1.39700 −0.698501 0.715609i \(-0.746149\pi\)
−0.698501 + 0.715609i \(0.746149\pi\)
\(720\) 0 0
\(721\) −1.19599e16 −2.28605
\(722\) 1.33716e15i 0.253647i
\(723\) 0 0
\(724\) −4.67317e15 −0.873071
\(725\) −1.51019e15 + 1.96983e15i −0.280010 + 0.365232i
\(726\) 0 0
\(727\) 1.76074e15i 0.321556i −0.986991 0.160778i \(-0.948600\pi\)
0.986991 0.160778i \(-0.0514003\pi\)
\(728\) 3.73576e15i 0.677105i
\(729\) 0 0
\(730\) −1.05097e15 2.13004e15i −0.187636 0.380288i
\(731\) 1.13216e15 0.200615
\(732\) 0 0
\(733\) 5.66913e15i 0.989566i −0.869016 0.494783i \(-0.835247\pi\)
0.869016 0.494783i \(-0.164753\pi\)
\(734\) −5.05831e15 −0.876349
\(735\) 0 0
\(736\) −2.72272e12 −0.000464703
\(737\) 1.86124e13i 0.00315306i
\(738\) 0 0
\(739\) 3.83696e14 0.0640388 0.0320194 0.999487i \(-0.489806\pi\)
0.0320194 + 0.999487i \(0.489806\pi\)
\(740\) −4.18378e15 + 2.06430e15i −0.693098 + 0.341978i
\(741\) 0 0
\(742\) 1.03930e15i 0.169637i
\(743\) 9.58748e15i 1.55334i 0.629909 + 0.776669i \(0.283092\pi\)
−0.629909 + 0.776669i \(0.716908\pi\)
\(744\) 0 0
\(745\) 2.19037e15 + 4.43929e15i 0.349669 + 0.708686i
\(746\) −5.83347e15 −0.924408
\(747\) 0 0
\(748\) 5.93267e13i 0.00926384i
\(749\) −7.23915e15 −1.12211
\(750\) 0 0
\(751\) −7.40637e15 −1.13132 −0.565660 0.824638i \(-0.691379\pi\)
−0.565660 + 0.824638i \(0.691379\pi\)
\(752\) 2.46041e15i 0.373086i
\(753\) 0 0
\(754\) −2.52480e15 −0.377298
\(755\) 3.25688e15 + 6.60083e15i 0.483163 + 0.979242i
\(756\) 0 0
\(757\) 4.64962e15i 0.679813i −0.940459 0.339907i \(-0.889604\pi\)
0.940459 0.339907i \(-0.110396\pi\)
\(758\) 4.23767e15i 0.615101i
\(759\) 0 0
\(760\) −2.58333e15 + 1.27463e15i −0.369577 + 0.182351i
\(761\) 1.19479e16 1.69698 0.848490 0.529212i \(-0.177512\pi\)
0.848490 + 0.529212i \(0.177512\pi\)
\(762\) 0 0
\(763\) 2.14159e16i 2.99814i
\(764\) −7.19929e14 −0.100064
\(765\) 0 0
\(766\) 8.52447e15 1.16791
\(767\) 1.58580e16i 2.15712i
\(768\) 0 0
\(769\) 4.18830e15 0.561621 0.280810 0.959763i \(-0.409397\pi\)
0.280810 + 0.959763i \(0.409397\pi\)
\(770\) −5.46947e13 1.10852e14i −0.00728193 0.0147585i
\(771\) 0 0
\(772\) 2.59596e15i 0.340725i
\(773\) 6.97307e15i 0.908734i −0.890815 0.454367i \(-0.849865\pi\)
0.890815 0.454367i \(-0.150135\pi\)
\(774\) 0 0
\(775\) 9.29018e14 1.21177e15i 0.119362 0.155690i
\(776\) 4.91587e15 0.627135
\(777\) 0 0
\(778\) 1.06062e16i 1.33405i
\(779\) −1.59137e14 −0.0198754
\(780\) 0 0
\(781\) 1.94790e14 0.0239876
\(782\) 1.99888e13i 0.00244427i
\(783\) 0 0
\(784\) −3.58391e15 −0.432134
\(785\) −4.13686e15 + 2.04115e15i −0.495323 + 0.244395i
\(786\) 0 0
\(787\) 5.88998e15i 0.695430i −0.937600 0.347715i \(-0.886958\pi\)
0.937600 0.347715i \(-0.113042\pi\)
\(788\) 4.45738e15i 0.522619i
\(789\) 0 0
\(790\) −4.21147e15 + 2.07796e15i −0.486950 + 0.240263i
