Properties

Label 90.11.g.b
Level $90$
Weight $11$
Character orbit 90.g
Analytic conductor $57.182$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,11,Mod(37,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.37");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 90.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.1821527406\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 16 i - 16) q^{2} + 512 i q^{4} + (2500 i + 1875) q^{5} + ( - 8407 i - 8407) q^{7} + ( - 8192 i + 8192) q^{8} + ( - 70000 i + 10000) q^{10} + 173398 q^{11} + (232623 i - 232623) q^{13} + 269024 i q^{14}+ \cdots + (2257919216 i - 2257919216) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} + 3750 q^{5} - 16814 q^{7} + 16384 q^{8} + 20000 q^{10} + 346796 q^{11} - 465246 q^{13} - 524288 q^{16} - 3760066 q^{17} - 2560000 q^{20} - 5548736 q^{22} + 10456526 q^{23} - 5468750 q^{25}+ \cdots - 4515838432 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
1.00000i
1.00000i
−16.0000 16.0000i 0 512.000i 1875.00 + 2500.00i 0 −8407.00 8407.00i 8192.00 8192.00i 0 10000.0 70000.0i
73.1 −16.0000 + 16.0000i 0 512.000i 1875.00 2500.00i 0 −8407.00 + 8407.00i 8192.00 + 8192.00i 0 10000.0 + 70000.0i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.11.g.b 2
3.b odd 2 1 10.11.c.a 2
5.c odd 4 1 inner 90.11.g.b 2
12.b even 2 1 80.11.p.b 2
15.d odd 2 1 50.11.c.c 2
15.e even 4 1 10.11.c.a 2
15.e even 4 1 50.11.c.c 2
60.l odd 4 1 80.11.p.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.11.c.a 2 3.b odd 2 1
10.11.c.a 2 15.e even 4 1
50.11.c.c 2 15.d odd 2 1
50.11.c.c 2 15.e even 4 1
80.11.p.b 2 12.b even 2 1
80.11.p.b 2 60.l odd 4 1
90.11.g.b 2 1.a even 1 1 trivial
90.11.g.b 2 5.c odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{11}^{\mathrm{new}}(90, [\chi])\):

\( T_{7}^{2} + 16814T_{7} + 141355298 \) Copy content Toggle raw display
\( T_{11} - 173398 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 32T + 512 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3750 T + 9765625 \) Copy content Toggle raw display
$7$ \( T^{2} + 16814 T + 141355298 \) Copy content Toggle raw display
$11$ \( (T - 173398)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 108226920258 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 7069048162178 \) Copy content Toggle raw display
$19$ \( T^{2} + 1213434433600 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 54669467994338 \) Copy content Toggle raw display
$29$ \( T^{2} + 614585747905600 \) Copy content Toggle raw display
$31$ \( (T + 10065998)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 63\!\cdots\!38 \) Copy content Toggle raw display
$41$ \( (T - 153003598)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 70\!\cdots\!98 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 59\!\cdots\!18 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 77\!\cdots\!78 \) Copy content Toggle raw display
$59$ \( T^{2} + 48\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T - 906185802)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 18\!\cdots\!78 \) Copy content Toggle raw display
$71$ \( (T - 3120877598)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 80\!\cdots\!38 \) Copy content Toggle raw display
$79$ \( T^{2} + 38\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 53\!\cdots\!18 \) Copy content Toggle raw display
$89$ \( T^{2} + 60\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 82\!\cdots\!18 \) Copy content Toggle raw display
show more
show less