Properties

Label 90.12.c.b.19.6
Level $90$
Weight $12$
Character 90.19
Analytic conductor $69.151$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6144,-530] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 198x^{3} + 3568321x^{2} - 6762620x + 6408200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{2}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.6
Root \(30.7598 + 30.7598i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.12.c.b.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000i q^{2} -1024.00 q^{4} +(4156.64 + 5616.98i) q^{5} -73603.8i q^{7} -32768.0i q^{8} +(-179743. + 133012. i) q^{10} +276114. q^{11} -726988. i q^{13} +2.35532e6 q^{14} +1.04858e6 q^{16} -3.21222e6i q^{17} -1.55879e7 q^{19} +(-4.25640e6 - 5.75179e6i) q^{20} +8.83564e6i q^{22} +3.25041e7i q^{23} +(-1.42729e7 + 4.66955e7i) q^{25} +2.32636e7 q^{26} +7.53703e7i q^{28} -4.53029e7 q^{29} -1.06580e8 q^{31} +3.35544e7i q^{32} +1.02791e8 q^{34} +(4.13431e8 - 3.05944e8i) q^{35} +1.65530e8i q^{37} -4.98812e8i q^{38} +(1.84057e8 - 1.36205e8i) q^{40} -2.36566e8 q^{41} +7.28874e8i q^{43} -2.82740e8 q^{44} -1.04013e9 q^{46} +1.41793e9i q^{47} -3.44020e9 q^{49} +(-1.49426e9 - 4.56731e8i) q^{50} +7.44435e8i q^{52} +3.08706e9i q^{53} +(1.14770e9 + 1.55093e9i) q^{55} -2.41185e9 q^{56} -1.44969e9i q^{58} -7.61532e9 q^{59} +1.45582e9 q^{61} -3.41054e9i q^{62} -1.07374e9 q^{64} +(4.08348e9 - 3.02182e9i) q^{65} -1.32563e10i q^{67} +3.28931e9i q^{68} +(9.79022e9 + 1.32298e10i) q^{70} -9.49012e8 q^{71} -1.30829e10i q^{73} -5.29697e9 q^{74} +1.59620e10 q^{76} -2.03230e10i q^{77} -5.30163e10 q^{79} +(4.35855e9 + 5.88983e9i) q^{80} -7.57010e9i q^{82} -2.15490e10i q^{83} +(1.80430e10 - 1.33520e10i) q^{85} -2.33240e10 q^{86} -9.04769e9i q^{88} -5.64241e10 q^{89} -5.35091e10 q^{91} -3.32842e10i q^{92} -4.53739e10 q^{94} +(-6.47932e10 - 8.75569e10i) q^{95} +4.40060e10i q^{97} -1.10086e11i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6144 q^{4} - 530 q^{5} - 385920 q^{10} + 642728 q^{11} + 2125952 q^{14} + 6291456 q^{16} - 24109080 q^{19} + 542720 q^{20} - 181718850 q^{25} - 89251584 q^{26} + 256409820 q^{29} + 458481792 q^{31}+ \cdots - 104896380600 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 0 0
\(4\) −1024.00 −0.500000
\(5\) 4156.64 + 5616.98i 0.594850 + 0.803837i
\(6\) 0 0
\(7\) 73603.8i 1.65524i −0.561288 0.827620i \(-0.689694\pi\)
0.561288 0.827620i \(-0.310306\pi\)
\(8\) 32768.0i 0.353553i
\(9\) 0 0
\(10\) −179743. + 133012.i −0.568399 + 0.420622i
\(11\) 276114. 0.516926 0.258463 0.966021i \(-0.416784\pi\)
0.258463 + 0.966021i \(0.416784\pi\)
\(12\) 0 0
\(13\) 726988.i 0.543049i −0.962432 0.271524i \(-0.912472\pi\)
0.962432 0.271524i \(-0.0875277\pi\)
\(14\) 2.35532e6 1.17043
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 3.21222e6i 0.548701i −0.961630 0.274351i \(-0.911537\pi\)
0.961630 0.274351i \(-0.0884629\pi\)
\(18\) 0 0
\(19\) −1.55879e7 −1.44425 −0.722125 0.691762i \(-0.756835\pi\)
−0.722125 + 0.691762i \(0.756835\pi\)
\(20\) −4.25640e6 5.75179e6i −0.297425 0.401919i
\(21\) 0 0
\(22\) 8.83564e6i 0.365522i
\(23\) 3.25041e7i 1.05302i 0.850170 + 0.526508i \(0.176499\pi\)
−0.850170 + 0.526508i \(0.823501\pi\)
\(24\) 0 0
\(25\) −1.42729e7 + 4.66955e7i −0.292308 + 0.956324i
\(26\) 2.32636e7 0.383993
\(27\) 0 0
\(28\) 7.53703e7i 0.827620i
\(29\) −4.53029e7 −0.410144 −0.205072 0.978747i \(-0.565743\pi\)
−0.205072 + 0.978747i \(0.565743\pi\)
\(30\) 0 0
\(31\) −1.06580e8 −0.668628 −0.334314 0.942462i \(-0.608505\pi\)
−0.334314 + 0.942462i \(0.608505\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 0 0
\(34\) 1.02791e8 0.387990
\(35\) 4.13431e8 3.05944e8i 1.33054 0.984619i
\(36\) 0 0
\(37\) 1.65530e8i 0.392435i 0.980560 + 0.196218i \(0.0628659\pi\)
−0.980560 + 0.196218i \(0.937134\pi\)
\(38\) 4.98812e8i 1.02124i
\(39\) 0 0
\(40\) 1.84057e8 1.36205e8i 0.284199 0.210311i
\(41\) −2.36566e8 −0.318890 −0.159445 0.987207i \(-0.550970\pi\)
−0.159445 + 0.987207i \(0.550970\pi\)
\(42\) 0 0
\(43\) 7.28874e8i 0.756095i 0.925786 + 0.378047i \(0.123404\pi\)
−0.925786 + 0.378047i \(0.876596\pi\)
\(44\) −2.82740e8 −0.258463
\(45\) 0 0
\(46\) −1.04013e9 −0.744595
\(47\) 1.41793e9i 0.901816i 0.892570 + 0.450908i \(0.148900\pi\)
−0.892570 + 0.450908i \(0.851100\pi\)
\(48\) 0 0
\(49\) −3.44020e9 −1.73982
\(50\) −1.49426e9 4.56731e8i −0.676223 0.206693i
\(51\) 0 0
\(52\) 7.44435e8i 0.271524i
\(53\) 3.08706e9i 1.01397i 0.861953 + 0.506987i \(0.169241\pi\)
−0.861953 + 0.506987i \(0.830759\pi\)
\(54\) 0 0
\(55\) 1.14770e9 + 1.55093e9i 0.307493 + 0.415524i
\(56\) −2.41185e9 −0.585216
\(57\) 0 0
\(58\) 1.44969e9i 0.290016i
\(59\) −7.61532e9 −1.38676 −0.693381 0.720571i \(-0.743880\pi\)
−0.693381 + 0.720571i \(0.743880\pi\)
\(60\) 0 0
\(61\) 1.45582e9 0.220695 0.110347 0.993893i \(-0.464804\pi\)
0.110347 + 0.993893i \(0.464804\pi\)
\(62\) 3.41054e9i 0.472791i
\(63\) 0 0
\(64\) −1.07374e9 −0.125000
\(65\) 4.08348e9 3.02182e9i 0.436523 0.323032i
\(66\) 0 0
\(67\) 1.32563e10i 1.19953i −0.800177 0.599764i \(-0.795261\pi\)
0.800177 0.599764i \(-0.204739\pi\)
\(68\) 3.28931e9i 0.274351i
\(69\) 0 0
\(70\) 9.79022e9 + 1.32298e10i 0.696231 + 0.940837i
\(71\) −9.49012e8 −0.0624239 −0.0312119 0.999513i \(-0.509937\pi\)