\(791\) −1.35695e16 −1.55809
\(792\) 0 0
\(793\) 3.76856e14i 0.0426749i
\(794\) 8.51753e15 0.957857
\(795\) 0 0
\(796\) −3.56204e15 −0.395073
\(797\) 9.45081e15i 1.04099i −0.853864 0.520497i \(-0.825747\pi\)
0.853864 0.520497i \(-0.174253\pi\)
\(798\) 0 0
\(799\) 1.80630e16 1.96238
\(800\) 1.30025e15 + 9.96852e14i 0.140291 + 0.107556i
\(801\) 0 0
\(802\) 1.86722e15i 0.198717i
\(803\) 7.99437e13i 0.00844984i
\(804\) 0 0
\(805\) −1.84282e13 3.73490e13i −0.00192134 0.00389405i
\(806\) 1.55317e15 0.160833
\(807\) 0 0
\(808\) 4.08875e15i 0.417665i
\(809\) 1.45474e16 1.47594 0.737968 0.674835i \(-0.235785\pi\)
0.737968 + 0.674835i \(0.235785\pi\)
\(810\) 0 0
\(811\) 3.44330e15 0.344636 0.172318 0.985041i \(-0.444874\pi\)
0.172318 + 0.985041i \(0.444874\pi\)
\(812\) 3.82346e15i 0.380100i
\(813\) 0 0
\(814\) −1.57024e14 −0.0154003
\(815\) −4.82740e15 + 2.38186e15i −0.470269 + 0.232033i
\(816\) 0 0
\(817\) 1.85026e15i 0.177833i
\(818\) 4.82013e15i 0.460167i
\(819\) 0 0
\(820\) 4.00486e13 + 8.11678e13i 0.00377234 + 0.00764553i
\(821\) −1.62433e16 −1.51981 −0.759903 0.650037i \(-0.774753\pi\)
−0.759903 + 0.650037i \(0.774753\pi\)
\(822\) 0 0
\(823\) 2.70386e15i 0.249624i −0.992180 0.124812i \(-0.960167\pi\)
0.992180 0.124812i \(-0.0398327\pi\)
\(824\) 5.33550e15 0.489300
\(825\) 0 0
\(826\) 2.40148e16 2.17314
\(827\) 1.18633e16i 1.06641i 0.845985 + 0.533207i \(0.179013\pi\)
−0.845985 + 0.533207i \(0.820987\pi\)
\(828\) 0 0
\(829\) 4.11995e15 0.365462 0.182731 0.983163i \(-0.441506\pi\)
0.182731 + 0.983163i \(0.441506\pi\)
\(830\) 3.00525e15 + 6.09084e15i 0.264820 + 0.536720i
\(831\) 0 0
\(832\) 1.66657e15i 0.144926i
\(833\) 2.63112e16i 2.27296i
\(834\) 0 0
\(835\) 1.26631e16 6.24802e15i 1.07960 0.532681i
\(836\) −9.69561e13 −0.00821184
\(837\) 0 0
\(838\) 3.58919e15i 0.300023i
\(839\) 1.47076e16 1.22138 0.610689 0.791871i \(-0.290893\pi\)
0.610689 + 0.791871i \(0.290893\pi\)
\(840\) 0 0
\(841\) −9.61644e15 −0.788200
\(842\) 8.37654e15i 0.682100i
\(843\) 0 0
\(844\) 2.18308e15 0.175463
\(845\) −1.90743e15 3.86585e15i −0.152313 0.308697i
\(846\) 0 0
\(847\) 2.09526e16i 1.65150i
\(848\) 4.63648e14i 0.0363087i
\(849\) 0 0
\(850\) −7.31836e15 + 9.54573e15i −0.565731 + 0.737913i
\(851\) −5.29056e13 −0.00406339
\(852\) 0 0
\(853\) 1.02344e16i 0.775969i 0.921666 + 0.387984i \(0.126829\pi\)
−0.921666 + 0.387984i \(0.873171\pi\)
\(854\) −5.70695e14 −0.0429918
\(855\) 0 0
\(856\) 3.22948e15 0.240175
\(857\) 1.11509e16i 0.823979i −0.911189 0.411989i \(-0.864834\pi\)
0.911189 0.411989i \(-0.135166\pi\)
\(858\) 0 0
\(859\) −5.22746e15 −0.381354 −0.190677 0.981653i \(-0.561068\pi\)
−0.190677 + 0.981653i \(0.561068\pi\)
\(860\) −9.43727e14 + 4.65639e14i −0.0684077 + 0.0337527i
\(861\) 0 0
\(862\) 1.74335e16i 1.24766i
