Properties

Label 90.11.g.b.37.1
Level $90$
Weight $11$
Character 90.37
Analytic conductor $57.182$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,11,Mod(37,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.37"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 90.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-32,0,0,3750] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.1821527406\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 90.37
Dual form 90.11.g.b.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-16.0000 - 16.0000i) q^{2} +512.000i q^{4} +(1875.00 + 2500.00i) q^{5} +(-8407.00 - 8407.00i) q^{7} +(8192.00 - 8192.00i) q^{8} +(10000.0 - 70000.0i) q^{10} +173398. q^{11} +(-232623. + 232623. i) q^{13} +269024. i q^{14} -262144. q^{16} +(-1.88003e6 - 1.88003e6i) q^{17} -1.10156e6i q^{19} +(-1.28000e6 + 960000. i) q^{20} +(-2.77437e6 - 2.77437e6i) q^{22} +(5.22826e6 - 5.22826e6i) q^{23} +(-2.73438e6 + 9.37500e6i) q^{25} +7.44394e6 q^{26} +(4.30438e6 - 4.30438e6i) q^{28} +2.47908e7i q^{29} -1.00660e7 q^{31} +(4.19430e6 + 4.19430e6i) q^{32} +6.01611e7i q^{34} +(5.25438e6 - 3.67806e7i) q^{35} +(5.63879e7 + 5.63879e7i) q^{37} +(-1.76250e7 + 1.76250e7i) q^{38} +(3.58400e7 + 5.12000e6i) q^{40} +1.53004e8 q^{41} +(5.93725e7 - 5.93725e7i) q^{43} +8.87798e7i q^{44} -1.67304e8 q^{46} +(-1.72339e8 - 1.72339e8i) q^{47} -1.41120e8i q^{49} +(1.93750e8 - 1.06250e8i) q^{50} +(-1.19103e8 - 1.19103e8i) q^{52} +(-1.96386e8 + 1.96386e8i) q^{53} +(3.25121e8 + 4.33495e8i) q^{55} -1.37740e8 q^{56} +(3.96653e8 - 3.96653e8i) q^{58} -6.94069e8i q^{59} +9.06186e8 q^{61} +(1.61056e8 + 1.61056e8i) q^{62} -1.34218e8i q^{64} +(-1.01773e9 - 1.45389e8i) q^{65} +(-9.62074e8 - 9.62074e8i) q^{67} +(9.62577e8 - 9.62577e8i) q^{68} +(-6.72560e8 + 5.04420e8i) q^{70} +3.12088e9 q^{71} +(-6.36339e8 + 6.36339e8i) q^{73} -1.80441e9i q^{74} +5.63999e8 q^{76} +(-1.45776e9 - 1.45776e9i) q^{77} -1.96800e9i q^{79} +(-4.91520e8 - 6.55360e8i) q^{80} +(-2.44806e9 - 2.44806e9i) q^{82} +(5.18382e9 - 5.18382e9i) q^{83} +(1.17502e9 - 8.22514e9i) q^{85} -1.89992e9 q^{86} +(1.42048e9 - 1.42048e9i) q^{88} -7.77138e9i q^{89} +3.91132e9 q^{91} +(2.67687e9 + 2.67687e9i) q^{92} +5.51486e9i q^{94} +(2.75390e9 - 2.06542e9i) q^{95} +(-6.40361e8 - 6.40361e8i) q^{97} +(-2.25792e9 + 2.25792e9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} + 3750 q^{5} - 16814 q^{7} + 16384 q^{8} + 20000 q^{10} + 346796 q^{11} - 465246 q^{13} - 524288 q^{16} - 3760066 q^{17} - 2560000 q^{20} - 5548736 q^{22} + 10456526 q^{23} - 5468750 q^{25}+ \cdots - 4515838432 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 16.0000i −0.500000 0.500000i
\(3\) 0 0
\(4\) 512.000i 0.500000i
\(5\) 1875.00 + 2500.00i 0.600000 + 0.800000i
\(6\) 0 0
\(7\) −8407.00 8407.00i −0.500208 0.500208i 0.411294 0.911503i \(-0.365077\pi\)
−0.911503 + 0.411294i \(0.865077\pi\)
\(8\) 8192.00 8192.00i 0.250000 0.250000i
\(9\) 0 0
\(10\) 10000.0 70000.0i 0.100000 0.700000i
\(11\) 173398. 1.07667 0.538333 0.842732i \(-0.319054\pi\)
0.538333 + 0.842732i \(0.319054\pi\)
\(12\) 0 0
\(13\) −232623. + 232623.i −0.626521 + 0.626521i −0.947191 0.320670i \(-0.896092\pi\)
0.320670 + 0.947191i \(0.396092\pi\)
\(14\) 269024.i 0.500208i
\(15\) 0 0
\(16\) −262144. −0.250000
\(17\) −1.88003e6 1.88003e6i −1.32410 1.32410i −0.910424 0.413676i \(-0.864245\pi\)
−0.413676 0.910424i \(-0.635755\pi\)
\(18\) 0 0
\(19\) 1.10156e6i 0.444877i −0.974947 0.222439i \(-0.928598\pi\)
0.974947 0.222439i \(-0.0714017\pi\)
\(20\) −1.28000e6 + 960000.i −0.400000 + 0.300000i
\(21\) 0 0
\(22\) −2.77437e6 2.77437e6i −0.538333 0.538333i
\(23\) 5.22826e6 5.22826e6i 0.812303 0.812303i −0.172675 0.984979i \(-0.555241\pi\)
0.984979 + 0.172675i \(0.0552412\pi\)
\(24\) 0 0
\(25\) −2.73438e6 + 9.37500e6i −0.280000 + 0.960000i
\(26\) 7.44394e6 0.626521
\(27\) 0 0
\(28\) 4.30438e6 4.30438e6i 0.250104 0.250104i
\(29\) 2.47908e7i 1.20865i 0.796737 + 0.604326i \(0.206558\pi\)
−0.796737 + 0.604326i \(0.793442\pi\)
\(30\) 0 0
\(31\) −1.00660e7 −0.351600 −0.175800 0.984426i \(-0.556251\pi\)
−0.175800 + 0.984426i \(0.556251\pi\)
\(32\) 4.19430e6 + 4.19430e6i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 6.01611e7i 1.32410i
\(35\) 5.25438e6 3.67806e7i 0.100042 0.700292i
\(36\) 0 0
\(37\) 5.63879e7 + 5.63879e7i 0.813163 + 0.813163i 0.985107 0.171944i \(-0.0550048\pi\)
−0.171944 + 0.985107i \(0.555005\pi\)
\(38\) −1.76250e7 + 1.76250e7i −0.222439 + 0.222439i
\(39\) 0 0
\(40\) 3.58400e7 + 5.12000e6i 0.350000 + 0.0500000i
\(41\) 1.53004e8 1.32063 0.660317 0.750987i \(-0.270422\pi\)
0.660317 + 0.750987i \(0.270422\pi\)
\(42\) 0 0
\(43\) 5.93725e7 5.93725e7i 0.403871 0.403871i −0.475724 0.879595i \(-0.657814\pi\)
0.879595 + 0.475724i \(0.157814\pi\)
\(44\) 8.87798e7i 0.538333i
\(45\) 0 0
\(46\) −1.67304e8 −0.812303
\(47\) −1.72339e8 1.72339e8i −0.751441 0.751441i 0.223307 0.974748i \(-0.428315\pi\)
−0.974748 + 0.223307i \(0.928315\pi\)
\(48\) 0 0
\(49\) 1.41120e8i 0.499583i
\(50\) 1.93750e8 1.06250e8i 0.620000 0.340000i
\(51\) 0 0
\(52\) −1.19103e8 1.19103e8i −0.313261 0.313261i
\(53\) −1.96386e8 + 1.96386e8i −0.469602 + 0.469602i −0.901786 0.432183i \(-0.857743\pi\)
0.432183 + 0.901786i \(0.357743\pi\)
\(54\) 0 0
\(55\) 3.25121e8 + 4.33495e8i 0.645999 + 0.861332i
\(56\) −1.37740e8 −0.250104
\(57\) 0 0
\(58\) 3.96653e8 3.96653e8i 0.604326 0.604326i
\(59\) 6.94069e8i 0.970829i −0.874284 0.485414i \(-0.838669\pi\)
0.874284 0.485414i \(-0.161331\pi\)
\(60\) 0 0
\(61\) 9.06186e8 1.07292 0.536461 0.843925i \(-0.319761\pi\)
0.536461 + 0.843925i \(0.319761\pi\)
\(62\) 1.61056e8 + 1.61056e8i 0.175800 + 0.175800i
\(63\) 0 0
\(64\) 1.34218e8i 0.125000i
\(65\) −1.01773e9 1.45389e8i −0.877130 0.125304i
\(66\) 0 0
\(67\) −9.62074e8 9.62074e8i −0.712581 0.712581i 0.254493 0.967075i \(-0.418091\pi\)
−0.967075 + 0.254493i \(0.918091\pi\)
\(68\) 9.62577e8 9.62577e8i 0.662050 0.662050i
\(69\) 0 0
\(70\) −6.72560e8 + 5.04420e8i −0.400167 + 0.300125i
\(71\) 3.12088e9 1.72976 0.864878 0.501982i \(-0.167395\pi\)
0.864878 + 0.501982i \(0.167395\pi\)
\(72\) 0 0
