Properties

Label 80.11.p.b.17.1
Level $80$
Weight $11$
Character 80.17
Analytic conductor $50.829$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,11,Mod(17,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.17"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,366] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.8285802139\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 80.17
Dual form 80.11.p.b.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(183.000 - 183.000i) q^{3} +(-1875.00 - 2500.00i) q^{5} +(8407.00 + 8407.00i) q^{7} -7929.00i q^{9} +173398. q^{11} +(-232623. + 232623. i) q^{13} +(-800625. - 114375. i) q^{15} +(1.88003e6 + 1.88003e6i) q^{17} +1.10156e6i q^{19} +3.07696e6 q^{21} +(5.22826e6 - 5.22826e6i) q^{23} +(-2.73438e6 + 9.37500e6i) q^{25} +(9.35496e6 + 9.35496e6i) q^{27} -2.47908e7i q^{29} +1.00660e7 q^{31} +(3.17318e7 - 3.17318e7i) q^{33} +(5.25438e6 - 3.67806e7i) q^{35} +(5.63879e7 + 5.63879e7i) q^{37} +8.51400e7i q^{39} -1.53004e8 q^{41} +(-5.93725e7 + 5.93725e7i) q^{43} +(-1.98225e7 + 1.48669e7i) q^{45} +(-1.72339e8 - 1.72339e8i) q^{47} -1.41120e8i q^{49} +6.88092e8 q^{51} +(1.96386e8 - 1.96386e8i) q^{53} +(-3.25121e8 - 4.33495e8i) q^{55} +(2.01585e8 + 2.01585e8i) q^{57} -6.94069e8i q^{59} +9.06186e8 q^{61} +(6.66591e7 - 6.66591e7i) q^{63} +(1.01773e9 + 1.45389e8i) q^{65} +(9.62074e8 + 9.62074e8i) q^{67} -1.91354e9i q^{69} +3.12088e9 q^{71} +(-6.36339e8 + 6.36339e8i) q^{73} +(1.21523e9 + 2.21602e9i) q^{75} +(1.45776e9 + 1.45776e9i) q^{77} +1.96800e9i q^{79} +3.89211e9 q^{81} +(5.18382e9 - 5.18382e9i) q^{83} +(1.17502e9 - 8.22514e9i) q^{85} +(-4.53672e9 - 4.53672e9i) q^{87} +7.77138e9i q^{89} -3.91132e9 q^{91} +(1.84208e9 - 1.84208e9i) q^{93} +(2.75390e9 - 2.06542e9i) q^{95} +(-6.40361e8 - 6.40361e8i) q^{97} -1.37487e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 366 q^{3} - 3750 q^{5} + 16814 q^{7} + 346796 q^{11} - 465246 q^{13} - 1601250 q^{15} + 3760066 q^{17} + 6153924 q^{21} + 10456526 q^{23} - 5468750 q^{25} + 18709920 q^{27} + 20131996 q^{31} + 63463668 q^{33}+ \cdots - 1280722494 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 183.000 183.000i 0.753086 0.753086i −0.221968 0.975054i \(-0.571248\pi\)
0.975054 + 0.221968i \(0.0712479\pi\)
\(4\) 0 0
\(5\) −1875.00 2500.00i −0.600000 0.800000i
\(6\) 0 0
\(7\) 8407.00 + 8407.00i 0.500208 + 0.500208i 0.911503 0.411294i \(-0.134923\pi\)
−0.411294 + 0.911503i \(0.634923\pi\)
\(8\) 0 0
\(9\) 7929.00i 0.134278i
\(10\) 0 0
\(11\) 173398. 1.07667 0.538333 0.842732i \(-0.319054\pi\)