−0.0312119 + 0.999513i \(0.509937\pi\)
\(72\) 0 0
\(73\) 1.30829e10i 0.738634i −0.929303 0.369317i \(-0.879592\pi\)
0.929303 0.369317i \(-0.120408\pi\)
\(74\) −5.29697e9 −0.277494
\(75\) 0 0
\(76\) 1.59620e10 0.722125
\(77\) 2.03230e10i 0.855637i
\(78\) 0 0
\(79\) −5.30163e10 −1.93848 −0.969238 0.246124i \(-0.920843\pi\)
−0.969238 + 0.246124i \(0.920843\pi\)
\(80\) 4.35855e9 + 5.88983e9i 0.148712 + 0.200959i
\(81\) 0 0
\(82\) 7.57010e9i 0.225489i
\(83\) 2.15490e10i 0.600479i −0.953864 0.300239i \(-0.902933\pi\)
0.953864 0.300239i \(-0.0970666\pi\)
\(84\) 0 0
\(85\) 1.80430e10 1.33520e10i 0.441066 0.326395i
\(86\) −2.33240e10 −0.534640
\(87\) 0 0
\(88\) 9.04769e9i 0.182761i
\(89\) −5.64241e10 −1.07107 −0.535537 0.844511i \(-0.679891\pi\)
−0.535537 + 0.844511i \(0.679891\pi\)
\(90\) 0 0
\(91\) −5.35091e10 −0.898876
\(92\) 3.32842e10i 0.526508i
\(93\) 0 0
\(94\) −4.53739e10 −0.637680
\(95\) −6.47932e10 8.75569e10i −0.859112 1.16094i
\(96\) 0 0
\(97\) 4.40060e10i 0.520316i 0.965566 + 0.260158i \(0.0837746\pi\)
−0.965566 + 0.260158i \(0.916225\pi\)
\(98\) 1.10086e11i 1.23024i
\(99\) 0 0
\(100\) 1.46154e10 4.78162e10i 0.146154 0.478162i
\(101\) 9.78679e8 0.00926558 0.00463279 0.999989i \(-0.498525\pi\)
0.00463279 + 0.999989i \(0.498525\pi\)
\(102\) 0 0
\(103\) 9.00212e10i 0.765139i −0.923927 0.382569i \(-0.875039\pi\)
0.923927 0.382569i \(-0.124961\pi\)
\(104\) −2.38219e10 −0.191997
\(105\) 0 0
\(106\) −9.87858e10 −0.716988
\(107\) 1.75119e11i 1.20705i −0.797346 0.603523i \(-0.793763\pi\)
0.797346 0.603523i \(-0.206237\pi\)
\(108\) 0 0
\(109\) 2.69261e11 1.67620 0.838102 0.545513i \(-0.183665\pi\)
0.838102 + 0.545513i \(0.183665\pi\)
\(110\) −4.96296e10 + 3.67265e10i −0.293820 + 0.217430i
\(111\) 0 0
\(112\) 7.71792e10i 0.413810i
\(113\) 2.51799e11i 1.28565i 0.766013 + 0.642825i \(0.222238\pi\)
−0.766013 + 0.642825i \(0.777762\pi\)
\(114\) 0 0
\(115\) −1.82575e11 + 1.35108e11i −0.846454 + 0.626386i
\(116\) 4.63901e10 0.205072
\(117\) 0 0
\(118\) 2.43690e11i 0.980589i
\(119\) −2.36431e11 −0.908232
\(120\) 0 0
\(121\) −2.09073e11 −0.732788
\(122\) 4.65861e10i 0.156055i
\(123\) 0 0
\(124\) 1.09137e11 0.334314
\(125\) −3.21615e11 + 1.13926e11i −0.942608 + 0.333901i
\(126\) 0 0
\(127\) 5.68757e11i 1.52759i −0.645459 0.763795i \(-0.723334\pi\)
0.645459 0.763795i \(-0.276666\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 0 0
\(130\) 9.66984e10 + 1.30671e11i 0.228418 + 0.308668i
\(131\) −3.29083e11 −0.745270 −0.372635 0.927978i \(-0.621546\pi\)
−0.372635 + 0.927978i \(0.621546\pi\)
\(132\) 0 0
\(133\) 1.14733e12i 2.39058i
\(134\) 4.24201e11 0.848194
\(135\) 0 0
\(136\) −1.05258e11 −0.193995
\(137\) 3.26164e11i 0.577394i −0.957420 0.288697i \(-0.906778\pi\)
0.957420 0.288697i \(-0.0932221\pi\)
\(138\) 0 0
\(139\) −2.17139e10 −0.0354942 −0.0177471 0.999843i \(-0.505649\pi\)
−0.0177471 + 0.999843i \(0.505649\pi\)
\(140\) −4.23354e11 + 3.13287e11i −0.665272 + 0.492310i
\(141\) 0 0
\(142\) 3.03684e10i 0.0441403i
\(143\) 2.00731e11i 0.280716i
\(144\) 0 0
\(145\) −1.88308e11 2.54465e11i −0.243974 0.329689i
\(146\) 4.18654e11 0.522293
\(147\) 0 0
\(148\) 1.69503e11i 0.196218i
\(149\) −9.81939e10 −0.109537 −0.0547684 0.998499i \(-0.517442\pi\)
−0.0547684 + 0.998499i \(0.517442\pi\)
\(150\) 0 0
\(151\) −1.60820e12 −1.66712 −0.833558 0.552432i \(-0.813700\pi\)
−0.833558 + 0.552432i \(0.813700\pi\)
\(152\) 5.10784e11i 0.510620i
\(153\) 0 0
\(154\) 6.50337e11 0.605026
\(155\) −4.43012e11 5.98655e11i −0.397733 0.537468i
\(156\) 0 0
\(157\) 9.79921e11i 0.819867i 0.912116 + 0.409933i \(0.134448\pi\)
−0.912116 + 0.409933i \(0.865552\pi\)
\(158\) 1.69652e12i 1.37071i
\(159\) 0 0
\(160\) −1.88475e11 + 1.39474e11i −0.142100 + 0.105156i
\(161\) 2.39243e12 1.74300
\(162\) 0 0
\(163\) 8.12475e11i 0.553068i 0.961004 + 0.276534i \(0.0891858\pi\)
−0.961004 + 0.276534i \(0.910814\pi\)
\(164\) 2.42243e11 0.159445
\(165\) 0 0
\(166\) 6.89568e11 0.424603
\(167\) 2.27106e12i 1.35297i 0.736458 + 0.676484i \(0.236497\pi\)
−0.736458 + 0.676484i \(0.763503\pi\)
\(168\) 0 0
\(169\) 1.26365e12 0.705098
\(170\) 4.27265e11 + 5.77375e11i 0.230796 + 0.311881i
\(171\) 0 0
\(172\) 7.46367e11i 0.378047i
\(173\) 3.16932e12i 1.55494i 0.628921 + 0.777469i \(0.283497\pi\)
−0.628921 + 0.777469i \(0.716503\pi\)
\(174\) 0 0
\(175\) 3.43697e12 + 1.05054e12i 1.58295 + 0.483840i
\(176\) 2.89526e11 0.129231
\(177\) 0 0
\(178\) 1.80557e12i 0.757364i
\(179\) 4.56681e12 1.85747 0.928734 0.370747i \(-0.120898\pi\)
0.928734 + 0.370747i \(0.120898\pi\)
\(180\) 0 0
\(181\) −1.55390e12 −0.594553 −0.297276 0.954791i \(-0.596078\pi\)
−0.297276 + 0.954791i \(0.596078\pi\)
\(182\) 1.71229e12i 0.635601i
\(183\) 0 0
\(184\) 1.06509e12 0.372297
\(185\) −9.29781e11 + 6.88050e11i −0.315454 + 0.233440i
\(186\) 0 0
\(187\) 8.86937e11i 0.283638i
\(188\) 1.45196e12i 0.450908i
\(189\) 0 0
\(190\) 2.80182e12 2.07338e12i 0.820910 0.607484i
\(191\) 2.09841e12 0.597319 0.298659 0.954360i \(-0.403461\pi\)
0.298659 + 0.954360i \(0.403461\pi\)
\(192\) 0 0
\(193\) 1.49038e12i 0.400620i 0.979733 + 0.200310i \(0.0641950\pi\)
−0.979733 + 0.200310i \(0.935805\pi\)
\(194\) −1.40819e12 −0.367919
\(195\) 0 0
\(196\) 3.52276e12 0.869911
\(197\) 1.54638e12i 0.371322i 0.982614 + 0.185661i \(0.0594426\pi\)