\(73\) −6.36339e8 + 6.36339e8i −0.306955 + 0.306955i −0.843727 0.536772i \(-0.819643\pi\)
0.536772 + 0.843727i \(0.319643\pi\)
\(74\) 1.80441e9i 0.813163i
\(75\) 0 0
\(76\) 5.63999e8 0.222439
\(77\) −1.45776e9 1.45776e9i −0.538557 0.538557i
\(78\) 0 0
\(79\) 1.96800e9i 0.639571i −0.947490 0.319786i \(-0.896389\pi\)
0.947490 0.319786i \(-0.103611\pi\)
\(80\) −4.91520e8 6.55360e8i −0.150000 0.200000i
\(81\) 0 0
\(82\) −2.44806e9 2.44806e9i −0.660317 0.660317i
\(83\) 5.18382e9 5.18382e9i 1.31601 1.31601i 0.399107 0.916904i \(-0.369320\pi\)
0.916904 0.399107i \(-0.130680\pi\)
\(84\) 0 0
\(85\) 1.17502e9 8.22514e9i 0.264820 1.85374i
\(86\) −1.89992e9 −0.403871
\(87\) 0 0
\(88\) 1.42048e9 1.42048e9i 0.269166 0.269166i
\(89\) 7.77138e9i 1.39171i −0.718183 0.695854i \(-0.755026\pi\)
0.718183 0.695854i \(-0.244974\pi\)
\(90\) 0 0
\(91\) 3.91132e9 0.626782
\(92\) 2.67687e9 + 2.67687e9i 0.406152 + 0.406152i
\(93\) 0 0
\(94\) 5.51486e9i 0.751441i
\(95\) 2.75390e9 2.06542e9i 0.355902 0.266926i
\(96\) 0 0
\(97\) −6.40361e8 6.40361e8i −0.0745704 0.0745704i 0.668838 0.743408i \(-0.266792\pi\)
−0.743408 + 0.668838i \(0.766792\pi\)
\(98\) −2.25792e9 + 2.25792e9i −0.249792 + 0.249792i
\(99\) 0 0
\(100\) −4.80000e9 1.40000e9i −0.480000 0.140000i
\(101\) −2.02434e9 −0.192609 −0.0963047 0.995352i \(-0.530702\pi\)
−0.0963047 + 0.995352i \(0.530702\pi\)
\(102\) 0 0
\(103\) −1.50252e9 + 1.50252e9i −0.129609 + 0.129609i −0.768935 0.639326i \(-0.779213\pi\)
0.639326 + 0.768935i \(0.279213\pi\)
\(104\) 3.81130e9i 0.313261i
\(105\) 0 0
\(106\) 6.28434e9 0.469602
\(107\) −1.41812e9 1.41812e9i −0.101110 0.101110i 0.654742 0.755852i \(-0.272777\pi\)
−0.755852 + 0.654742i \(0.772777\pi\)
\(108\) 0 0
\(109\) 6.21296e9i 0.403800i −0.979406 0.201900i \(-0.935288\pi\)
0.979406 0.201900i \(-0.0647116\pi\)
\(110\) 1.73398e9 1.21379e10i 0.107667 0.753666i
\(111\) 0 0
\(112\) 2.20384e9 + 2.20384e9i 0.125052 + 0.125052i
\(113\) 1.79511e10 1.79511e10i 0.974313 0.974313i −0.0253650 0.999678i \(-0.508075\pi\)
0.999678 + 0.0253650i \(0.00807480\pi\)
\(114\) 0 0
\(115\) 2.28737e10 + 3.26766e9i 1.13722 + 0.162461i
\(116\) −1.26929e10 −0.604326
\(117\) 0 0
\(118\) −1.11051e10 + 1.11051e10i −0.485414 + 0.485414i
\(119\) 3.16109e10i 1.32465i
\(120\) 0 0
\(121\) 4.12944e9 0.159208
\(122\) −1.44990e10 1.44990e10i −0.536461 0.536461i
\(123\) 0 0
\(124\) 5.15379e9i 0.175800i
\(125\) −2.85645e10 + 1.07422e10i −0.936000 + 0.352000i
\(126\) 0 0
\(127\) 1.30621e10 + 1.30621e10i 0.395362 + 0.395362i 0.876593 0.481232i \(-0.159810\pi\)
−0.481232 + 0.876593i \(0.659810\pi\)
\(128\) −2.14748e9 + 2.14748e9i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 1.39574e10 + 1.86098e10i 0.375913 + 0.501217i
\(131\) 5.20222e10 1.34844 0.674221 0.738530i \(-0.264480\pi\)
0.674221 + 0.738530i \(0.264480\pi\)
\(132\) 0 0
\(133\) −9.26081e9 + 9.26081e9i −0.222531 + 0.222531i
\(134\) 3.07864e10i 0.712581i
\(135\) 0 0
\(136\) −3.08025e10 −0.662050
\(137\) 1.63815e10 + 1.63815e10i 0.339429 + 0.339429i 0.856153 0.516723i \(-0.172848\pi\)
−0.516723 + 0.856153i \(0.672848\pi\)
\(138\) 0 0
\(139\) 2.61490e10i 0.503942i −0.967735 0.251971i \(-0.918921\pi\)
0.967735 0.251971i \(-0.0810787\pi\)
\(140\) 1.88317e10 + 2.69024e9i 0.350146 + 0.0500208i
\(141\) 0 0
\(142\) −4.99340e10 4.99340e10i −0.864878 0.864878i
\(143\) −4.03364e10 + 4.03364e10i −0.674554 + 0.674554i
\(144\) 0 0
\(145\) −6.19771e10 + 4.64828e10i −0.966922 + 0.725191i
\(146\) 2.03629e10 0.306955
\(147\) 0 0
\(148\) −2.88706e10 + 2.88706e10i −0.406581 + 0.406581i
\(149\) 4.31363e9i 0.0587369i −0.999569 0.0293685i \(-0.990650\pi\)
0.999569 0.0293685i \(-0.00934962\pi\)
\(150\) 0 0
\(151\) 1.13868e11 1.45050 0.725251 0.688484i \(-0.241724\pi\)
0.725251 + 0.688484i \(0.241724\pi\)
\(152\) −9.02398e9 9.02398e9i −0.111219 0.111219i
\(153\) 0 0
\(154\) 4.66482e10i 0.538557i
\(155\) −1.88737e10 2.51650e10i −0.210960 0.281280i
\(156\) 0 0
\(157\) 1.04428e10 + 1.04428e10i 0.109476 + 0.109476i 0.759723 0.650247i \(-0.225335\pi\)
−0.650247 + 0.759723i \(0.725335\pi\)
\(158\) −3.14879e10 + 3.14879e10i −0.319786 + 0.319786i
\(159\) 0 0
\(160\) −2.62144e9 + 1.83501e10i −0.0250000 + 0.175000i
\(161\) −8.79080e10 −0.812642
\(162\) 0 0
\(163\) 4.78305e10 4.78305e10i 0.415688 0.415688i −0.468027 0.883714i \(-0.655035\pi\)
0.883714 + 0.468027i \(0.155035\pi\)
\(164\) 7.83378e10i 0.660317i
\(165\) 0 0
\(166\) −1.65882e11 −1.31601
\(167\) 1.18281e10 + 1.18281e10i 0.0910613 + 0.0910613i 0.751170 0.660109i \(-0.229490\pi\)
−0.660109 + 0.751170i \(0.729490\pi\)
\(168\) 0 0
\(169\) 2.96316e10i 0.214942i
\(170\) −1.50403e11 + 1.12802e11i −1.05928 + 0.794460i
\(171\) 0 0
\(172\) 3.03987e10 + 3.03987e10i 0.201936 + 0.201936i
\(173\) 1.16377e11 1.16377e11i 0.750997 0.750997i −0.223669 0.974665i \(-0.571803\pi\)
0.974665 + 0.223669i \(0.0718033\pi\)
\(174\) 0 0
\(175\) 1.01804e11 5.58277e10i 0.620258 0.340142i
\(176\) −4.54552e10 −0.269166
\(177\) 0 0
\(178\) −1.24342e11 + 1.24342e11i −0.695854 + 0.695854i
\(179\) 1.81011e11i 0.985008i 0.870310 + 0.492504i \(0.163918\pi\)
−0.870310 + 0.492504i \(0.836082\pi\)
\(180\) 0 0
\(181\) 1.33000e11 0.684636 0.342318 0.939584i \(-0.388788\pi\)
0.342318 + 0.939584i \(0.388788\pi\)
\(182\) −6.25812e10 6.25812e10i −0.313391 0.313391i
\(183\) 0 0
\(184\) 8.56599e10i 0.406152i
\(185\) −3.52424e10 + 2.46697e11i −0.162633 + 1.13843i
\(186\) 0 0
\(187\) −3.25994e11 3.25994e11i −1.42561 1.42561i
\(188\) 8.82377e10 8.82377e10i 0.375721 0.375721i
\(189\) 0 0
\(190\) −7.71092e10 1.10156e10i −0.311414 0.0444877i
\(191\) −1.31044e11 −0.515525 −0.257762 0.966208i \(-0.582985\pi\)
−0.257762 + 0.966208i \(0.582985\pi\)
\(192\) 0 0
\(193\) 2.12792e11 2.12792e11i 0.794639 0.794639i −0.187606 0.982244i \(-0.560073\pi\)
0.982244 + 0.187606i \(0.0600727\pi\)
\(194\) 2.04916e10i 0.0745704i
\(195\) 0 0
\(196\) 7.22534e10 0.249792
\(197\) −7.90246e10 7.90246e10i −0.266337 0.266337i 0.561285 0.827622i \(-0.310307\pi\)
−0.827622 + 0.561285i \(0.810307\pi\)
\(198\) 0 0
\(199\) 4.52657e11i 1.45045i 0.688510 + 0.725227i \(0.258265\pi\)