0.538333 + 0.842732i \(0.319054\pi\)
\(12\) 0 0
\(13\) −232623. + 232623.i −0.626521 + 0.626521i −0.947191 0.320670i \(-0.896092\pi\)
0.320670 + 0.947191i \(0.396092\pi\)
\(14\) 0 0
\(15\) −800625. 114375.i −1.05432 0.150617i
\(16\) 0 0
\(17\) 1.88003e6 + 1.88003e6i 1.32410 + 1.32410i 0.910424 + 0.413676i \(0.135755\pi\)
0.413676 + 0.910424i \(0.364245\pi\)
\(18\) 0 0
\(19\) 1.10156e6i 0.444877i 0.974947 + 0.222439i \(0.0714017\pi\)
−0.974947 + 0.222439i \(0.928598\pi\)
\(20\) 0 0
\(21\) 3.07696e6 0.753400
\(22\) 0 0
\(23\) 5.22826e6 5.22826e6i 0.812303 0.812303i −0.172675 0.984979i \(-0.555241\pi\)
0.984979 + 0.172675i \(0.0552412\pi\)
\(24\) 0 0
\(25\) −2.73438e6 + 9.37500e6i −0.280000 + 0.960000i
\(26\) 0 0
\(27\) 9.35496e6 + 9.35496e6i 0.651963 + 0.651963i
\(28\) 0 0
\(29\) 2.47908e7i 1.20865i −0.796737 0.604326i \(-0.793442\pi\)
0.796737 0.604326i \(-0.206558\pi\)
\(30\) 0 0
\(31\) 1.00660e7 0.351600 0.175800 0.984426i \(-0.443749\pi\)
0.175800 + 0.984426i \(0.443749\pi\)
\(32\) 0 0
\(33\) 3.17318e7 3.17318e7i 0.810822 0.810822i
\(34\) 0 0
\(35\) 5.25438e6 3.67806e7i 0.100042 0.700292i
\(36\) 0 0
\(37\) 5.63879e7 + 5.63879e7i 0.813163 + 0.813163i 0.985107 0.171944i \(-0.0550048\pi\)
−0.171944 + 0.985107i \(0.555005\pi\)
\(38\) 0 0
\(39\) 8.51400e7i 0.943649i
\(40\) 0 0
\(41\) −1.53004e8 −1.32063 −0.660317 0.750987i \(-0.729578\pi\)
−0.660317 + 0.750987i \(0.729578\pi\)
\(42\) 0 0
\(43\) −5.93725e7 + 5.93725e7i −0.403871 + 0.403871i −0.879595 0.475724i \(-0.842186\pi\)
0.475724 + 0.879595i \(0.342186\pi\)
\(44\) 0 0
\(45\) −1.98225e7 + 1.48669e7i −0.107423 + 0.0805670i
\(46\) 0 0
\(47\) −1.72339e8 1.72339e8i −0.751441 0.751441i 0.223307 0.974748i \(-0.428315\pi\)
−0.974748 + 0.223307i \(0.928315\pi\)
\(48\) 0 0
\(49\) 1.41120e8i 0.499583i
\(50\) 0 0
\(51\) 6.88092e8 1.99432
\(52\) 0 0
\(53\) 1.96386e8 1.96386e8i 0.469602 0.469602i −0.432183 0.901786i \(-0.642257\pi\)
0.901786 + 0.432183i \(0.142257\pi\)
\(54\) 0 0
\(55\) −3.25121e8 4.33495e8i −0.645999 0.861332i
\(56\) 0 0
\(57\) 2.01585e8 + 2.01585e8i 0.335031 + 0.335031i
\(58\) 0 0
\(59\) 6.94069e8i 0.970829i −0.874284 0.485414i \(-0.838669\pi\)
0.874284 0.485414i \(-0.161331\pi\)
\(60\) 0 0
\(61\) 9.06186e8 1.07292 0.536461 0.843925i \(-0.319761\pi\)
0.536461 + 0.843925i \(0.319761\pi\)
\(62\) 0 0
\(63\) 6.66591e7 6.66591e7i 0.0671671 0.0671671i
\(64\) 0 0
\(65\) 1.01773e9 + 1.45389e8i 0.877130 + 0.125304i
\(66\) 0 0
\(67\) 9.62074e8 + 9.62074e8i 0.712581 + 0.712581i 0.967075 0.254493i \(-0.0819087\pi\)
−0.254493 + 0.967075i \(0.581909\pi\)