−0.982614 + 0.185661i \(0.940557\pi\)
\(198\) 0 0
\(199\) −3.26839e12 −0.742407 −0.371204 0.928552i \(-0.621055\pi\)
−0.371204 + 0.928552i \(0.621055\pi\)
\(200\) 1.53012e12 + 4.67693e11i 0.338112 + 0.103347i
\(201\) 0 0
\(202\) 3.13177e10i 0.00655176i
\(203\) 3.33446e12i 0.678888i
\(204\) 0 0
\(205\) −9.83317e11 1.32878e12i −0.189691 0.256335i
\(206\) 2.88068e12 0.541035
\(207\) 0 0
\(208\) 7.62302e11i 0.135762i
\(209\) −4.30403e12 −0.746570
\(210\) 0 0
\(211\) −2.09010e12 −0.344043 −0.172021 0.985093i \(-0.555030\pi\)
−0.172021 + 0.985093i \(0.555030\pi\)
\(212\) 3.16114e12i 0.506987i
\(213\) 0 0
\(214\) 5.60382e12 0.853510
\(215\) −4.09407e12 + 3.02967e12i −0.607777 + 0.449763i
\(216\) 0 0
\(217\) 7.84466e12i 1.10674i
\(218\) 8.61634e12i 1.18526i
\(219\) 0 0
\(220\) −1.17525e12 1.58815e12i −0.153747 0.207762i
\(221\) −2.33524e12 −0.297971
\(222\) 0 0
\(223\) 1.89689e12i 0.230338i 0.993346 + 0.115169i \(0.0367409\pi\)
−0.993346 + 0.115169i \(0.963259\pi\)
\(224\) 2.46973e12 0.292608
\(225\) 0 0
\(226\) −8.05757e12 −0.909092
\(227\) 2.22297e12i 0.244788i 0.992482 + 0.122394i \(0.0390572\pi\)
−0.992482 + 0.122394i \(0.960943\pi\)
\(228\) 0 0
\(229\) −1.10056e12 −0.115483 −0.0577415 0.998332i \(-0.518390\pi\)
−0.0577415 + 0.998332i \(0.518390\pi\)
\(230\) −4.32345e12 5.84240e12i −0.442922 0.598533i
\(231\) 0 0
\(232\) 1.48448e12i 0.145008i
\(233\) 7.26117e12i 0.692706i −0.938104 0.346353i \(-0.887420\pi\)
0.938104 0.346353i \(-0.112580\pi\)
\(234\) 0 0
\(235\) −7.96451e12 + 5.89384e12i −0.724913 + 0.536445i
\(236\) 7.79808e12 0.693381
\(237\) 0 0
\(238\) 7.56581e12i 0.642217i
\(239\) 1.69859e13 1.40896 0.704482 0.709722i \(-0.251179\pi\)
0.704482 + 0.709722i \(0.251179\pi\)
\(240\) 0 0
\(241\) 3.71937e12 0.294697 0.147349 0.989085i \(-0.452926\pi\)
0.147349 + 0.989085i \(0.452926\pi\)
\(242\) 6.69033e12i 0.518159i
\(243\) 0 0
\(244\) −1.49076e12 −0.110347
\(245\) −1.42996e13 1.93235e13i −1.03493 1.39853i
\(246\) 0 0
\(247\) 1.13322e13i 0.784298i
\(248\) 3.49240e12i 0.236396i
\(249\) 0 0
\(250\) −3.64563e12 1.02917e13i −0.236104 0.666525i
\(251\) −1.95302e13 −1.23737 −0.618687 0.785637i \(-0.712335\pi\)
−0.618687 + 0.785637i \(0.712335\pi\)
\(252\) 0 0
\(253\) 8.97483e12i 0.544331i
\(254\) 1.82002e13 1.08017
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 9.96454e12i 0.554402i 0.960812 + 0.277201i \(0.0894068\pi\)
−0.960812 + 0.277201i \(0.910593\pi\)
\(258\) 0 0
\(259\) 1.21837e13 0.649575
\(260\) −4.18148e12 + 3.09435e12i −0.218261 + 0.161516i
\(261\) 0 0
\(262\) 1.05307e13i 0.526985i
\(263\) 1.85332e13i 0.908225i −0.890944 0.454112i \(-0.849956\pi\)
0.890944 0.454112i \(-0.150044\pi\)
\(264\) 0 0
\(265\) −1.73399e13 + 1.28318e13i −0.815070 + 0.603162i
\(266\) −3.67145e13 −1.69040
\(267\) 0 0
\(268\) 1.35744e13i 0.599764i
\(269\) −1.34102e13 −0.580493 −0.290247 0.956952i \(-0.593737\pi\)
−0.290247 + 0.956952i \(0.593737\pi\)
\(270\) 0 0
\(271\) −2.99278e13 −1.24378 −0.621890 0.783105i \(-0.713635\pi\)
−0.621890 + 0.783105i \(0.713635\pi\)
\(272\) 3.36825e12i 0.137175i
\(273\) 0 0
\(274\) 1.04372e13 0.408279
\(275\) −3.94093e12 + 1.28933e13i −0.151102 + 0.494349i
\(276\) 0 0
\(277\) 4.40434e13i 1.62271i −0.584551 0.811357i \(-0.698729\pi\)
0.584551 0.811357i \(-0.301271\pi\)
\(278\) 6.94846e11i 0.0250982i
\(279\) 0 0
\(280\) −1.00252e13 1.35473e13i −0.348115 0.470418i
\(281\) −3.84310e13 −1.30857 −0.654286 0.756247i \(-0.727031\pi\)
−0.654286 + 0.756247i \(0.727031\pi\)
\(282\) 0 0
\(283\) 1.73740e13i 0.568951i −0.958683 0.284475i \(-0.908181\pi\)
0.958683 0.284475i \(-0.0918194\pi\)
\(284\) 9.71788e11 0.0312119
\(285\) 0 0
\(286\) 6.42340e12 0.198496
\(287\) 1.74121e13i 0.527839i
\(288\) 0 0
\(289\) 2.39536e13 0.698927
\(290\) 8.14289e12 6.02584e12i 0.233125 0.172516i
\(291\) 0 0
\(292\) 1.33969e13i 0.369317i
\(293\) 2.71688e13i 0.735019i −0.930020 0.367510i \(-0.880210\pi\)
0.930020 0.367510i \(-0.119790\pi\)
\(294\) 0 0
\(295\) −3.16541e13 4.27751e13i −0.824915 1.11473i
\(296\) 5.42410e12 0.138747
\(297\) 0 0
\(298\) 3.14220e12i 0.0774542i
\(299\) 2.36301e13 0.571839
\(300\) 0 0
\(301\) 5.36479e13 1.25152
\(302\) 5.14623e13i 1.17883i
\(303\) 0 0
\(304\) −1.63451e13 −0.361063
\(305\) 6.05130e12 + 8.17729e12i 0.131280 + 0.177403i
\(306\) 0 0
\(307\) 7.68468e13i 1.60829i −0.594432 0.804146i \(-0.702623\pi\)
0.594432 0.804146i \(-0.297377\pi\)
\(308\) 2.08108e13i 0.427818i
\(309\) 0 0
\(310\) 1.91570e13 1.41764e13i 0.380047 0.281240i
\(311\) 4.58065e12 0.0892781 0.0446390 0.999003i \(-0.485786\pi\)
0.0446390 + 0.999003i \(0.485786\pi\)
\(312\) 0 0
\(313\) 6.56768e13i 1.23571i 0.786290 + 0.617857i \(0.211999\pi\)
−0.786290 + 0.617857i \(0.788001\pi\)
\(314\) −3.13575e13 −0.579733
\(315\) 0 0
\(316\) 5.42887e13 0.969238
\(317\) 6.53941e13i 1.14739i −0.819067 0.573697i \(-0.805509\pi\)
0.819067 0.573697i \(-0.194491\pi\)
\(318\) 0 0
\(319\) −1.25087e13 −0.212014
\(320\) −4.46316e12 6.03119e12i −0.0743562 0.100480i
\(321\) 0 0
\(322\) 7.65576e13i 1.23248i
\(323\) 5.00717e13i 0.792462i
\(324\) 0 0
\(325\) 3.39471e13 + 1.03762e13i 0.519330 + 0.158737i
\(326\) −2.59992e13 −0.391078
\(327\) 0 0
\(328\) 7.75178e12i 0.112744i
\(329\) 1.04365e14 1.49272
\(330\) 0 0
\(331\) 1.82867e13 0.252977 0.126488 0.991968i \(-0.459629\pi\)