−0.688510 + 0.725227i \(0.741735\pi\)
\(200\) 5.44000e10 + 9.92000e10i 0.170000 + 0.310000i
\(201\) 0 0
\(202\) 3.23895e10 + 3.23895e10i 0.0963047 + 0.0963047i
\(203\) 2.08417e11 2.08417e11i 0.604578 0.604578i
\(204\) 0 0
\(205\) 2.86882e11 + 3.82509e11i 0.792380 + 1.05651i
\(206\) 4.80808e10 0.129609
\(207\) 0 0
\(208\) 6.09807e10 6.09807e10i 0.156630 0.156630i
\(209\) 1.91008e11i 0.478984i
\(210\) 0 0
\(211\) 1.37995e11 0.329951 0.164976 0.986298i \(-0.447245\pi\)
0.164976 + 0.986298i \(0.447245\pi\)
\(212\) −1.00549e11 1.00549e11i −0.234801 0.234801i
\(213\) 0 0
\(214\) 4.53797e10i 0.101110i
\(215\) 2.59754e11 + 3.71078e10i 0.565419 + 0.0807742i
\(216\) 0 0
\(217\) 8.46248e10 + 8.46248e10i 0.175873 + 0.175873i
\(218\) −9.94074e10 + 9.94074e10i −0.201900 + 0.201900i
\(219\) 0 0
\(220\) −2.21949e11 + 1.66462e11i −0.430666 + 0.323000i
\(221\) 8.74678e11 1.65915
\(222\) 0 0
\(223\) −1.26054e11 + 1.26054e11i −0.228576 + 0.228576i −0.812098 0.583521i \(-0.801674\pi\)
0.583521 + 0.812098i \(0.301674\pi\)
\(224\) 7.05230e10i 0.125052i
\(225\) 0 0
\(226\) −5.74435e11 −0.974313
\(227\) −1.15268e11 1.15268e11i −0.191241 0.191241i 0.604991 0.796232i \(-0.293177\pi\)
−0.796232 + 0.604991i \(0.793177\pi\)
\(228\) 0 0
\(229\) 3.29124e11i 0.522615i −0.965256 0.261308i \(-0.915846\pi\)
0.965256 0.261308i \(-0.0841537\pi\)
\(230\) −3.13696e11 4.18261e11i −0.487382 0.649843i
\(231\) 0 0
\(232\) 2.03087e11 + 2.03087e11i 0.302163 + 0.302163i
\(233\) 9.97948e10 9.97948e10i 0.145321 0.145321i −0.630703 0.776024i \(-0.717233\pi\)
0.776024 + 0.630703i \(0.217233\pi\)
\(234\) 0 0
\(235\) 1.07712e11 7.53985e11i 0.150288 1.05202i
\(236\) 3.55363e11 0.485414
\(237\) 0 0
\(238\) 5.05774e11 5.05774e11i 0.662326 0.662326i
\(239\) 3.95622e10i 0.0507331i 0.999678 + 0.0253665i \(0.00807529\pi\)
−0.999678 + 0.0253665i \(0.991925\pi\)
\(240\) 0 0
\(241\) −8.14271e11 −1.00158 −0.500788 0.865570i \(-0.666956\pi\)
−0.500788 + 0.865570i \(0.666956\pi\)
\(242\) −6.60711e10 6.60711e10i −0.0796039 0.0796039i
\(243\) 0 0
\(244\) 4.63967e11i 0.536461i
\(245\) 3.52800e11 2.64600e11i 0.399667 0.299750i
\(246\) 0 0
\(247\) 2.56248e11 + 2.56248e11i 0.278725 + 0.278725i
\(248\) −8.24607e10 + 8.24607e10i −0.0878999 + 0.0878999i
\(249\) 0 0
\(250\) 6.28906e11 + 2.85156e11i 0.644000 + 0.292000i
\(251\) −4.53171e11 −0.454877 −0.227438 0.973793i \(-0.573035\pi\)
−0.227438 + 0.973793i \(0.573035\pi\)
\(252\) 0 0
\(253\) 9.06570e11 9.06570e11i 0.874579 0.874579i
\(254\) 4.17987e11i 0.395362i
\(255\) 0 0
\(256\) 6.87195e10 0.0625000
\(257\) −1.33579e12 1.33579e12i −1.19144 1.19144i −0.976663 0.214777i \(-0.931098\pi\)
−0.214777 0.976663i \(-0.568902\pi\)
\(258\) 0 0
\(259\) 9.48106e11i 0.813501i
\(260\) 7.44394e10 5.21076e11i 0.0626521 0.438565i
\(261\) 0 0
\(262\) −8.32355e11 8.32355e11i −0.674221 0.674221i
\(263\) 9.12065e11 9.12065e11i 0.724848 0.724848i −0.244740 0.969589i \(-0.578703\pi\)
0.969589 + 0.244740i \(0.0787027\pi\)
\(264\) 0 0
\(265\) −8.59187e11 1.22741e11i −0.657443 0.0939205i
\(266\) 2.96346e11 0.222531
\(267\) 0 0
\(268\) 4.92582e11 4.92582e11i 0.356291 0.356291i
\(269\) 1.04348e12i 0.740835i −0.928865 0.370417i \(-0.879215\pi\)
0.928865 0.370417i \(-0.120785\pi\)
\(270\) 0 0
\(271\) 7.19445e11 0.492211 0.246105 0.969243i \(-0.420849\pi\)
0.246105 + 0.969243i \(0.420849\pi\)
\(272\) 4.92839e11 + 4.92839e11i 0.331025 + 0.331025i
\(273\) 0 0
\(274\) 5.24206e11i 0.339429i
\(275\) −4.74135e11 + 1.62561e12i −0.301466 + 1.03360i
\(276\) 0 0
\(277\) −8.62576e11 8.62576e11i −0.528931 0.528931i 0.391323 0.920253i \(-0.372018\pi\)
−0.920253 + 0.391323i \(0.872018\pi\)
\(278\) −4.18383e11 + 4.18383e11i −0.251971 + 0.251971i
\(279\) 0 0
\(280\) −2.58263e11 3.44351e11i −0.150062 0.200083i
\(281\) 7.89300e11 0.450516 0.225258 0.974299i \(-0.427677\pi\)
0.225258 + 0.974299i \(0.427677\pi\)
\(282\) 0 0
\(283\) −6.60245e11 + 6.60245e11i −0.363725 + 0.363725i −0.865182 0.501457i \(-0.832797\pi\)
0.501457 + 0.865182i \(0.332797\pi\)
\(284\) 1.59789e12i 0.864878i
\(285\) 0 0
\(286\) 1.29076e12 0.674554
\(287\) −1.28630e12 1.28630e12i −0.660592 0.660592i
\(288\) 0 0
\(289\) 5.05305e12i 2.50648i
\(290\) 1.73536e12 + 2.47908e11i 0.846056 + 0.120865i
\(291\) 0 0
\(292\) −3.25806e11 3.25806e11i −0.153477 0.153477i
\(293\) −1.79236e11 + 1.79236e11i −0.0830019 + 0.0830019i −0.747389 0.664387i \(-0.768693\pi\)
0.664387 + 0.747389i \(0.268693\pi\)
\(294\) 0 0
\(295\) 1.73517e12 1.30138e12i 0.776663 0.582497i
\(296\) 9.23860e11 0.406581
\(297\) 0 0
\(298\) −6.90180e10 + 6.90180e10i −0.0293685 + 0.0293685i
\(299\) 2.43243e12i 1.01785i
\(300\) 0 0
\(301\) −9.98288e11 −0.404039
\(302\) −1.82189e12 1.82189e12i −0.725251 0.725251i
\(303\) 0 0
\(304\) 2.88767e11i 0.111219i
\(305\) 1.69910e12 + 2.26546e12i 0.643753 + 0.858337i
\(306\) 0 0
\(307\) −1.10155e12 1.10155e12i −0.403937 0.403937i 0.475681 0.879618i \(-0.342202\pi\)
−0.879618 + 0.475681i \(0.842202\pi\)
\(308\) 7.46372e11 7.46372e11i 0.269278 0.269278i
\(309\) 0 0
\(310\) −1.00660e11 + 7.04620e11i −0.0351600 + 0.246120i
\(311\) −5.31138e12 −1.82560 −0.912800 0.408406i \(-0.866085\pi\)
−0.912800 + 0.408406i \(0.866085\pi\)
\(312\) 0 0
\(313\) −8.40078e11 + 8.40078e11i −0.279639 + 0.279639i −0.832965 0.553326i \(-0.813358\pi\)
0.553326 + 0.832965i \(0.313358\pi\)
\(314\) 3.34169e11i 0.109476i
\(315\) 0 0
\(316\) 1.00761e12 0.319786
\(317\) 1.16635e12 + 1.16635e12i 0.364361 + 0.364361i 0.865416 0.501055i \(-0.167054\pi\)
−0.501055 + 0.865416i \(0.667054\pi\)
\(318\) 0 0
\(319\) 4.29868e12i 1.30131i
\(320\) 3.35544e11 2.51658e11i 0.100000 0.0750000i
\(321\) 0 0
\(322\) 1.40653e12 + 1.40653e12i 0.406321 + 0.406321i
\(323\) −2.07097e12 + 2.07097e12i −0.589062 + 0.589062i
\(324\) 0 0
\(325\) −1.54476e12 2.81692e12i −0.426035 0.776887i
\(326\) −1.53058e12 −0.415688
\(327\) 0 0
\(328\) 1.25341e12 1.25341e12i 0.330158 0.330158i
\(329\) 2.89771e12i 0.751754i
\(330\) 0 0
\(331\) −4.82042e12 −1.21324 −0.606618 0.794994i \(-0.707474\pi\)
−0.606618 + 0.794994i \(0.707474\pi\)
\(332\) 2.65412e12 + 2.65412e12i 0.658006 + 0.658006i
\(333\) 0 0