\(863\) 7.43513e15i 0.528724i −0.964424 0.264362i \(-0.914839\pi\)
0.964424 0.264362i \(-0.0851614\pi\)
\(864\) 0 0
\(865\) 1.99100e15 9.82367e14i 0.139792 0.0689740i
\(866\) −1.26518e16 −0.882685
\(867\) 0 0
\(868\) 2.35205e15i 0.162027i
\(869\) −1.58062e14 −0.0108198
\(870\) 0 0
\(871\) −3.83850e15 −0.259455
\(872\) 9.55395e15i 0.641715i
\(873\) 0 0
\(874\) −3.26672e13 −0.00216670
\(875\) −4.87388e15 + 2.45831e16i −0.321241 + 1.62029i
\(876\) 0 0
\(877\) 4.20461e15i 0.273671i 0.990594 + 0.136835i \(0.0436931\pi\)
−0.990594 + 0.136835i \(0.956307\pi\)
\(878\) 5.17237e15i 0.334557i
\(879\) 0 0
\(880\) 2.44001e13 + 4.94524e13i 0.00155861 + 0.00315888i
\(881\) 2.08294e16 1.32224 0.661119 0.750281i \(-0.270082\pi\)
0.661119 + 0.750281i \(0.270082\pi\)
\(882\) 0 0
\(883\) 9.97011e15i 0.625052i 0.949909 + 0.312526i \(0.101175\pi\)
−0.949909 + 0.312526i \(0.898825\pi\)
\(884\) −1.22351e16 −0.762291
\(885\) 0 0
\(886\) 1.20116e16 0.739118
\(887\) 9.91209e13i 0.00606157i 0.999995 + 0.00303079i \(0.000964731\pi\)
−0.999995 + 0.00303079i \(0.999035\pi\)
\(888\) 0 0
\(889\) 4.17296e16 2.52049
\(890\) −1.55243e16 + 7.65978e15i −0.931896 + 0.459802i
\(891\) 0 0
\(892\) 1.26848e16i 0.752101i
\(893\) 2.95200e16i 1.73953i
\(894\) 0 0
\(895\) −9.46567e15 1.91844e16i −0.550966 1.11666i
\(896\) 2.52379e15 0.146002
\(897\) 0 0
\(898\) 3.09269e15i 0.176733i
\(899\) −1.58963e15 −0.0902853
\(900\) 0 0
\(901\) 3.40386e15 0.190979
\(902\) 3.04635e12i 0.000169880i
\(903\) 0 0
\(904\) 6.05355e15 0.333490
\(905\) 1.41103e16 + 2.85978e16i 0.772626 + 1.56591i
\(906\) 0 0
\(907\) 2.08572e16i 1.12828i −0.825681 0.564138i \(-0.809209\pi\)
0.825681 0.564138i \(-0.190791\pi\)
\(908\) 1.71495e16i 0.922102i
\(909\) 0 0
\(910\) −2.28613e16 + 1.12799e16i −1.21443 + 0.599206i
\(911\) 1.77980e16 0.939766 0.469883 0.882729i \(-0.344296\pi\)
0.469883 + 0.882729i \(0.344296\pi\)
\(912\) 0 0
\(913\) 2.28598e14i 0.0119257i
\(914\) 3.79669e15 0.196880
\(915\) 0 0
\(916\) 1.54736e16 0.792804
\(917\) 2.61244e16i 1.33050i
\(918\) 0 0
\(919\) 3.30314e16 1.66223 0.831116 0.556100i \(-0.187703\pi\)
0.831116 + 0.556100i \(0.187703\pi\)
\(920\) 8.22106e12 + 1.66619e13i 0.000411240 + 0.000833473i
\(921\) 0 0
\(922\) 2.17272e16i 1.07395i
\(923\) 4.01722e16i 1.97386i
\(924\) 0 0
\(925\) 2.52653e16 + 1.93700e16i 1.22672 + 0.940479i
\(926\) 4.99706e15 0.241187
\(927\) 0 0
\(928\) 1.70570e15i 0.0813558i
\(929\) 8.55855e15 0.405802 0.202901 0.979199i \(-0.434963\pi\)
0.202901 + 0.979199i \(0.434963\pi\)
\(930\) 0 0
\(931\) −4.29997e16 −2.01485
\(932\) 1.44994e16i 0.675402i
\(933\) 0 0
\(934\) 1.11464e16 0.513130
\(935\) −3.63054e14 + 1.79133e14i −0.0166153 + 0.00819805i
\(936\) 0 0
\(937\) 1.12342e16i 0.508132i 0.967187 + 0.254066i \(0.0817680\pi\)