0.126488 + 0.991968i \(0.459629\pi\)
\(332\) 2.20662e13i 0.300239i
\(333\) 0 0
\(334\) −7.26738e13 −0.956693
\(335\) 7.44603e13 5.51015e13i 0.964225 0.713538i
\(336\) 0 0
\(337\) 6.32083e12i 0.0792155i −0.999215 0.0396077i \(-0.987389\pi\)
0.999215 0.0396077i \(-0.0126108\pi\)
\(338\) 4.04368e13i 0.498580i
\(339\) 0 0
\(340\) −1.84760e13 + 1.36725e13i −0.220533 + 0.163197i
\(341\) −2.94281e13 −0.345631
\(342\) 0 0
\(343\) 1.07673e14i 1.22458i
\(344\) 2.38838e13 0.267320
\(345\) 0 0
\(346\) −1.01418e14 −1.09951
\(347\) 9.38390e13i 1.00132i 0.865645 + 0.500658i \(0.166909\pi\)
−0.865645 + 0.500658i \(0.833091\pi\)
\(348\) 0 0
\(349\) −1.24898e14 −1.29127 −0.645634 0.763647i \(-0.723407\pi\)
−0.645634 + 0.763647i \(0.723407\pi\)
\(350\) −3.36172e13 + 1.09983e14i −0.342127 + 1.11931i
\(351\) 0 0
\(352\) 9.26484e12i 0.0913804i
\(353\) 4.95093e13i 0.480757i 0.970679 + 0.240378i \(0.0772715\pi\)
−0.970679 + 0.240378i \(0.922728\pi\)
\(354\) 0 0
\(355\) −3.94470e12 5.33058e12i −0.0371328 0.0501786i
\(356\) 5.77783e13 0.535537
\(357\) 0 0
\(358\) 1.46138e14i 1.31343i
\(359\) −8.82048e13 −0.780680 −0.390340 0.920671i \(-0.627642\pi\)
−0.390340 + 0.920671i \(0.627642\pi\)
\(360\) 0 0
\(361\) 1.26492e14 1.08586
\(362\) 4.97248e13i 0.420412i
\(363\) 0 0
\(364\) 5.47933e13 0.449438
\(365\) 7.34866e13 5.43810e13i 0.593742 0.439376i
\(366\) 0 0
\(367\) 9.89014e13i 0.775423i −0.921781 0.387712i \(-0.873266\pi\)
0.921781 0.387712i \(-0.126734\pi\)
\(368\) 3.40830e13i 0.263254i
\(369\) 0 0
\(370\) −2.20176e13 2.97530e13i −0.165067 0.223060i
\(371\) 2.27219e14 1.67837
\(372\) 0 0
\(373\) 3.15437e13i 0.226211i 0.993583 + 0.113105i \(0.0360798\pi\)
−0.993583 + 0.113105i \(0.963920\pi\)
\(374\) 2.83820e13 0.200562
\(375\) 0 0
\(376\) 4.64629e13 0.318840
\(377\) 3.29346e13i 0.222728i
\(378\) 0 0
\(379\) 1.45966e14 0.958815 0.479408 0.877592i \(-0.340852\pi\)
0.479408 + 0.877592i \(0.340852\pi\)
\(380\) 6.63482e13 + 8.96583e13i 0.429556 + 0.580471i
\(381\) 0 0
\(382\) 6.71490e13i 0.422368i
\(383\) 9.39255e13i 0.582358i 0.956669 + 0.291179i \(0.0940476\pi\)
−0.956669 + 0.291179i \(0.905952\pi\)
\(384\) 0 0
\(385\) 1.14154e14 8.44754e13i 0.687792 0.508975i
\(386\) −4.76923e13 −0.283281
\(387\) 0 0
\(388\) 4.50621e13i 0.260158i
\(389\) 2.77248e13 0.157814 0.0789071 0.996882i \(-0.474857\pi\)
0.0789071 + 0.996882i \(0.474857\pi\)
\(390\) 0 0
\(391\) 1.04410e14 0.577791
\(392\) 1.12728e14i 0.615120i
\(393\) 0 0
\(394\) −4.94840e13 −0.262564
\(395\) −2.20370e14 2.97792e14i −1.15310 1.55822i
\(396\) 0 0
\(397\) 1.80795e14i 0.920106i −0.887892 0.460053i \(-0.847830\pi\)
0.887892 0.460053i \(-0.152170\pi\)
\(398\) 1.04589e14i 0.524961i
\(399\) 0 0
\(400\) −1.49662e13 + 4.89638e13i −0.0730770 + 0.239081i
\(401\) −1.34767e14 −0.649065 −0.324533 0.945874i \(-0.605207\pi\)
−0.324533 + 0.945874i \(0.605207\pi\)
\(402\) 0 0
\(403\) 7.74820e13i 0.363097i
\(404\) −1.00217e12 −0.00463279
\(405\) 0 0
\(406\) −1.06703e14 −0.480046
\(407\) 4.57052e13i 0.202860i
\(408\) 0 0
\(409\) 1.61853e14 0.699264 0.349632 0.936887i \(-0.386307\pi\)
0.349632 + 0.936887i \(0.386307\pi\)
\(410\) 4.25211e13 3.14662e13i 0.181256 0.134132i
\(411\) 0 0
\(412\) 9.21817e13i 0.382569i
\(413\) 5.60516e14i 2.29542i
\(414\) 0 0
\(415\) 1.21040e14 8.95714e13i 0.482687 0.357195i
\(416\) 2.43937e13 0.0959983
\(417\) 0 0
\(418\) 1.37729e14i 0.527905i
\(419\) −4.46107e13 −0.168757 −0.0843785 0.996434i \(-0.526890\pi\)
−0.0843785 + 0.996434i \(0.526890\pi\)
\(420\) 0 0
\(421\) −3.96897e14 −1.46260 −0.731301 0.682055i \(-0.761086\pi\)
−0.731301 + 0.682055i \(0.761086\pi\)
\(422\) 6.68831e13i 0.243275i
\(423\) 0 0
\(424\) 1.01157e14 0.358494
\(425\) 1.49996e14 + 4.58475e13i 0.524736 + 0.160390i
\(426\) 0 0
\(427\) 1.07154e14i 0.365303i
\(428\) 1.79322e14i 0.603523i
\(429\) 0 0
\(430\) −9.69493e13 1.31010e14i −0.318030 0.429763i
\(431\) 4.73312e14 1.53293 0.766465 0.642286i \(-0.222014\pi\)
0.766465 + 0.642286i \(0.222014\pi\)
\(432\) 0 0
\(433\) 6.09516e14i 1.92443i 0.272297 + 0.962213i \(0.412217\pi\)
−0.272297 + 0.962213i \(0.587783\pi\)
\(434\) −2.51029e14 −0.782583
\(435\) 0 0
\(436\) −2.75723e14 −0.838102
\(437\) 5.06670e14i 1.52082i
\(438\) 0 0
\(439\) 3.89020e14 1.13872 0.569360 0.822088i \(-0.307191\pi\)
0.569360 + 0.822088i \(0.307191\pi\)
\(440\) 5.08207e13 3.76080e13i 0.146910 0.108715i
\(441\) 0 0
\(442\) 7.47278e13i 0.210698i
\(443\) 6.78395e14i 1.88913i −0.328322 0.944566i \(-0.606483\pi\)
0.328322 0.944566i \(-0.393517\pi\)
\(444\) 0 0
\(445\) −2.34535e14 3.16933e14i −0.637128 0.860970i
\(446\) −6.07005e13 −0.162873
\(447\) 0 0
\(448\) 7.90315e13i 0.206905i
\(449\) −2.75571e14 −0.712653 −0.356327 0.934361i \(-0.615971\pi\)
−0.356327 + 0.934361i \(0.615971\pi\)
\(450\) 0 0
\(451\) −6.53190e13 −0.164842
\(452\) 2.57842e14i 0.642825i
\(453\) 0 0
\(454\) −7.11349e13 −0.173091
\(455\) −2.22418e14 3.00560e14i −0.534696 0.722550i
\(456\) 0 0
\(457\) 5.15690e14i 1.21018i −0.796158 0.605089i \(-0.793137\pi\)
0.796158 0.605089i \(-0.206863\pi\)
\(458\) 3.52179e13i 0.0816588i
\(459\) 0 0
\(460\) 1.86957e14 1.38350e14i 0.423227 0.313193i
\(461\) 1.71680e14 0.384030 0.192015 0.981392i \(-0.438498\pi\)
0.192015 + 0.981392i \(0.438498\pi\)