\(334\) 3.78500e11i 0.0910613i
\(335\) 6.01296e11 4.20907e12i 0.142516 0.997614i
\(336\) 0 0
\(337\) −3.68550e12 3.68550e12i −0.847904 0.847904i 0.141967 0.989871i \(-0.454657\pi\)
−0.989871 + 0.141967i \(0.954657\pi\)
\(338\) 4.74105e11 4.74105e11i 0.107471 0.107471i
\(339\) 0 0
\(340\) 4.21127e12 + 6.01611e11i 0.926870 + 0.132410i
\(341\) −1.74542e12 −0.378555
\(342\) 0 0
\(343\) −3.56116e12 + 3.56116e12i −0.750104 + 0.750104i
\(344\) 9.72758e11i 0.201936i
\(345\) 0 0
\(346\) −3.72408e12 −0.750997
\(347\) 5.38450e12 + 5.38450e12i 1.07028 + 1.07028i 0.997336 + 0.0729452i \(0.0232398\pi\)
0.0729452 + 0.997336i \(0.476760\pi\)
\(348\) 0 0
\(349\) 8.12658e12i 1.56957i 0.619768 + 0.784785i \(0.287227\pi\)
−0.619768 + 0.784785i \(0.712773\pi\)
\(350\) −2.52210e12 7.35612e11i −0.480200 0.140058i
\(351\) 0 0
\(352\) 7.27284e11 + 7.27284e11i 0.134583 + 0.134583i
\(353\) −5.49274e12 + 5.49274e12i −1.00211 + 1.00211i −0.00211203 + 0.999998i \(0.500672\pi\)
−0.999998 + 0.00211203i \(0.999328\pi\)
\(354\) 0 0
\(355\) 5.85165e12 + 7.80219e12i 1.03785 + 1.38381i
\(356\) 3.97895e12 0.695854
\(357\) 0 0
\(358\) 2.89617e12 2.89617e12i 0.492504 0.492504i
\(359\) 5.91305e12i 0.991606i 0.868435 + 0.495803i \(0.165126\pi\)
−0.868435 + 0.495803i \(0.834874\pi\)
\(360\) 0 0
\(361\) 4.91763e12 0.802084
\(362\) −2.12801e12 2.12801e12i −0.342318 0.342318i
\(363\) 0 0
\(364\) 2.00260e12i 0.313391i
\(365\) −2.78398e12 3.97712e11i −0.429737 0.0613910i
\(366\) 0 0
\(367\) 1.75360e12 + 1.75360e12i 0.263390 + 0.263390i 0.826430 0.563040i \(-0.190368\pi\)
−0.563040 + 0.826430i \(0.690368\pi\)
\(368\) −1.37056e12 + 1.37056e12i −0.203076 + 0.203076i
\(369\) 0 0
\(370\) 4.51103e12 3.38327e12i 0.650530 0.487898i
\(371\) 3.30203e12 0.469798
\(372\) 0 0
\(373\) 4.25717e12 4.25717e12i 0.589627 0.589627i −0.347904 0.937530i \(-0.613106\pi\)
0.937530 + 0.347904i \(0.113106\pi\)
\(374\) 1.04318e13i 1.42561i
\(375\) 0 0
\(376\) −2.82361e12 −0.375721
\(377\) −5.76692e12 5.76692e12i −0.757246 0.757246i
\(378\) 0 0
\(379\) 7.20999e12i 0.922016i −0.887396 0.461008i \(-0.847488\pi\)
0.887396 0.461008i \(-0.152512\pi\)
\(380\) 1.05750e12 + 1.41000e12i 0.133463 + 0.177951i
\(381\) 0 0
\(382\) 2.09670e12 + 2.09670e12i 0.257762 + 0.257762i
\(383\) 6.93832e12 6.93832e12i 0.841900 0.841900i −0.147206 0.989106i \(-0.547028\pi\)
0.989106 + 0.147206i \(0.0470281\pi\)
\(384\) 0 0
\(385\) 9.11098e11 6.37769e12i 0.107711 0.753980i
\(386\) −6.80936e12 −0.794639
\(387\) 0 0
\(388\) 3.27865e11 3.27865e11i 0.0372852 0.0372852i
\(389\) 1.12518e13i 1.26320i −0.775293 0.631601i \(-0.782398\pi\)
0.775293 0.631601i \(-0.217602\pi\)
\(390\) 0 0
\(391\) −1.96586e13 −2.15114
\(392\) −1.15605e12 1.15605e12i −0.124896 0.124896i
\(393\) 0 0
\(394\) 2.52879e12i 0.266337i
\(395\) 4.91999e12 3.68999e12i 0.511657 0.383743i
\(396\) 0 0
\(397\) −7.94628e12 7.94628e12i −0.805770 0.805770i 0.178221 0.983991i \(-0.442966\pi\)
−0.983991 + 0.178221i \(0.942966\pi\)
\(398\) 7.24252e12 7.24252e12i 0.725227 0.725227i
\(399\) 0 0
\(400\) 7.16800e11 2.45760e12i 0.0700000 0.240000i
\(401\) −8.81072e12 −0.849747 −0.424874 0.905253i \(-0.639681\pi\)
−0.424874 + 0.905253i \(0.639681\pi\)
\(402\) 0 0
\(403\) 2.34158e12 2.34158e12i 0.220285 0.220285i
\(404\) 1.03646e12i 0.0963047i
\(405\) 0 0
\(406\) −6.66933e12 −0.604578
\(407\) 9.77755e12 + 9.77755e12i 0.875504 + 0.875504i
\(408\) 0 0
\(409\) 1.00160e13i 0.875141i −0.899184 0.437571i \(-0.855839\pi\)
0.899184 0.437571i \(-0.144161\pi\)
\(410\) 1.53004e12 1.07103e13i 0.132063 0.924444i
\(411\) 0 0
\(412\) −7.69293e11 7.69293e11i −0.0648045 0.0648045i
\(413\) −5.83504e12 + 5.83504e12i −0.485616 + 0.485616i
\(414\) 0 0
\(415\) 2.26792e13 + 3.23989e12i 1.84242 + 0.263202i
\(416\) −1.95138e12 −0.156630
\(417\) 0 0
\(418\) −3.05613e12 + 3.05613e12i −0.239492 + 0.239492i
\(419\) 1.48244e13i 1.14791i −0.818888 0.573954i \(-0.805409\pi\)
0.818888 0.573954i \(-0.194591\pi\)
\(420\) 0 0
\(421\) −4.68500e12 −0.354241 −0.177121 0.984189i \(-0.556678\pi\)
−0.177121 + 0.984189i \(0.556678\pi\)
\(422\) −2.20791e12 2.20791e12i −0.164976 0.164976i
\(423\) 0 0
\(424\) 3.21758e12i 0.234801i
\(425\) 2.27660e13 1.24846e13i 1.64188 0.900388i
\(426\) 0 0
\(427\) −7.61830e12 7.61830e12i −0.536684 0.536684i
\(428\) 7.26075e11 7.26075e11i 0.0505549 0.0505549i
\(429\) 0 0
\(430\) −3.56235e12 4.74980e12i −0.242323 0.323097i
\(431\) −2.39126e13 −1.60783 −0.803917 0.594741i \(-0.797254\pi\)
−0.803917 + 0.594741i \(0.797254\pi\)
\(432\) 0 0
\(433\) −7.41823e11 + 7.41823e11i −0.0487372 + 0.0487372i −0.731055 0.682318i \(-0.760972\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(434\) 2.70800e12i 0.175873i
\(435\) 0 0
\(436\) 3.18104e12 0.201900
\(437\) −5.75925e12 5.75925e12i −0.361375 0.361375i
\(438\) 0 0
\(439\) 2.09704e13i 1.28613i 0.765811 + 0.643065i \(0.222338\pi\)
−0.765811 + 0.643065i \(0.777662\pi\)
\(440\) 6.21458e12 + 8.87798e11i 0.376833 + 0.0538333i
\(441\) 0 0
\(442\) −1.39948e13 1.39948e13i −0.829577 0.829577i
\(443\) 2.38909e13 2.38909e13i 1.40028 1.40028i 0.601118 0.799160i \(-0.294722\pi\)
0.799160 0.601118i \(-0.205278\pi\)
\(444\) 0 0
\(445\) 1.94285e13 1.45713e13i 1.11337 0.835025i
\(446\) 4.03372e12 0.228576
\(447\) 0 0
\(448\) −1.12837e12 + 1.12837e12i −0.0625260 + 0.0625260i
\(449\) 2.04535e13i 1.12082i 0.828215 + 0.560411i \(0.189357\pi\)
−0.828215 + 0.560411i \(0.810643\pi\)
\(450\) 0 0
\(451\) 2.65305e13 1.42188
\(452\) 9.19096e12 + 9.19096e12i 0.487157 + 0.487157i
\(453\) 0 0
\(454\) 3.68858e12i 0.191241i
\(455\) 7.33373e12 + 9.77831e12i 0.376069 + 0.501426i
\(456\) 0 0
\(457\) 6.88521e12 + 6.88521e12i 0.345411 + 0.345411i 0.858397 0.512986i \(-0.171461\pi\)
−0.512986 + 0.858397i \(0.671461\pi\)
\(458\) −5.26598e12 + 5.26598e12i −0.261308 + 0.261308i
\(459\) 0 0
\(460\) −1.67304e12 + 1.17113e13i −0.0812303 + 0.568612i
\(461\) 1.72039e13 0.826268 0.413134 0.910670i \(-0.364434\pi\)
0.413134 + 0.910670i \(0.364434\pi\)
\(462\) 0 0
\(463\) −4.67192e11 + 4.67192e11i −0.0219579 + 0.0219579i −0.718000 0.696043i \(-0.754942\pi\)
0.696043 + 0.718000i \(0.254942\pi\)