−0.967187 + 0.254066i \(0.918232\pi\)
\(938\) 5.81286e15i 0.261381i
\(939\) 0 0
\(940\) −1.50567e16 + 7.42903e15i −0.669153 + 0.330163i
\(941\) 7.27902e15 0.321610 0.160805 0.986986i \(-0.448591\pi\)
0.160805 + 0.986986i \(0.448591\pi\)
\(942\) 0 0
\(943\) 1.02640e12i 4.48231e-5i
\(944\) −1.07133e16 −0.465134
\(945\) 0 0
\(946\) −3.54195e13 −0.00151999
\(947\) 3.58374e16i 1.52901i 0.644616 + 0.764506i \(0.277017\pi\)
−0.644616 + 0.764506i \(0.722983\pi\)
\(948\) 0 0
\(949\) −1.64870e16 −0.695309
\(950\) 1.56003e16 + 1.19602e16i 0.654115 + 0.501487i
\(951\) 0 0
\(952\) 1.85284e16i 0.767952i
\(953\) 2.79333e16i 1.15110i −0.817768 0.575548i \(-0.804789\pi\)
0.817768 0.575548i \(-0.195211\pi\)
\(954\) 0 0
\(955\) 2.17378e15 + 4.40566e15i 0.0885515 + 0.179470i
\(956\) −1.10424e16 −0.447243
\(957\) 0 0
\(958\) 6.42400e14i 0.0257214i
\(959\) −6.26686e16 −2.49487
\(960\) 0 0
\(961\) −2.44306e16 −0.961514
\(962\) 3.23834e16i 1.26724i
\(963\) 0 0
\(964\) −8.48112e15 −0.328117
\(965\) 1.58862e16 7.83832e15i 0.611110 0.301525i
\(966\) 0 0
\(967\) 1.61731e16i 0.615103i 0.951531 + 0.307551i \(0.0995096\pi\)
−0.951531 + 0.307551i \(0.900490\pi\)
\(968\) 9.34724e15i 0.353483i
\(969\) 0 0
\(970\) −1.48431e16 3.00830e16i −0.554984 1.12480i
\(971\) −1.57576e16 −0.585846 −0.292923 0.956136i \(-0.594628\pi\)
−0.292923 + 0.956136i \(0.594628\pi\)
\(972\) 0 0
\(973\) 3.46878e14i 0.0127513i
\(974\) −2.55305e16 −0.933221
\(975\) 0 0
\(976\) 2.54595e14 0.00920187
\(977\) 6.52441e15i 0.234488i 0.993103 + 0.117244i \(0.0374060\pi\)
−0.993103 + 0.117244i \(0.962594\pi\)
\(978\) 0 0
\(979\) −5.82651e14 −0.0207063
\(980\) 1.08213e16 + 2.19320e16i 0.382418 + 0.775058i
\(981\) 0 0
\(982\) 2.55269e16i 0.892042i
\(983\) 2.21995e16i 0.771434i 0.922617 + 0.385717i \(0.126046\pi\)
−0.922617 + 0.385717i \(0.873954\pi\)
\(984\) 0 0
\(985\) −2.72773e16 + 1.34587e16i −0.937349 + 0.462493i
\(986\) 1.25223e16 0.427920
\(987\) 0 0
\(988\) 1.99955e16i 0.675725i
\(989\) −1.19338e13 −0.000401050
\(990\) 0 0
\(991\) −4.57252e16 −1.51967 −0.759837 0.650114i \(-0.774721\pi\)
−0.759837 + 0.650114i \(0.774721\pi\)
\(992\) 1.04928e15i 0.0346800i
\(993\) 0 0
\(994\) −6.08352e16 −1.98852
\(995\) 1.07553e16 + 2.17982e16i 0.349621 + 0.708587i
\(996\) 0 0
\(997\) 4.05315e16i 1.30308i −0.758616 0.651538i \(-0.774124\pi\)
0.758616 0.651538i \(-0.225876\pi\)
\(998\) 4.44131e15i 0.142001i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.c.d.19.5 yes 12
3.2 odd 2 inner 90.12.c.d.19.8 yes 12
5.4 even 2 inner 90.12.c.d.19.11 yes 12
15.14 odd 2 inner 90.12.c.d.19.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.12.c.d.19.2 12 15.14 odd 2 inner
90.12.c.d.19.5 yes 12 1.1 even 1 trivial
90.12.c.d.19.8 yes 12 3.2 odd 2 inner
90.12.c.d.19.11 yes 12 5.4 even 2 inner