\(462\) 0 0
\(463\) 2.98973e14i 0.653034i 0.945191 + 0.326517i \(0.105875\pi\)
−0.945191 + 0.326517i \(0.894125\pi\)
\(464\) −4.75035e13 −0.102536
\(465\) 0 0
\(466\) 2.32357e14 0.489817
\(467\) 9.49939e13i 0.197903i 0.995092 + 0.0989516i \(0.0315489\pi\)
−0.995092 + 0.0989516i \(0.968451\pi\)
\(468\) 0 0
\(469\) −9.75713e14 −1.98551
\(470\) −1.88603e14 2.54864e14i −0.379324 0.512591i
\(471\) 0 0
\(472\) 2.49539e14i 0.490294i
\(473\) 2.01252e14i 0.390845i
\(474\) 0 0
\(475\) 2.22484e14 7.27885e14i 0.422166 1.38117i
\(476\) 2.42106e14 0.454116
\(477\) 0 0
\(478\) 5.43549e14i 0.996288i
\(479\) −3.78434e14 −0.685717 −0.342859 0.939387i \(-0.611395\pi\)
−0.342859 + 0.939387i \(0.611395\pi\)
\(480\) 0 0
\(481\) 1.20339e14 0.213112
\(482\) 1.19020e14i 0.208382i
\(483\) 0 0
\(484\) 2.14091e14 0.366394
\(485\) −2.47181e14 + 1.82917e14i −0.418249 + 0.309510i
\(486\) 0 0
\(487\) 6.10112e14i 1.00925i 0.863337 + 0.504627i \(0.168370\pi\)
−0.863337 + 0.504627i \(0.831630\pi\)
\(488\) 4.77042e13i 0.0780274i
\(489\) 0 0
\(490\) 6.18353e14 4.57589e14i 0.988912 0.731808i
\(491\) −1.13713e15 −1.79830 −0.899152 0.437637i \(-0.855815\pi\)
−0.899152 + 0.437637i \(0.855815\pi\)
\(492\) 0 0
\(493\) 1.45523e14i 0.225047i
\(494\) −3.62631e14 −0.554583
\(495\) 0 0
\(496\) −1.11757e14 −0.167157
\(497\) 6.98509e13i 0.103327i
\(498\) 0 0
\(499\) −8.96225e14 −1.29677 −0.648387 0.761311i \(-0.724556\pi\)
−0.648387 + 0.761311i \(0.724556\pi\)
\(500\) 3.29334e14 1.16660e14i 0.471304 0.166950i
\(501\) 0 0
\(502\) 6.24966e14i 0.874956i
\(503\) 4.50342e14i 0.623618i 0.950145 + 0.311809i \(0.100935\pi\)
−0.950145 + 0.311809i \(0.899065\pi\)
\(504\) 0 0
\(505\) 4.06801e12 + 5.49722e12i 0.00551163 + 0.00744802i
\(506\) −2.87194e14 −0.384900
\(507\) 0 0
\(508\) 5.82408e14i 0.763795i
\(509\) −1.35840e15 −1.76230 −0.881151 0.472834i \(-0.843231\pi\)
−0.881151 + 0.472834i \(0.843231\pi\)
\(510\) 0 0
\(511\) −9.62954e14 −1.22262
\(512\) 3.51844e13i 0.0441942i
\(513\) 0 0
\(514\) −3.18865e14 −0.392022
\(515\) 5.05648e14 3.74186e14i 0.615047 0.455142i
\(516\) 0 0
\(517\) 3.91511e14i 0.466172i
\(518\) 3.89877e14i 0.459319i
\(519\) 0 0
\(520\) −9.90192e13 1.33807e14i −0.114209 0.154334i
\(521\) 1.60516e15 1.83194 0.915970 0.401247i \(-0.131423\pi\)
0.915970 + 0.401247i \(0.131423\pi\)
\(522\) 0 0
\(523\) 9.61728e13i 0.107471i 0.998555 + 0.0537357i \(0.0171129\pi\)
−0.998555 + 0.0537357i \(0.982887\pi\)
\(524\) 3.36981e14 0.372635
\(525\) 0 0
\(526\) 5.93062e14 0.642212
\(527\) 3.42357e14i 0.366877i
\(528\) 0 0
\(529\) −1.03707e14 −0.108843
\(530\) −4.10617e14 5.54878e14i −0.426500 0.576342i
\(531\) 0 0
\(532\) 1.17486e15i 1.19529i
\(533\) 1.71980e14i 0.173173i
\(534\) 0 0
\(535\) 9.83643e14 7.27908e14i 0.970268 0.718010i
\(536\) −4.34382e14 −0.424097
\(537\) 0 0
\(538\) 4.29126e14i 0.410471i
\(539\) −9.49885e14 −0.899359
\(540\) 0 0
\(541\) 2.13640e14 0.198197 0.0990986 0.995078i \(-0.468404\pi\)
0.0990986 + 0.995078i \(0.468404\pi\)
\(542\) 9.57689e14i 0.879485i
\(543\) 0 0
\(544\) 1.07784e14 0.0969976
\(545\) 1.11922e15 + 1.51243e15i 0.997090 + 1.34740i
\(546\) 0 0
\(547\) 4.37872e13i 0.0382311i 0.999817 + 0.0191156i \(0.00608504\pi\)
−0.999817 + 0.0191156i \(0.993915\pi\)
\(548\) 3.33992e14i 0.288697i
\(549\) 0 0
\(550\) −4.12585e14 1.26110e14i −0.349557 0.106845i
\(551\) 7.06176e14 0.592351
\(552\) 0 0
\(553\) 3.90220e15i 3.20865i
\(554\) 1.40939e15 1.14743
\(555\) 0 0
\(556\) 2.22351e13 0.0177471
\(557\) 1.57027e14i 0.124100i −0.998073 0.0620500i \(-0.980236\pi\)
0.998073 0.0620500i \(-0.0197638\pi\)
\(558\) 0 0
\(559\) 5.29883e14 0.410596
\(560\) 4.33514e14 3.20806e14i 0.332636 0.246155i
\(561\) 0 0
\(562\) 1.22979e15i 0.925300i
\(563\) 4.81449e14i 0.358719i 0.983784 + 0.179359i \(0.0574025\pi\)
−0.983784 + 0.179359i \(0.942598\pi\)
\(564\) 0 0
\(565\) −1.41435e15 + 1.04664e15i −1.03345 + 0.764768i
\(566\) 5.55968e14 0.402309
\(567\) 0 0
\(568\) 3.10972e13i 0.0220702i
\(569\) 1.74463e15 1.22627 0.613134 0.789979i \(-0.289908\pi\)
0.613134 + 0.789979i \(0.289908\pi\)
\(570\) 0 0
\(571\) 2.52262e15 1.73921 0.869606 0.493747i \(-0.164373\pi\)
0.869606 + 0.493747i \(0.164373\pi\)
\(572\) 2.05549e14i 0.140358i
\(573\) 0 0
\(574\) −5.57188e14 −0.373238
\(575\) −1.51780e15 4.63926e14i −1.00702 0.307805i
\(576\) 0 0
\(577\) 1.34881e15i 0.877978i −0.898492 0.438989i \(-0.855337\pi\)
0.898492 0.438989i \(-0.144663\pi\)
\(578\) 7.66514e14i 0.494216i
\(579\) 0 0
\(580\) 1.92827e14 + 2.60573e14i 0.121987 + 0.164845i
\(581\) −1.58609e15 −0.993937
\(582\) 0 0
\(583\) 8.52378e14i 0.524150i
\(584\) −4.28702e14 −0.261147
\(585\) 0 0
\(586\) 8.69402e14 0.519737
\(587\) 7.29536e14i 0.432053i −0.976387 0.216027i \(-0.930690\pi\)
0.976387 0.216027i \(-0.0693098\pi\)
\(588\) 0 0
\(589\) 1.66135e15 0.965666
\(590\) 1.36880e15 1.01293e15i 0.788234 0.583303i
\(591\) 0 0
\(592\) 1.73571e14i 0.0981089i
\(593\) 5.23392e14i 0.293107i 0.989203 + 0.146554i \(0.0468181\pi\)
−0.989203 + 0.146554i \(0.953182\pi\)
\(594\) 0 0
\(595\) −9.82760e14 1.32803e15i −0.540262 0.730071i
\(596\) 1.00551e14 0.0547684
\(597\) 0 0
\(598\) 7.56163e14i 0.404351i
\(599\) 3.40071e15 1.80186 0.900932 0.433961i \(-0.142884\pi\)
0.900932 + 0.433961i \(0.142884\pi\)
\(600\) 0 0