\(464\) 6.49877e12i 0.302163i
\(465\) 0 0
\(466\) −3.19343e12 −0.145321
\(467\) −1.62768e13 1.62768e13i −0.732799 0.732799i 0.238374 0.971173i \(-0.423385\pi\)
−0.971173 + 0.238374i \(0.923385\pi\)
\(468\) 0 0
\(469\) 1.61763e13i 0.712878i
\(470\) −1.37871e13 + 1.03404e13i −0.601153 + 0.450865i
\(471\) 0 0
\(472\) −5.68581e12 5.68581e12i −0.242707 0.242707i
\(473\) 1.02951e13 1.02951e13i 0.434834 0.434834i
\(474\) 0 0
\(475\) 1.03271e13 + 3.01208e12i 0.427082 + 0.124566i
\(476\) −1.61848e13 −0.662326
\(477\) 0 0
\(478\) 6.32996e11 6.32996e11i 0.0253665 0.0253665i
\(479\) 3.26759e13i 1.29584i 0.761710 + 0.647918i \(0.224360\pi\)
−0.761710 + 0.647918i \(0.775640\pi\)
\(480\) 0 0
\(481\) −2.62343e13 −1.01893
\(482\) 1.30283e13 + 1.30283e13i 0.500788 + 0.500788i
\(483\) 0 0
\(484\) 2.11427e12i 0.0796039i
\(485\) 4.00226e11 2.80158e12i 0.0149141 0.104399i
\(486\) 0 0
\(487\) 3.91617e12 + 3.91617e12i 0.142961 + 0.142961i 0.774965 0.632004i \(-0.217768\pi\)
−0.632004 + 0.774965i \(0.717768\pi\)
\(488\) 7.42347e12 7.42347e12i 0.268230 0.268230i
\(489\) 0 0
\(490\) −9.87840e12 1.41120e12i −0.349708 0.0499583i
\(491\) 1.66945e12 0.0585015 0.0292508 0.999572i \(-0.490688\pi\)
0.0292508 + 0.999572i \(0.490688\pi\)
\(492\) 0 0
\(493\) 4.66076e13 4.66076e13i 1.60038 1.60038i
\(494\) 8.19994e12i 0.278725i
\(495\) 0 0
\(496\) 2.63874e12 0.0878999
\(497\) −2.62372e13 2.62372e13i −0.865239 0.865239i
\(498\) 0 0
\(499\) 2.69113e13i 0.869824i 0.900473 + 0.434912i \(0.143221\pi\)
−0.900473 + 0.434912i \(0.856779\pi\)
\(500\) −5.50000e12 1.46250e13i −0.176000 0.468000i
\(501\) 0 0
\(502\) 7.25074e12 + 7.25074e12i 0.227438 + 0.227438i
\(503\) −2.35501e13 + 2.35501e13i −0.731397 + 0.731397i −0.970897 0.239499i \(-0.923017\pi\)
0.239499 + 0.970897i \(0.423017\pi\)
\(504\) 0 0
\(505\) −3.79564e12 5.06086e12i −0.115566 0.154087i
\(506\) −2.90103e13 −0.874579
\(507\) 0 0
\(508\) −6.68780e12 + 6.68780e12i −0.197681 + 0.197681i
\(509\) 8.63621e12i 0.252775i 0.991981 + 0.126388i \(0.0403383\pi\)
−0.991981 + 0.126388i \(0.959662\pi\)
\(510\) 0 0
\(511\) 1.06994e13 0.307083
\(512\) −1.09951e12 1.09951e12i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 4.27452e13i 1.19144i
\(515\) −6.57355e12 9.39078e11i −0.181453 0.0259218i
\(516\) 0 0
\(517\) −2.98833e13 2.98833e13i −0.809051 0.809051i
\(518\) −1.51697e13 + 1.51697e13i −0.406751 + 0.406751i
\(519\) 0 0
\(520\) −9.52824e12 + 7.14618e12i −0.250609 + 0.187956i
\(521\) 6.27326e13 1.63420 0.817099 0.576497i \(-0.195581\pi\)
0.817099 + 0.576497i \(0.195581\pi\)
\(522\) 0 0
\(523\) 1.48951e12 1.48951e12i 0.0380659 0.0380659i −0.687818 0.725884i \(-0.741431\pi\)
0.725884 + 0.687818i \(0.241431\pi\)
\(524\) 2.66354e13i 0.674221i
\(525\) 0 0
\(526\) −2.91861e13 −0.724848
\(527\) 1.89244e13 + 1.89244e13i 0.465553 + 0.465553i
\(528\) 0 0
\(529\) 1.32430e13i 0.319673i
\(530\) 1.17831e13 + 1.57108e13i 0.281761 + 0.375682i
\(531\) 0 0
\(532\) −4.74154e12 4.74154e12i −0.111266 0.111266i
\(533\) −3.55922e13 + 3.55922e13i −0.827405 + 0.827405i
\(534\) 0 0
\(535\) 8.86323e11 6.20426e12i 0.0202219 0.141554i
\(536\) −1.57626e13 −0.356291
\(537\) 0 0
\(538\) −1.66956e13 + 1.66956e13i −0.370417 + 0.370417i
\(539\) 2.44699e13i 0.537884i
\(540\) 0 0
\(541\) −8.97115e13 −1.93581 −0.967903 0.251324i \(-0.919134\pi\)
−0.967903 + 0.251324i \(0.919134\pi\)
\(542\) −1.15111e13 1.15111e13i −0.246105 0.246105i
\(543\) 0 0
\(544\) 1.57709e13i 0.331025i
\(545\) 1.55324e13 1.16493e13i 0.323040 0.242280i
\(546\) 0 0
\(547\) 3.39955e13 + 3.39955e13i 0.694200 + 0.694200i 0.963153 0.268953i \(-0.0866777\pi\)
−0.268953 + 0.963153i \(0.586678\pi\)
\(548\) −8.38730e12 + 8.38730e12i −0.169715 + 0.169715i
\(549\) 0 0
\(550\) 3.35959e13 1.84235e13i 0.667532 0.366066i
\(551\) 2.73086e13 0.537702
\(552\) 0 0
\(553\) −1.65449e13 + 1.65449e13i −0.319919 + 0.319919i
\(554\) 2.76024e13i 0.528931i
\(555\) 0 0
\(556\) 1.33883e13 0.251971
\(557\) −9.51915e12 9.51915e12i −0.177551 0.177551i 0.612737 0.790287i \(-0.290069\pi\)
−0.790287 + 0.612737i \(0.790069\pi\)
\(558\) 0 0
\(559\) 2.76228e13i 0.506068i
\(560\) −1.37740e12 + 9.64182e12i −0.0250104 + 0.175073i
\(561\) 0 0
\(562\) −1.26288e13 1.26288e13i −0.225258 0.225258i
\(563\) −3.63651e13 + 3.63651e13i −0.642900 + 0.642900i −0.951267 0.308367i \(-0.900217\pi\)
0.308367 + 0.951267i \(0.400217\pi\)
\(564\) 0 0
\(565\) 7.85360e13 + 1.12194e13i 1.36404 + 0.194863i
\(566\) 2.11278e13 0.363725
\(567\) 0 0
\(568\) 2.55662e13 2.55662e13i 0.432439 0.432439i
\(569\) 2.82859e13i 0.474252i 0.971479 + 0.237126i \(0.0762054\pi\)
−0.971479 + 0.237126i \(0.923795\pi\)
\(570\) 0 0
\(571\) 2.19201e12 0.0361129 0.0180564 0.999837i \(-0.494252\pi\)
0.0180564 + 0.999837i \(0.494252\pi\)
\(572\) −2.06522e13 2.06522e13i −0.337277 0.337277i
\(573\) 0 0
\(574\) 4.11616e13i 0.660592i
\(575\) 3.47189e13 + 6.33110e13i 0.552366 + 1.00726i
\(576\) 0 0
\(577\) −2.97579e13 2.97579e13i −0.465289 0.465289i 0.435095 0.900384i \(-0.356715\pi\)
−0.900384 + 0.435095i \(0.856715\pi\)
\(578\) 8.08489e13 8.08489e13i 1.25324 1.25324i
\(579\) 0 0
\(580\) −2.37992e13 3.17323e13i −0.362596 0.483461i
\(581\) −8.71608e13 −1.31656
\(582\) 0 0
\(583\) −3.40529e13 + 3.40529e13i −0.505605 + 0.505605i
\(584\) 1.04258e13i 0.153477i
\(585\) 0 0
\(586\) 5.73556e12 0.0830019
\(587\) −4.60333e13 4.60333e13i −0.660513 0.660513i 0.294988 0.955501i \(-0.404684\pi\)
−0.955501 + 0.294988i \(0.904684\pi\)
\(588\) 0 0
\(589\) 1.10883e13i 0.156419i
\(590\) −4.85848e13 6.94069e12i −0.679580 0.0970829i
\(591\) 0 0
\(592\) −1.47818e13 1.47818e13i −0.203291 0.203291i
\(593\) 6.17714e12 6.17714e12i 0.0842391 0.0842391i −0.663732 0.747971i \(-0.731028\pi\)
0.747971 + 0.663732i \(0.231028\pi\)
\(594\) 0 0
\(595\) −7.90272e13 + 5.92704e13i −1.05972 + 0.794791i
\(596\) 2.20858e12 0.0293685
\(597\) 0 0
\(598\) 3.89189e13 3.89189e13i 0.508925 0.508925i
\(599\) 5.80310e13i 0.752534i 0.926511 + 0.376267i \(0.122792\pi\)
−0.926511 + 0.376267i \(0.877208\pi\)
\(600\) 0 0
\(601\) 1.24750e14 1.59100 0.795499 0.605955i \(-0.207209\pi\)
0.795499 + 0.605955i \(0.207209\pi\)