\(68\) 0 0
\(69\) 1.91354e9i 1.22347i
\(70\) 0 0
\(71\) 3.12088e9 1.72976 0.864878 0.501982i \(-0.167395\pi\)
0.864878 + 0.501982i \(0.167395\pi\)
\(72\) 0 0
\(73\) −6.36339e8 + 6.36339e8i −0.306955 + 0.306955i −0.843727 0.536772i \(-0.819643\pi\)
0.536772 + 0.843727i \(0.319643\pi\)
\(74\) 0 0
\(75\) 1.21523e9 + 2.21602e9i 0.512099 + 0.933827i
\(76\) 0 0
\(77\) 1.45776e9 + 1.45776e9i 0.538557 + 0.538557i
\(78\) 0 0
\(79\) 1.96800e9i 0.639571i 0.947490 + 0.319786i \(0.103611\pi\)
−0.947490 + 0.319786i \(0.896389\pi\)
\(80\) 0 0
\(81\) 3.89211e9 1.11625
\(82\) 0 0
\(83\) 5.18382e9 5.18382e9i 1.31601 1.31601i 0.399107 0.916904i \(-0.369320\pi\)
0.916904 0.399107i \(-0.130680\pi\)
\(84\) 0 0
\(85\) 1.17502e9 8.22514e9i 0.264820 1.85374i
\(86\) 0 0
\(87\) −4.53672e9 4.53672e9i −0.910219 0.910219i
\(88\) 0 0
\(89\) 7.77138e9i 1.39171i 0.718183 + 0.695854i \(0.244974\pi\)
−0.718183 + 0.695854i \(0.755026\pi\)
\(90\) 0 0
\(91\) −3.91132e9 −0.626782
\(92\) 0 0
\(93\) 1.84208e9 1.84208e9i 0.264785 0.264785i
\(94\) 0 0
\(95\) 2.75390e9 2.06542e9i 0.355902 0.266926i
\(96\) 0 0
\(97\) −6.40361e8 6.40361e8i −0.0745704 0.0745704i 0.668838 0.743408i \(-0.266792\pi\)
−0.743408 + 0.668838i \(0.766792\pi\)
\(98\) 0 0
\(99\) 1.37487e9i 0.144573i
\(100\) 0 0
\(101\) 2.02434e9 0.192609 0.0963047 0.995352i \(-0.469298\pi\)
0.0963047 + 0.995352i \(0.469298\pi\)
\(102\) 0 0
\(103\) 1.50252e9 1.50252e9i 0.129609 0.129609i −0.639326 0.768935i \(-0.720787\pi\)
0.768935 + 0.639326i \(0.220787\pi\)
\(104\) 0 0
\(105\) −5.76930e9 7.69240e9i −0.452040 0.602720i
\(106\) 0 0
\(107\) −1.41812e9 1.41812e9i −0.101110 0.101110i 0.654742 0.755852i \(-0.272777\pi\)
−0.755852 + 0.654742i \(0.772777\pi\)
\(108\) 0 0
\(109\) 6.21296e9i 0.403800i −0.979406 0.201900i \(-0.935288\pi\)
0.979406 0.201900i \(-0.0647116\pi\)
\(110\) 0 0
\(111\) 2.06380e10 1.22476
\(112\) 0 0
\(113\) −1.79511e10 + 1.79511e10i −0.974313 + 0.974313i −0.999678 0.0253650i \(-0.991925\pi\)
0.0253650 + 0.999678i \(0.491925\pi\)
\(114\) 0 0
\(115\) −2.28737e10 3.26766e9i −1.13722 0.162461i
\(116\) 0 0
\(117\) 1.84447e9 + 1.84447e9i 0.0841282 + 0.0841282i
\(118\) 0 0
\(119\) 3.16109e10i 1.32465i
\(120\) 0 0
\(121\) 4.12944e9 0.159208
\(122\) 0 0
\(123\) −2.79997e10 + 2.79997e10i −0.994551 + 0.994551i
\(124\) 0 0
\(125\) 2.85645e10 1.07422e10i 0.936000 0.352000i
\(126\) 0 0
\(127\) −1.30621e10 1.30621e10i −0.395362 0.395362i 0.481232 0.876593i \(-0.340190\pi\)
−0.876593 + 0.481232i \(0.840190\pi\)
\(128\) 0 0
\(129\) 2.17303e10i 0.608300i
\(130\) 0 0