\(601\) −6.34979e14 −0.330331 −0.165166 0.986266i \(-0.552816\pi\)
−0.165166 + 0.986266i \(0.552816\pi\)
\(602\) 1.71673e15i 0.884957i
\(603\) 0 0
\(604\) 1.64679e15 0.833558
\(605\) −8.69040e14 1.17436e15i −0.435898 0.589042i
\(606\) 0 0
\(607\) 3.98915e14i 0.196491i 0.995162 + 0.0982455i \(0.0313230\pi\)
−0.995162 + 0.0982455i \(0.968677\pi\)
\(608\) 5.23043e14i 0.255310i
\(609\) 0 0
\(610\) −2.61673e14 + 1.93642e14i −0.125443 + 0.0928292i
\(611\) 1.03082e15 0.489730
\(612\) 0 0
\(613\) 2.02942e15i 0.946977i −0.880800 0.473489i \(-0.842994\pi\)
0.880800 0.473489i \(-0.157006\pi\)
\(614\) 2.45910e15 1.13723
\(615\) 0 0
\(616\) −6.65945e14 −0.302513
\(617\) 2.44138e15i 1.09917i −0.835436 0.549587i \(-0.814785\pi\)
0.835436 0.549587i \(-0.185215\pi\)
\(618\) 0 0
\(619\) 5.08622e14 0.224955 0.112478 0.993654i \(-0.464121\pi\)
0.112478 + 0.993654i \(0.464121\pi\)
\(620\) 4.53645e14 + 6.13023e14i 0.198866 + 0.268734i
\(621\) 0 0
\(622\) 1.46581e14i 0.0631291i
\(623\) 4.15303e15i 1.77289i
\(624\) 0 0
\(625\) −1.97676e15 1.33296e15i −0.829112 0.559083i
\(626\) −2.10166e15 −0.873782
\(627\) 0 0
\(628\) 1.00344e15i 0.409933i
\(629\) 5.31720e14 0.215330
\(630\) 0 0
\(631\) 5.49054e14 0.218501 0.109251 0.994014i \(-0.465155\pi\)
0.109251 + 0.994014i \(0.465155\pi\)
\(632\) 1.73724e15i 0.685355i
\(633\) 0 0
\(634\) 2.09261e15 0.811330
\(635\) 3.19470e15 2.36412e15i 1.22793 0.908686i
\(636\) 0 0
\(637\) 2.50098e15i 0.944808i
\(638\) 4.00280e14i 0.149917i
\(639\) 0 0
\(640\) 1.92998e14 1.42821e14i 0.0710498 0.0525778i
\(641\) −4.07205e15 −1.48626 −0.743129 0.669149i \(-0.766659\pi\)
−0.743129 + 0.669149i \(0.766659\pi\)
\(642\) 0 0
\(643\) 1.05002e15i 0.376738i 0.982098 + 0.188369i \(0.0603200\pi\)
−0.982098 + 0.188369i \(0.939680\pi\)
\(644\) −2.44984e15 −0.871498
\(645\) 0 0
\(646\) −1.60229e15 −0.560355
\(647\) 1.33847e15i 0.464125i 0.972701 + 0.232063i \(0.0745475\pi\)
−0.972701 + 0.232063i \(0.925453\pi\)
\(648\) 0 0
\(649\) −2.10269e15 −0.716853
\(650\) −3.32038e14 + 1.08631e15i −0.112244 + 0.367222i
\(651\) 0 0
\(652\) 8.31975e14i 0.276534i
\(653\) 5.09952e15i 1.68076i 0.541995 + 0.840382i \(0.317669\pi\)
−0.541995 + 0.840382i \(0.682331\pi\)
\(654\) 0 0
\(655\) −1.36788e15 1.84845e15i −0.443323 0.599075i
\(656\) −2.48057e14 −0.0797224
\(657\) 0 0
\(658\) 3.33969e15i 1.05551i
\(659\) 1.69518e15 0.531307 0.265654 0.964069i \(-0.414412\pi\)
0.265654 + 0.964069i \(0.414412\pi\)
\(660\) 0 0
\(661\) 2.86480e15 0.883051 0.441526 0.897249i \(-0.354437\pi\)
0.441526 + 0.897249i \(0.354437\pi\)
\(662\) 5.85173e14i 0.178881i
\(663\) 0 0
\(664\) −7.06118e14 −0.212301
\(665\) −6.44452e15 + 4.76903e15i −1.92164 + 1.42204i
\(666\) 0 0
\(667\) 1.47253e15i 0.431889i
\(668\) 2.32556e15i 0.676484i
\(669\) 0 0
\(670\) 1.76325e15 + 2.38273e15i 0.504548 + 0.681810i
\(671\) 4.01971e14 0.114083
\(672\) 0 0
\(673\) 2.65808e15i 0.742139i 0.928605 + 0.371070i \(0.121009\pi\)
−0.928605 + 0.371070i \(0.878991\pi\)
\(674\) 2.02267e14 0.0560138
\(675\) 0 0
\(676\) −1.29398e15 −0.352549
\(677\) 4.00056e15i 1.08114i −0.841298 0.540572i \(-0.818208\pi\)
0.841298 0.540572i \(-0.181792\pi\)
\(678\) 0 0
\(679\) 3.23901e15 0.861248
\(680\) −4.37519e14 5.91232e14i −0.115398 0.155941i
\(681\) 0 0
\(682\) 9.41698e14i 0.244398i
\(683\) 4.87594e15i 1.25529i −0.778499 0.627646i \(-0.784019\pi\)
0.778499 0.627646i \(-0.215981\pi\)
\(684\) 0 0
\(685\) 1.83206e15 1.35574e15i 0.464131 0.343463i
\(686\) −3.44553e15 −0.865911
\(687\) 0 0
\(688\) 7.64280e14i 0.189024i
\(689\) 2.24425e15 0.550638
\(690\) 0 0
\(691\) 9.81621e14 0.237036 0.118518 0.992952i \(-0.462186\pi\)
0.118518 + 0.992952i \(0.462186\pi\)
\(692\) 3.24539e15i 0.777469i
\(693\) 0 0
\(694\) −3.00285e15 −0.708038
\(695\) −9.02570e13 1.21967e14i −0.0211137 0.0285315i
\(696\) 0 0
\(697\) 7.59900e14i 0.174975i
\(698\) 3.99675e15i 0.913065i
\(699\) 0 0
\(700\) −3.51946e15 1.07575e15i −0.791473 0.241920i
\(701\) 5.96272e15 1.33044 0.665220 0.746648i \(-0.268338\pi\)
0.665220 + 0.746648i \(0.268338\pi\)
\(702\) 0 0
\(703\) 2.58027e15i 0.566775i
\(704\) −2.96475e14 −0.0646157
\(705\) 0 0
\(706\) −1.58430e15 −0.339946
\(707\) 7.20345e13i 0.0153368i
\(708\) 0 0
\(709\) −7.33103e15 −1.53678 −0.768388 0.639984i \(-0.778941\pi\)
−0.768388 + 0.639984i \(0.778941\pi\)
\(710\) 1.70579e14 1.26230e14i 0.0354816 0.0262569i
\(711\) 0 0
\(712\) 1.84891e15i 0.378682i
\(713\) 3.46427e15i 0.704076i
\(714\) 0 0
\(715\) 1.12750e15 8.34367e14i 0.225650 0.166984i
\(716\) −4.67641e15 −0.928734
\(717\) 0 0
\(718\) 2.82255e15i 0.552024i
\(719\) −5.64957e15 −1.09649 −0.548247 0.836317i \(-0.684705\pi\)
−0.548247 + 0.836317i \(0.684705\pi\)
\(720\) 0 0
\(721\) −6.62591e15 −1.26649
\(722\) 4.04774e15i 0.767818i
\(723\) 0 0
\(724\) 1.59119e15 0.297276
\(725\) 6.46601e14 2.11544e15i 0.119888 0.392231i
\(726\) 0 0
\(727\) 1.03387e16i 1.88811i −0.329790 0.944054i \(-0.606978\pi\)
0.329790 0.944054i \(-0.393022\pi\)
\(728\) 1.75339e15i 0.317801i
\(729\) 0 0
\(730\) 1.74019e15 + 2.35157e15i 0.310686 + 0.419839i
\(731\) 2.34130e15 0.414870
\(732\) 0 0
\(733\) 4.98348e15i 0.869883i 0.900459 + 0.434942i \(0.143231\pi\)
−0.900459 + 0.434942i \(0.856769\pi\)
\(734\) 3.16484e15 0.548307
\(735\) 0 0
\(736\) −1.09066e15 −0.186149
\(737\) 3.66024e15i 0.620067i