\(602\) 1.59726e13 + 1.59726e13i 0.202020 + 0.202020i
\(603\) 0 0
\(604\) 5.83006e13i 0.725251i
\(605\) 7.74270e12 + 1.03236e13i 0.0955247 + 0.127366i
\(606\) 0 0
\(607\) −9.34184e13 9.34184e13i −1.13368 1.13368i −0.989561 0.144115i \(-0.953967\pi\)
−0.144115 0.989561i \(-0.546033\pi\)
\(608\) 4.62028e12 4.62028e12i 0.0556097 0.0556097i
\(609\) 0 0
\(610\) 9.06186e12 6.34330e13i 0.107292 0.751045i
\(611\) 8.01802e13 0.941588
\(612\) 0 0
\(613\) 1.42802e13 1.42802e13i 0.164980 0.164980i −0.619789 0.784769i \(-0.712782\pi\)
0.784769 + 0.619789i \(0.212782\pi\)
\(614\) 3.52497e13i 0.403937i
\(615\) 0 0
\(616\) −2.38839e13 −0.269278
\(617\) 4.17740e12 + 4.17740e12i 0.0467176 + 0.0467176i 0.730080 0.683362i \(-0.239483\pi\)
−0.683362 + 0.730080i \(0.739483\pi\)
\(618\) 0 0
\(619\) 4.07977e13i 0.448934i 0.974482 + 0.224467i \(0.0720642\pi\)
−0.974482 + 0.224467i \(0.927936\pi\)
\(620\) 1.28845e13 9.66336e12i 0.140640 0.105480i
\(621\) 0 0
\(622\) 8.49822e13 + 8.49822e13i 0.912800 + 0.912800i
\(623\) −6.53340e13 + 6.53340e13i −0.696144 + 0.696144i
\(624\) 0 0
\(625\) −8.04138e13 5.12695e13i −0.843200 0.537600i
\(626\) 2.68825e13 0.279639
\(627\) 0 0
\(628\) −5.34670e12 + 5.34670e12i −0.0547379 + 0.0547379i
\(629\) 2.12022e14i 2.15342i
\(630\) 0 0
\(631\) 8.03556e13 0.803284 0.401642 0.915797i \(-0.368440\pi\)
0.401642 + 0.915797i \(0.368440\pi\)
\(632\) −1.61218e13 1.61218e13i −0.159893 0.159893i
\(633\) 0 0
\(634\) 3.73231e13i 0.364361i
\(635\) −8.16382e12 + 5.71467e13i −0.0790723 + 0.553506i
\(636\) 0 0
\(637\) 3.28277e13 + 3.28277e13i 0.313000 + 0.313000i
\(638\) 6.87789e13 6.87789e13i 0.650657 0.650657i
\(639\) 0 0
\(640\) −9.39524e12 1.34218e12i −0.0875000 0.0125000i
\(641\) −9.43477e13 −0.871849 −0.435924 0.899983i \(-0.643579\pi\)
−0.435924 + 0.899983i \(0.643579\pi\)
\(642\) 0 0
\(643\) 1.98925e13 1.98925e13i 0.180981 0.180981i −0.610802 0.791783i \(-0.709153\pi\)
0.791783 + 0.610802i \(0.209153\pi\)
\(644\) 4.50089e13i 0.406321i
\(645\) 0 0
\(646\) 6.62710e13 0.589062
\(647\) −5.97289e13 5.97289e13i −0.526821 0.526821i 0.392802 0.919623i \(-0.371506\pi\)
−0.919623 + 0.392802i \(0.871506\pi\)
\(648\) 0 0
\(649\) 1.20350e14i 1.04526i
\(650\) −2.03545e13 + 6.97869e13i −0.175426 + 0.601461i
\(651\) 0 0
\(652\) 2.44892e13 + 2.44892e13i 0.207844 + 0.207844i
\(653\) 9.87072e13 9.87072e13i 0.831349 0.831349i −0.156353 0.987701i \(-0.549974\pi\)
0.987701 + 0.156353i \(0.0499737\pi\)
\(654\) 0 0
\(655\) 9.75416e13 + 1.30055e14i 0.809065 + 1.07875i
\(656\) −4.01090e13 −0.330158
\(657\) 0 0
\(658\) 4.63634e13 4.63634e13i 0.375877 0.375877i
\(659\) 5.80689e13i 0.467215i −0.972331 0.233607i \(-0.924947\pi\)
0.972331 0.233607i \(-0.0750530\pi\)
\(660\) 0 0
\(661\) −1.53137e14 −1.21360 −0.606798 0.794856i \(-0.707546\pi\)
−0.606798 + 0.794856i \(0.707546\pi\)
\(662\) 7.71268e13 + 7.71268e13i 0.606618 + 0.606618i
\(663\) 0 0
\(664\) 8.49317e13i 0.658006i
\(665\) −4.05161e13 5.78801e12i −0.311544 0.0445062i
\(666\) 0 0
\(667\) 1.29613e14 + 1.29613e14i 0.981792 + 0.981792i
\(668\) −6.05600e12 + 6.05600e12i −0.0455306 + 0.0455306i
\(669\) 0 0
\(670\) −7.69659e13 + 5.77244e13i −0.570065 + 0.427549i
\(671\) 1.57131e14 1.15518
\(672\) 0 0
\(673\) −8.75360e13 + 8.75360e13i −0.634032 + 0.634032i −0.949077 0.315045i \(-0.897980\pi\)
0.315045 + 0.949077i \(0.397980\pi\)
\(674\) 1.17936e14i 0.847904i
\(675\) 0 0
\(676\) −1.51714e13 −0.107471
\(677\) −1.59452e12 1.59452e12i −0.0112121 0.0112121i 0.701478 0.712691i \(-0.252524\pi\)
−0.712691 + 0.701478i \(0.752524\pi\)
\(678\) 0 0
\(679\) 1.07670e13i 0.0746014i
\(680\) −5.77546e13 7.70062e13i −0.397230 0.529640i
\(681\) 0 0
\(682\) 2.79268e13 + 2.79268e13i 0.189278 + 0.189278i
\(683\) 5.65796e13 5.65796e13i 0.380677 0.380677i −0.490669 0.871346i \(-0.663248\pi\)
0.871346 + 0.490669i \(0.163248\pi\)
\(684\) 0 0
\(685\) −1.02384e13 + 7.16689e13i −0.0678859 + 0.475201i
\(686\) 1.13957e14 0.750104
\(687\) 0 0
\(688\) −1.55641e13 + 1.55641e13i −0.100968 + 0.100968i
\(689\) 9.13676e13i 0.588432i
\(690\) 0 0
\(691\) 4.98558e12 0.0316465 0.0158232 0.999875i \(-0.494963\pi\)
0.0158232 + 0.999875i \(0.494963\pi\)
\(692\) 5.95852e13 + 5.95852e13i 0.375498 + 0.375498i
\(693\) 0 0
\(694\) 1.72304e14i 1.07028i
\(695\) 6.53724e13 4.90293e13i 0.403153 0.302365i
\(696\) 0 0
\(697\) −2.87652e14 2.87652e14i −1.74865 1.74865i
\(698\) 1.30025e14 1.30025e14i 0.784785 0.784785i
\(699\) 0 0
\(700\) 2.85838e13 + 5.21234e13i 0.170071 + 0.310129i
\(701\) 1.80303e14 1.06516 0.532578 0.846381i \(-0.321223\pi\)
0.532578 + 0.846381i \(0.321223\pi\)
\(702\) 0 0
\(703\) 6.21147e13 6.21147e13i 0.361758 0.361758i
\(704\) 2.32731e13i 0.134583i
\(705\) 0 0
\(706\) 1.75768e14 1.00211
\(707\) 1.70187e13 + 1.70187e13i 0.0963448 + 0.0963448i
\(708\) 0 0
\(709\) 3.11543e14i 1.73895i −0.493979 0.869474i \(-0.664458\pi\)
0.493979 0.869474i \(-0.335542\pi\)
\(710\) 3.12088e13 2.18461e14i 0.172976 1.21083i
\(711\) 0 0
\(712\) −6.36632e13 6.36632e13i −0.347927 0.347927i
\(713\) −5.26277e13 + 5.26277e13i −0.285606 + 0.285606i
\(714\) 0 0
\(715\) −1.76472e14 2.52102e13i −0.944375 0.134911i
\(716\) −9.26776e13 −0.492504
\(717\) 0 0
\(718\) 9.46087e13 9.46087e13i 0.495803 0.495803i
\(719\) 1.65068e14i 0.859051i 0.903055 + 0.429525i \(0.141319\pi\)
−0.903055 + 0.429525i \(0.858681\pi\)
\(720\) 0 0
\(721\) 2.52634e13 0.129663
\(722\) −7.86821e13 7.86821e13i −0.401042 0.401042i
\(723\) 0 0
\(724\) 6.80962e13i 0.342318i
\(725\) −2.32414e14 6.77875e13i −1.16031 0.338423i
\(726\) 0 0
\(727\) 2.15314e14 + 2.15314e14i 1.06023 + 1.06023i 0.998066 + 0.0621642i \(0.0198002\pi\)
0.0621642 + 0.998066i \(0.480200\pi\)
\(728\) 3.20416e13 3.20416e13i 0.156696 0.156696i
\(729\) 0 0
\(730\) 3.81804e13 + 5.09071e13i 0.184173 + 0.245564i
\(731\) −2.23244e14 −1.06953
\(732\) 0 0
\(733\) −2.78787e14 + 2.78787e14i −1.31750 + 1.31750i −0.401759 + 0.915746i \(0.631601\pi\)
−0.915746 + 0.401759i \(0.868399\pi\)
\(734\) 5.61152e13i 0.263390i
\(735\) 0 0
\(736\) 4.38578e13 0.203076
\(737\) −1.66822e14 1.66822e14i −0.767212 0.767212i
\(738\) 0 0
\(739\) 2.05171e14i 0.930879i −0.885080 0.465440i \(-0.845896\pi\)
0.885080 0.465440i \(-0.154104\pi\)
\(740\) −1.26309e14 1.80441e13i −0.569214 0.0813163i
\(741\) 0 0
\(742\) −5.28324e13 5.28324e13i −0.234899 0.234899i
\(743\) −1.59047e14 + 1.59047e14i −0.702396 + 0.702396i −0.964924 0.262528i \(-0.915444\pi\)
0.262528 + 0.964924i \(0.415444\pi\)
\(744\) 0 0
\(745\) 1.07841e13 8.08805e12i 0.0469895 0.0352422i
\(746\) −1.36230e14 −0.589627
\(747\) 0 0
\(748\) 1.66909e14 1.66909e14i 0.712806 0.712806i
\(749\) 2.38442e13i 0.101152i
\(750\) 0 0
\(751\) −1.40008e14 −0.586074 −0.293037 0.956101i \(-0.594666\pi\)
−0.293037 + 0.956101i \(0.594666\pi\)
\(752\) 4.51777e13 + 4.51777e13i 0.187860 + 0.187860i
\(753\) 0 0
\(754\) 1.84541e14i 0.757246i
\(755\) 2.13503e14 + 2.84671e14i 0.870302 + 1.16040i
\(756\) 0 0
\(757\) 7.07881e13 + 7.07881e13i 0.284761 + 0.284761i 0.835004 0.550243i \(-0.185465\pi\)
−0.550243 + 0.835004i \(0.685465\pi\)
\(758\) −1.15360e14 + 1.15360e14i −0.461008 + 0.461008i
\(759\) 0 0
\(760\) 5.63999e12 3.94799e13i 0.0222439 0.155707i
\(761\) 2.84953e14 1.11648 0.558238 0.829681i \(-0.311477\pi\)
0.558238 + 0.829681i \(0.311477\pi\)
\(762\) 0 0
\(763\) −5.22324e13 + 5.22324e13i −0.201984 + 0.201984i
\(764\) 6.70944e13i 0.257762i
\(765\) 0 0
\(766\) −2.22026e14 −0.841900
\(767\) 1.61456e14 + 1.61456e14i 0.608245 + 0.608245i
\(768\) 0 0
\(769\) 3.59991e14i 1.33863i −0.742980 0.669314i \(-0.766588\pi\)
0.742980 0.669314i \(-0.233412\pi\)
\(770\) −1.16621e14 + 8.74654e13i −0.430845 + 0.323134i
\(771\) 0 0
\(772\) 1.08950e14 + 1.08950e14i 0.397319 + 0.397319i
\(773\) −1.40032e14 + 1.40032e14i −0.507375 + 0.507375i −0.913720 0.406345i \(-0.866803\pi\)
0.406345 + 0.913720i \(0.366803\pi\)
\(774\) 0 0
\(775\) 2.75242e13 9.43687e13i 0.0984479 0.337536i
\(776\) −1.04917e13 −0.0372852
\(777\) 0 0
\(778\) −1.80028e14 + 1.80028e14i −0.631601 + 0.631601i
\(779\) 1.68543e14i 0.587520i
\(780\) 0 0
\(781\) 5.41154e14 1.86237
\(782\) 3.14538e14 + 3.14538e14i 1.07557 + 1.07557i
\(783\) 0 0
\(784\) 3.69937e13i 0.124896i
\(785\) −6.52674e12 + 4.56872e13i −0.0218951 + 0.153266i
\(786\) 0 0
\(787\) 2.99888e14 + 2.99888e14i 0.993312 + 0.993312i 0.999978 0.00666595i \(-0.00212185\pi\)
−0.00666595 + 0.999978i \(0.502122\pi\)
\(788\) 4.04606e13 4.04606e13i 0.133168 0.133168i
\(789\) 0 0
\(790\) −1.37760e14 1.96800e13i −0.447700 0.0639571i
\(791\) −3.01830e14 −0.974719
\(792\) 0 0
\(793\) −2.10800e14 + 2.10800e14i −0.672208 + 0.672208i
\(794\) 2.54281e14i 0.805770i
\(795\) 0 0
\(796\) −2.31761e14 −0.725227
\(797\) 2.14433e14 + 2.14433e14i 0.666807 + 0.666807i 0.956976 0.290169i \(-0.0937114\pi\)
−0.290169 + 0.956976i \(0.593711\pi\)
\(798\) 0 0
\(799\) 6.48007e14i 1.98997i
\(800\) −5.07904e13 + 2.78528e13i −0.155000 + 0.0850000i
\(801\) 0 0
\(802\) 1.40972e14 + 1.40972e14i 0.424874 + 0.424874i
\(803\) −1.10340e14 + 1.10340e14i −0.330488 + 0.330488i
\(804\) 0 0
\(805\) −1.64828e14 2.19770e14i −0.487585 0.650113i
\(806\) −7.49306e13 −0.220285
\(807\) 0 0
\(808\) −1.65834e13 + 1.65834e13i −0.0481523 + 0.0481523i
\(809\) 3.71569e14i 1.07225i −0.844138 0.536126i \(-0.819887\pi\)
0.844138 0.536126i \(-0.180113\pi\)
\(810\) 0 0
\(811\) 4.25889e14 1.21393 0.606963 0.794730i \(-0.292388\pi\)
0.606963 + 0.794730i \(0.292388\pi\)
\(812\) 1.06709e14 + 1.06709e14i 0.302289 + 0.302289i
\(813\) 0 0
\(814\) 3.12882e14i 0.875504i
\(815\) 2.09259e14 + 2.98941e13i 0.581963 + 0.0831376i
\(816\) 0 0
\(817\) −6.54023e13 6.54023e13i −0.179673 0.179673i
\(818\) −1.60256e14 + 1.60256e14i −0.437571 + 0.437571i
\(819\) 0 0
\(820\) −1.95845e14 + 1.46883e14i −0.528253 + 0.396190i
\(821\) −4.73944e14 −1.27061 −0.635304 0.772262i \(-0.719125\pi\)
−0.635304 + 0.772262i \(0.719125\pi\)
\(822\) 0 0
\(823\) −3.93378e14 + 3.93378e14i −1.04186 + 1.04186i −0.0427794 + 0.999085i \(0.513621\pi\)
−0.999085 + 0.0427794i \(0.986379\pi\)
\(824\) 2.46174e13i 0.0648045i
\(825\) 0 0
\(826\) 1.86721e14 0.485616
\(827\) 2.32822e14 + 2.32822e14i 0.601861 + 0.601861i 0.940806 0.338945i \(-0.110070\pi\)
−0.338945 + 0.940806i \(0.610070\pi\)
\(828\) 0 0
\(829\) 9.73337e13i 0.248594i −0.992245 0.124297i \(-0.960332\pi\)
0.992245 0.124297i \(-0.0396675\pi\)
\(830\) −3.11029e14 4.14706e14i −0.789607 1.05281i
\(831\) 0 0
\(832\) 3.12221e13 + 3.12221e13i 0.0783152 + 0.0783152i
\(833\) −2.65310e14 + 2.65310e14i −0.661499 + 0.661499i
\(834\) 0 0
\(835\) −7.39258e12 + 5.17481e13i −0.0182123 + 0.127486i
\(836\) 9.77963e13 0.239492
\(837\) 0 0
\(838\) −2.37190e14 + 2.37190e14i −0.573954 + 0.573954i
\(839\) 3.82848e14i 0.920910i −0.887683 0.460455i \(-0.847686\pi\)
0.887683 0.460455i \(-0.152314\pi\)
\(840\) 0 0
\(841\) −1.93879e14 −0.460840
\(842\) 7.49601e13 + 7.49601e13i 0.177121 + 0.177121i
\(843\) 0 0
\(844\) 7.06533e13i 0.164976i
\(845\) −7.40789e13 + 5.55592e13i −0.171954 + 0.128965i
\(846\) 0 0
\(847\) −3.47162e13 3.47162e13i −0.0796371 0.0796371i
\(848\) 5.14813e13 5.14813e13i 0.117401 0.117401i
\(849\) 0 0
\(850\) −5.64010e14 1.64503e14i −1.27114 0.370748i
\(851\) 5.89622e14 1.32107
\(852\) 0 0
\(853\) 4.25918e14 4.25918e14i 0.943149 0.943149i −0.0553196 0.998469i \(-0.517618\pi\)
0.998469 + 0.0553196i \(0.0176178\pi\)
\(854\) 2.43786e14i 0.536684i
\(855\) 0 0
\(856\) −2.32344e13 −0.0505549
\(857\) 3.58497e14 + 3.58497e14i 0.775498 + 0.775498i 0.979062 0.203563i \(-0.0652523\pi\)
−0.203563 + 0.979062i \(0.565252\pi\)
\(858\) 0 0
\(859\) 7.30888e14i 1.56273i −0.624071 0.781367i \(-0.714523\pi\)
0.624071 0.781367i \(-0.285477\pi\)
\(860\) −1.89992e13 + 1.32994e14i −0.0403871 + 0.282710i
\(861\) 0 0
\(862\) 3.82602e14 + 3.82602e14i 0.803917 + 0.803917i
\(863\) −1.48513e14 + 1.48513e14i −0.310249 + 0.310249i −0.845006 0.534757i \(-0.820403\pi\)
0.534757 + 0.845006i \(0.320403\pi\)
\(864\) 0 0
\(865\) 5.09151e14 + 7.27359e13i 1.05140 + 0.150199i
\(866\) 2.37383e13 0.0487372
\(867\) 0 0
\(868\) −4.33279e13 + 4.33279e13i −0.0879365 + 0.0879365i
\(869\) 3.41247e14i 0.688604i
\(870\) 0 0
\(871\) 4.47601e14 0.892895
\(872\) −5.08966e13 5.08966e13i −0.100950 0.100950i
\(873\) 0 0
\(874\) 1.84296e14i 0.361375i