\(738\) 0 0
\(739\) −2.94537e15 −0.491582 −0.245791 0.969323i \(-0.579048\pi\)
−0.245791 + 0.969323i \(0.579048\pi\)
\(740\) 9.52096e14 7.04563e14i 0.157727 0.116720i
\(741\) 0 0
\(742\) 7.27101e15i 1.18679i
\(743\) 5.61294e15i 0.909393i −0.890646 0.454697i \(-0.849748\pi\)
0.890646 0.454697i \(-0.150252\pi\)
\(744\) 0 0
\(745\) −4.08156e14 5.51553e14i −0.0651579 0.0880497i
\(746\) −1.00940e15 −0.159955
\(747\) 0 0
\(748\) 9.08224e14i 0.141819i
\(749\) −1.28895e16 −1.99795
\(750\) 0 0
\(751\) 5.13668e15 0.784626 0.392313 0.919832i \(-0.371675\pi\)
0.392313 + 0.919832i \(0.371675\pi\)
\(752\) 1.48681e15i 0.225454i
\(753\) 0 0
\(754\) −1.05391e15 −0.157493
\(755\) −6.68469e15 9.03321e15i −0.991683 1.34009i
\(756\) 0 0
\(757\) 9.14554e15i 1.33716i 0.743642 + 0.668578i \(0.233097\pi\)
−0.743642 + 0.668578i \(0.766903\pi\)
\(758\) 4.67090e15i 0.677985i
\(759\) 0 0
\(760\) −2.86906e15 + 2.12314e15i −0.410455 + 0.303742i
\(761\) −2.23954e15 −0.318084 −0.159042 0.987272i \(-0.550841\pi\)
−0.159042 + 0.987272i \(0.550841\pi\)
\(762\) 0 0
\(763\) 1.98186e16i 2.77452i
\(764\) −2.14877e15 −0.298659
\(765\) 0 0
\(766\) −3.00562e15 −0.411789
\(767\) 5.53624e15i 0.753079i
\(768\) 0 0
\(769\) 1.08968e16 1.46118 0.730588 0.682819i \(-0.239246\pi\)
0.730588 + 0.682819i \(0.239246\pi\)
\(770\) 2.70321e15 + 3.65293e15i 0.359900 + 0.486343i
\(771\) 0 0
\(772\) 1.52615e15i 0.200310i
\(773\) 4.35156e15i 0.567098i −0.958958 0.283549i \(-0.908488\pi\)
0.958958 0.283549i \(-0.0915119\pi\)
\(774\) 0 0
\(775\) 1.52119e15 4.97679e15i 0.195445 0.639425i
\(776\) 1.44199e15 0.183959
\(777\) 0 0
\(778\) 8.87195e14i 0.111592i
\(779\) 3.68756e15 0.460556
\(780\) 0 0
\(781\) −2.62035e14 −0.0322685
\(782\) 3.34113e15i 0.408560i
\(783\) 0 0
\(784\) −3.60731e15 −0.434955
\(785\) −5.50420e15 + 4.07318e15i −0.659039 + 0.487697i
\(786\) 0 0
\(787\) 1.61926e15i 0.191186i 0.995420 + 0.0955930i \(0.0304747\pi\)
−0.995420 + 0.0955930i \(0.969525\pi\)
\(788\) 1.58349e15i 0.185661i
\(789\) 0 0
\(790\) 9.52933e15 7.05183e15i 1.10183 0.815366i
\(791\) 1.85334e16 2.12806
\(792\) 0 0
\(793\) 1.05836e15i 0.119848i
\(794\) 5.78543e15 0.650613
\(795\) 0 0
\(796\) 3.34683e15 0.371204
\(797\) 8.03974e15i 0.885567i 0.896629 + 0.442783i \(0.146009\pi\)
−0.896629 + 0.442783i \(0.853991\pi\)
\(798\) 0 0
\(799\) 4.55471e15 0.494827
\(800\) −1.56684e15 4.78918e14i −0.169056 0.0516733i
\(801\) 0 0
\(802\) 4.31253e15i 0.458959i
\(803\) 3.61238e15i 0.381819i
\(804\) 0 0
\(805\) 9.94445e15 + 1.34382e16i 1.03682 + 1.40108i
\(806\) −2.47942e15 −0.256749
\(807\) 0 0
\(808\) 3.20694e13i 0.00327588i
\(809\) 1.14828e16 1.16501 0.582506 0.812826i \(-0.302072\pi\)
0.582506 + 0.812826i \(0.302072\pi\)
\(810\) 0 0
\(811\) 5.96668e15 0.597198 0.298599 0.954379i \(-0.403481\pi\)
0.298599 + 0.954379i \(0.403481\pi\)
\(812\) 3.41449e15i 0.339444i
\(813\) 0 0
\(814\) −1.46257e15 −0.143444
\(815\) −4.56366e15 + 3.37717e15i −0.444576 + 0.328992i
\(816\) 0 0
\(817\) 1.13616e16i 1.09199i
\(818\) 5.17928e15i 0.494454i
\(819\) 0 0
\(820\) 1.00692e15 + 1.36068e15i 0.0948456 + 0.128168i
\(821\) 1.58047e15 0.147876 0.0739381 0.997263i \(-0.476443\pi\)
0.0739381 + 0.997263i \(0.476443\pi\)
\(822\) 0 0
\(823\) 1.03090e16i 0.951734i −0.879517 0.475867i \(-0.842134\pi\)
0.879517 0.475867i \(-0.157866\pi\)
\(824\) −2.94982e15 −0.270517
\(825\) 0 0
\(826\) −1.79365e16 −1.62311
\(827\) 1.03944e16i 0.934374i −0.884158 0.467187i \(-0.845267\pi\)
0.884158 0.467187i \(-0.154733\pi\)
\(828\) 0 0
\(829\) 1.52772e16 1.35517 0.677584 0.735445i \(-0.263027\pi\)
0.677584 + 0.735445i \(0.263027\pi\)
\(830\) 2.86629e15 + 3.87329e15i 0.252575 + 0.341311i
\(831\) 0 0
\(832\) 7.80597e14i 0.0678811i
\(833\) 1.10507e16i 0.954642i
\(834\) 0 0
\(835\) −1.27565e16 + 9.43996e15i −1.08757 + 0.804812i
\(836\) 4.40733e15 0.373285
\(837\) 0 0
\(838\) 1.42754e15i 0.119329i
\(839\) 4.62607e13 0.00384168 0.00192084 0.999998i \(-0.499389\pi\)
0.00192084 + 0.999998i \(0.499389\pi\)
\(840\) 0 0
\(841\) −1.01482e16 −0.831782
\(842\) 1.27007e16i 1.03422i
\(843\) 0 0
\(844\) 2.14026e15 0.172021
\(845\) 5.25253e15 + 7.09789e15i 0.419427 + 0.566784i
\(846\) 0 0
\(847\) 1.53886e16i 1.21294i
\(848\) 3.23701e15i 0.253494i
\(849\) 0 0
\(850\) −1.46712e15 + 4.79988e15i −0.113413 + 0.371045i
\(851\) −5.38042e15 −0.413241
\(852\) 0 0
\(853\) 1.39374e16i 1.05672i 0.849019 + 0.528362i \(0.177194\pi\)
−0.849019 + 0.528362i \(0.822806\pi\)
\(854\) 3.42892e15 0.258308
\(855\) 0 0
\(856\) −5.73831e15 −0.426755
\(857\) 2.60789e16i 1.92706i 0.267605 + 0.963529i \(0.413768\pi\)
−0.267605 + 0.963529i \(0.586232\pi\)
\(858\) 0 0
\(859\) 4.60719e15 0.336104 0.168052 0.985778i \(-0.446252\pi\)
0.168052 + 0.985778i \(0.446252\pi\)
\(860\) 4.19233e15 3.10238e15i 0.303889 0.224881i
\(861\) 0 0
\(862\) 1.51460e16i 1.08395i
\(863\) 5.99532e15i 0.426337i −0.977015 0.213169i \(-0.931622\pi\)
0.977015 0.213169i \(-0.0683784\pi\)
\(864\) 0 0
\(865\) −1.78020e16 + 1.31737e16i −1.24992 + 0.924954i
\(866\) −1.95045e16 −1.36078
\(867\) 0 0
\(868\) 8.03293e15i 0.553370i
\(869\) −1.46385e16 −1.00205
\(870\) 0 0
\(871\) −9.63715e15 −0.651402
\(872\) 8.82313e15i 0.592628i
\(873\) 0 0
\(874\) 1.62135e16 1.07538
\(875\) 8.38539e15 + 2.36721e16i 0.552686 + 1.56024i