\(875\) 3.30451e14 + 1.49832e14i 0.644268 + 0.292122i
\(876\) 0 0
\(877\) −3.85609e13 3.85609e13i −0.0743274 0.0743274i 0.668966 0.743293i \(-0.266737\pi\)
−0.743293 + 0.668966i \(0.766737\pi\)
\(878\) 3.35527e14 3.35527e14i 0.643065 0.643065i
\(879\) 0 0
\(880\) −8.52286e13 1.13638e14i −0.161500 0.215333i
\(881\) 4.11264e14 0.774892 0.387446 0.921892i \(-0.373357\pi\)
0.387446 + 0.921892i \(0.373357\pi\)
\(882\) 0 0
\(883\) −6.34116e14 + 6.34116e14i −1.18131 + 1.18131i −0.201908 + 0.979404i \(0.564714\pi\)
−0.979404 + 0.201908i \(0.935286\pi\)
\(884\) 4.47835e14i 0.829577i
\(885\) 0 0
\(886\) −7.64510e14 −1.40028
\(887\) −7.15241e14 7.15241e14i −1.30267 1.30267i −0.926586 0.376083i \(-0.877271\pi\)
−0.376083 0.926586i \(-0.622729\pi\)
\(888\) 0 0
\(889\) 2.19626e14i 0.395526i
\(890\) −5.43997e14 7.77138e13i −0.974196 0.139171i
\(891\) 0 0
\(892\) −6.45395e13 6.45395e13i −0.114288 0.114288i
\(893\) −1.89842e14 + 1.89842e14i −0.334299 + 0.334299i
\(894\) 0 0
\(895\) −4.52527e14 + 3.39395e14i −0.788006 + 0.591005i
\(896\) 3.61078e13 0.0625260
\(897\) 0 0
\(898\) 3.27257e14 3.27257e14i 0.560411 0.560411i
\(899\) 2.49545e14i 0.424962i
\(900\) 0 0
\(901\) 7.38423e14 1.24360
\(902\) −4.24488e14 4.24488e14i −0.710940 0.710940i
\(903\) 0 0
\(904\) 2.94111e14i 0.487157i
\(905\) 2.49376e14 + 3.32501e14i 0.410782 + 0.547709i
\(906\) 0 0
\(907\) 4.62743e14 + 4.62743e14i 0.753882 + 0.753882i 0.975201 0.221320i \(-0.0710364\pi\)
−0.221320 + 0.975201i \(0.571036\pi\)
\(908\) 5.90173e13 5.90173e13i 0.0956203 0.0956203i
\(909\) 0 0
\(910\) 3.91132e13 2.73793e14i 0.0626782 0.438748i
\(911\) 2.41312e14 0.384580 0.192290 0.981338i \(-0.438409\pi\)
0.192290 + 0.981338i \(0.438409\pi\)
\(912\) 0 0
\(913\) 8.98864e14 8.98864e14i 1.41690 1.41690i
\(914\) 2.20327e14i 0.345411i
\(915\) 0 0
\(916\) 1.68512e14 0.261308
\(917\) −4.37351e14 4.37351e14i −0.674502 0.674502i
\(918\) 0 0
\(919\) 3.74682e14i 0.571591i −0.958291 0.285795i \(-0.907742\pi\)
0.958291 0.285795i \(-0.0922577\pi\)
\(920\) 2.14150e14 1.60612e14i 0.324921 0.243691i
\(921\) 0 0
\(922\) −2.75262e14 2.75262e14i −0.413134 0.413134i
\(923\) −7.25988e14 + 7.25988e14i −1.08373 + 1.08373i
\(924\) 0 0
\(925\) −6.82822e14 + 3.74451e14i −1.00832 + 0.552951i
\(926\) 1.49501e13 0.0219579
\(927\) 0 0
\(928\) −1.03980e14 + 1.03980e14i −0.151081 + 0.151081i
\(929\) 4.47351e14i 0.646501i −0.946313 0.323251i \(-0.895224\pi\)
0.946313 0.323251i \(-0.104776\pi\)
\(930\) 0 0
\(931\) −1.55452e14 −0.222253
\(932\) 5.10949e13 + 5.10949e13i 0.0726605 + 0.0726605i
\(933\) 0 0
\(934\) 5.20858e14i 0.732799i
\(935\) 2.03746e14 1.42622e15i 0.285123 1.99586i
\(936\) 0 0
\(937\) −2.34215e14 2.34215e14i −0.324278 0.324278i 0.526128 0.850405i \(-0.323643\pi\)
−0.850405 + 0.526128i \(0.823643\pi\)
\(938\) 2.58821e14 2.58821e14i 0.356439 0.356439i
\(939\) 0 0
\(940\) 3.86040e14 + 5.51486e13i 0.526009 + 0.0751441i
\(941\) 3.80526e13 0.0515746 0.0257873 0.999667i \(-0.491791\pi\)
0.0257873 + 0.999667i \(0.491791\pi\)
\(942\) 0 0
\(943\) 7.99943e14 7.99943e14i 1.07276 1.07276i
\(944\) 1.81946e14i 0.242707i
\(945\) 0 0
\(946\) −3.29442e14 −0.434834
\(947\) −1.26567e13 1.26567e13i −0.0166176 0.0166176i 0.698749 0.715367i \(-0.253740\pi\)
−0.715367 + 0.698749i \(0.753740\pi\)
\(948\) 0 0
\(949\) 2.96054e14i 0.384627i
\(950\) −1.17041e14 2.13427e14i −0.151258 0.275824i
\(951\) 0 0
\(952\) 2.58956e14 + 2.58956e14i 0.331163 + 0.331163i
\(953\) 7.73544e14 7.73544e14i 0.984057 0.984057i −0.0158178 0.999875i \(-0.505035\pi\)
0.999875 + 0.0158178i \(0.00503519\pi\)
\(954\) 0 0
\(955\) −2.45707e14 3.27610e14i −0.309315 0.412420i
\(956\) −2.02559e13 −0.0253665
\(957\) 0 0
\(958\) 5.22815e14 5.22815e14i 0.647918 0.647918i
\(959\) 2.75438e14i 0.339571i
\(960\) 0 0
\(961\) −7.18304e14 −0.876378
\(962\) 4.19748e14 + 4.19748e14i 0.509464 + 0.509464i
\(963\) 0 0
\(964\) 4.16907e14i 0.500788i
\(965\) 9.30967e14 + 1.32995e14i 1.11249 + 0.158928i
\(966\) 0 0
\(967\) −5.57904e14 5.57904e14i −0.659822 0.659822i 0.295516 0.955338i \(-0.404508\pi\)
−0.955338 + 0.295516i \(0.904508\pi\)
\(968\) 3.38284e13 3.38284e13i 0.0398020 0.0398020i
\(969\) 0 0
\(970\) −5.12289e13 + 3.84217e13i −0.0596563 + 0.0447422i
\(971\) −1.01087e14 −0.117112 −0.0585559 0.998284i \(-0.518650\pi\)
−0.0585559 + 0.998284i \(0.518650\pi\)
\(972\) 0 0
\(973\) −2.19834e14 + 2.19834e14i −0.252076 + 0.252076i
\(974\) 1.25317e14i 0.142961i
\(975\) 0 0
\(976\) −2.37551e14 −0.268230
\(977\) 7.13366e14 + 7.13366e14i 0.801382 + 0.801382i 0.983312 0.181929i \(-0.0582342\pi\)
−0.181929 + 0.983312i \(0.558234\pi\)
\(978\) 0 0
\(979\) 1.34754e15i 1.49840i
\(980\) 1.35475e14 + 1.80634e14i 0.149875 + 0.199833i
\(981\) 0 0
\(982\) −2.67113e13 2.67113e13i −0.0292508 0.0292508i
\(983\) 5.14731e14 5.14731e14i 0.560806 0.560806i −0.368731 0.929536i \(-0.620208\pi\)
0.929536 + 0.368731i \(0.120208\pi\)
\(984\) 0 0
\(985\) 4.93904e13 3.45733e14i 0.0532674 0.372872i
\(986\) −1.49144e15 −1.60038
\(987\) 0 0
\(988\) −1.31199e14 + 1.31199e14i −0.139363 + 0.139363i
\(989\) 6.20830e14i 0.656132i
\(990\) 0 0
\(991\) 1.13356e15 1.18598 0.592990 0.805210i \(-0.297947\pi\)
0.592990 + 0.805210i \(0.297947\pi\)
\(992\) −4.22199e13 4.22199e13i −0.0439499 0.0439499i
\(993\) 0 0
\(994\) 8.39591e14i 0.865239i
\(995\) −1.13164e15 + 8.48732e14i −1.16036 + 0.870273i
\(996\) 0 0
\(997\) 6.55685e14 + 6.55685e14i 0.665609 + 0.665609i 0.956696 0.291087i \(-0.0940171\pi\)
−0.291087 + 0.956696i \(0.594017\pi\)
\(998\) 4.30580e14 4.30580e14i 0.434912 0.434912i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.11.g.b.37.1 2
3.2 odd 2 10.11.c.a.7.1 yes 2
5.3 odd 4 inner 90.11.g.b.73.1 2
12.11 even 2 80.11.p.b.17.1 2
15.2 even 4 50.11.c.c.43.1 2
15.8 even 4 10.11.c.a.3.1 2
15.14 odd 2 50.11.c.c.7.1 2
60.23 odd 4 80.11.p.b.33.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.11.c.a.3.1 2 15.8 even 4
10.11.c.a.7.1 yes 2 3.2 odd 2
50.11.c.c.7.1 2 15.14 odd 2
50.11.c.c.43.1 2 15.2 even 4
80.11.p.b.17.1 2 12.11 even 2
80.11.p.b.33.1 2 60.23 odd 4
90.11.g.b.37.1 2 1.1 even 1 trivial
90.11.g.b.73.1 2 5.3 odd 4 inner