\(876\) 0 0
\(877\) 2.57912e16i 1.67870i 0.543592 + 0.839350i \(0.317064\pi\)
−0.543592 + 0.839350i \(0.682936\pi\)
\(878\) 1.24486e16i 0.805197i
\(879\) 0 0
\(880\) 1.20346e15 + 1.62626e15i 0.0768733 + 0.103881i
\(881\) 2.80787e16 1.78242 0.891209 0.453592i \(-0.149858\pi\)
0.891209 + 0.453592i \(0.149858\pi\)
\(882\) 0 0
\(883\) 2.68062e16i 1.68055i −0.542162 0.840274i \(-0.682394\pi\)
0.542162 0.840274i \(-0.317606\pi\)
\(884\) 2.39129e15 0.148986
\(885\) 0 0
\(886\) 2.17086e16 1.33582
\(887\) 7.52556e15i 0.460213i −0.973165 0.230106i \(-0.926093\pi\)
0.973165 0.230106i \(-0.0739074\pi\)
\(888\) 0 0
\(889\) −4.18627e16 −2.52853
\(890\) 1.01419e16 7.50511e15i 0.608798 0.450518i
\(891\) 0 0
\(892\) 1.94241e15i 0.115169i
\(893\) 2.21026e16i 1.30245i
\(894\) 0 0
\(895\) 1.89826e16 + 2.56517e16i 1.10491 + 1.49310i
\(896\) −2.52901e15 −0.146304
\(897\) 0 0
\(898\) 8.81827e15i 0.503922i
\(899\) 4.82836e15 0.274234
\(900\) 0 0
\(901\) 9.91629e15 0.556369
\(902\) 2.09021e15i 0.116561i
\(903\) 0 0
\(904\) 8.25095e15 0.454546
\(905\) −6.45899e15 8.72822e15i −0.353670 0.477924i
\(906\) 0 0
\(907\) 1.54682e16i 0.836756i −0.908273 0.418378i \(-0.862599\pi\)
0.908273 0.418378i \(-0.137401\pi\)
\(908\) 2.27632e15i 0.122394i
\(909\) 0 0
\(910\) 9.61791e15 7.11737e15i 0.510920 0.378087i
\(911\) 2.54945e16 1.34616 0.673079 0.739570i \(-0.264971\pi\)
0.673079 + 0.739570i \(0.264971\pi\)
\(912\) 0 0
\(913\) 5.94998e15i 0.310403i
\(914\) 1.65021e16 0.855725
\(915\) 0 0
\(916\) 1.12697e15 0.0577415
\(917\) 2.42218e16i 1.23360i
\(918\) 0 0
\(919\) −1.50582e16 −0.757771 −0.378885 0.925444i \(-0.623693\pi\)
−0.378885 + 0.925444i \(0.623693\pi\)
\(920\) 4.42721e15 + 5.98262e15i 0.221461 + 0.299267i
\(921\) 0 0
\(922\) 5.49376e15i 0.271550i
\(923\) 6.89920e14i 0.0338992i
\(924\) 0 0
\(925\) −7.72953e15 2.36259e15i −0.375296 0.114712i
\(926\) −9.56712e15 −0.461765
\(927\) 0 0
\(928\) 1.52011e15i 0.0725040i
\(929\) −2.90569e16 −1.37773 −0.688864 0.724891i \(-0.741890\pi\)
−0.688864 + 0.724891i \(0.741890\pi\)
\(930\) 0 0
\(931\) 5.36254e16 2.51274
\(932\) 7.43544e15i 0.346353i
\(933\) 0 0
\(934\) −3.03981e15 −0.139939
\(935\) 4.98191e15 3.68668e15i 0.227999 0.168722i
\(936\) 0 0
\(937\) 1.97723e16i 0.894313i −0.894456 0.447156i \(-0.852437\pi\)
0.894456 0.447156i \(-0.147563\pi\)
\(938\) 3.12228e16i 1.40397i
\(939\) 0 0
\(940\) 8.15566e15 6.03529e15i 0.362456 0.268222i
\(941\) 1.84496e16 0.815160 0.407580 0.913169i \(-0.366373\pi\)
0.407580 + 0.913169i \(0.366373\pi\)
\(942\) 0 0
\(943\) 7.68935e15i 0.335796i
\(944\) −7.98524e15 −0.346690
\(945\) 0 0
\(946\) −6.44007e15 −0.276369
\(947\) 1.21152e16i 0.516897i 0.966025 + 0.258449i \(0.0832113\pi\)
−0.966025 + 0.258449i \(0.916789\pi\)
\(948\) 0 0
\(949\) −9.51114e15 −0.401114
\(950\) 2.32923e16 + 7.11948e15i 0.976636 + 0.298516i
\(951\) 0 0
\(952\) 7.74739e15i 0.321109i
\(953\) 1.02683e16i 0.423143i −0.977362 0.211572i \(-0.932142\pi\)
0.977362 0.211572i \(-0.0678582\pi\)
\(954\) 0 0
\(955\) 8.72231e15 + 1.17867e16i 0.355315 + 0.480147i
\(956\) −1.73936e16 −0.704482
\(957\) 0 0
\(958\) 1.21099e16i 0.484875i
\(959\) −2.40069e16 −0.955726
\(960\) 0 0
\(961\) −1.40493e16 −0.552937
\(962\) 3.85083e15i 0.150693i
\(963\) 0 0
\(964\) −3.80864e15 −0.147349
\(965\) −8.37146e15 + 6.19499e15i −0.322034 + 0.238309i
\(966\) 0 0
\(967\) 6.61638e15i 0.251637i −0.992053 0.125819i \(-0.959844\pi\)
0.992053 0.125819i \(-0.0401557\pi\)
\(968\) 6.85090e15i 0.259080i
\(969\) 0 0
\(970\) −5.85334e15 7.90979e15i −0.218856 0.295747i
\(971\) −4.23912e16 −1.57605 −0.788024 0.615644i \(-0.788896\pi\)
−0.788024 + 0.615644i \(0.788896\pi\)
\(972\) 0 0
\(973\) 1.59823e15i 0.0587514i
\(974\) −1.95236e16 −0.713650
\(975\) 0 0
\(976\) 1.52653e15 0.0551737
\(977\) 3.85191e15i 0.138438i 0.997601 + 0.0692191i \(0.0220507\pi\)
−0.997601 + 0.0692191i \(0.977949\pi\)
\(978\) 0 0
\(979\) −1.55795e16 −0.553666
\(980\) 1.46428e16 + 1.97873e16i 0.517466 + 0.699267i
\(981\) 0 0
\(982\) 3.63882e16i 1.27159i
\(983\) 1.22656e16i 0.426230i 0.977027 + 0.213115i \(0.0683610\pi\)
−0.977027 + 0.213115i \(0.931639\pi\)
\(984\) 0 0
\(985\) −8.68597e15 + 6.42772e15i −0.298483 + 0.220881i
\(986\) −4.65673e15 −0.159132
\(987\) 0 0
\(988\) 1.16042e16i 0.392149i
\(989\) −2.36914e16 −0.796180
\(990\) 0 0
\(991\) 1.86075e16 0.618420 0.309210 0.950994i \(-0.399935\pi\)
0.309210 + 0.950994i \(0.399935\pi\)
\(992\) 3.57621e15i 0.118198i
\(993\) 0 0
\(994\) −2.23523e15 −0.0730629
\(995\) −1.35855e16 1.83585e16i −0.441621 0.596774i
\(996\) 0 0
\(997\) 1.75336e16i 0.563701i −0.959458 0.281850i \(-0.909052\pi\)
0.959458 0.281850i \(-0.0909482\pi\)
\(998\) 2.86792e16i 0.916957i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.c.b.19.6 6
3.2 odd 2 10.12.b.a.9.3 6
5.4 even 2 inner 90.12.c.b.19.3 6
12.11 even 2 80.12.c.c.49.1 6
15.2 even 4 50.12.a.j.1.3 3
15.8 even 4 50.12.a.i.1.1 3
15.14 odd 2 10.12.b.a.9.4 yes 6
60.59 even 2 80.12.c.c.49.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.12.b.a.9.3 6 3.2 odd 2
10.12.b.a.9.4 yes 6 15.14 odd 2
50.12.a.i.1.1 3 15.8 even 4
50.12.a.j.1.3 3 15.2 even 4
80.12.c.c.49.1 6 12.11 even 2
80.12.c.c.49.6 6 60.59 even 2
90.12.c.b.19.3 6 5.4 even 2 inner
90.12.c.b.19.6 6 1.1 even 1 trivial