\(131\) 5.20222e10 1.34844 0.674221 0.738530i \(-0.264480\pi\)
0.674221 + 0.738530i \(0.264480\pi\)
\(132\) 0 0
\(133\) −9.26081e9 + 9.26081e9i −0.222531 + 0.222531i
\(134\) 0 0
\(135\) 5.84685e9 4.09280e10i 0.130393 0.912749i
\(136\) 0 0
\(137\) −1.63815e10 1.63815e10i −0.339429 0.339429i 0.516723 0.856153i \(-0.327152\pi\)
−0.856153 + 0.516723i \(0.827152\pi\)
\(138\) 0 0
\(139\) 2.61490e10i 0.503942i 0.967735 + 0.251971i \(0.0810787\pi\)
−0.967735 + 0.251971i \(0.918921\pi\)
\(140\) 0 0
\(141\) −6.30762e10 −1.13180
\(142\) 0 0
\(143\) −4.03364e10 + 4.03364e10i −0.674554 + 0.674554i
\(144\) 0 0
\(145\) −6.19771e10 + 4.64828e10i −0.966922 + 0.725191i
\(146\) 0 0
\(147\) −2.58250e10 2.58250e10i −0.376229 0.376229i
\(148\) 0 0
\(149\) 4.31363e9i 0.0587369i 0.999569 + 0.0293685i \(0.00934962\pi\)
−0.999569 + 0.0293685i \(0.990650\pi\)
\(150\) 0 0
\(151\) −1.13868e11 −1.45050 −0.725251 0.688484i \(-0.758276\pi\)
−0.725251 + 0.688484i \(0.758276\pi\)
\(152\) 0 0
\(153\) 1.49068e10 1.49068e10i 0.177798 0.177798i
\(154\) 0 0
\(155\) −1.88737e10 2.51650e10i −0.210960 0.281280i
\(156\) 0 0
\(157\) 1.04428e10 + 1.04428e10i 0.109476 + 0.109476i 0.759723 0.650247i \(-0.225335\pi\)
−0.650247 + 0.759723i \(0.725335\pi\)
\(158\) 0 0
\(159\) 7.18771e10i 0.707302i
\(160\) 0 0
\(161\) 8.79080e10 0.812642
\(162\) 0 0
\(163\) −4.78305e10 + 4.78305e10i −0.415688 + 0.415688i −0.883714 0.468027i \(-0.844965\pi\)
0.468027 + 0.883714i \(0.344965\pi\)
\(164\) 0 0
\(165\) −1.38827e11 1.98324e10i −1.13515 0.162164i
\(166\) 0 0
\(167\) 1.18281e10 + 1.18281e10i 0.0910613 + 0.0910613i 0.751170 0.660109i \(-0.229490\pi\)
−0.660109 + 0.751170i \(0.729490\pi\)
\(168\) 0 0
\(169\) 2.96316e10i 0.214942i
\(170\) 0 0
\(171\) 8.73427e9 0.0597374
\(172\) 0 0
\(173\) −1.16377e11 + 1.16377e11i −0.750997 + 0.750997i −0.974665 0.223669i \(-0.928197\pi\)
0.223669 + 0.974665i \(0.428197\pi\)
\(174\) 0 0
\(175\) −1.01804e11 + 5.58277e10i −0.620258 + 0.340142i
\(176\) 0 0
\(177\) −1.27015e11 1.27015e11i −0.731118 0.731118i
\(178\) 0 0
\(179\) 1.81011e11i 0.985008i 0.870310 + 0.492504i \(0.163918\pi\)
−0.870310 + 0.492504i \(0.836082\pi\)
\(180\) 0 0
\(181\) 1.33000e11 0.684636 0.342318 0.939584i \(-0.388788\pi\)
0.342318 + 0.939584i \(0.388788\pi\)
\(182\) 0 0
\(183\) 1.65832e11 1.65832e11i 0.808003 0.808003i
\(184\) 0 0
\(185\) 3.52424e10 2.46697e11i 0.162633 1.13843i
\(186\) 0 0
\(187\) 3.25994e11 + 3.25994e11i 1.42561 + 1.42561i
\(188\) 0 0
\(189\) 1.57294e11i 0.652235i
\(190\) 0 0
\(191\) −1.31044e11 −0.515525 −0.257762 0.966208i \(-0.582985\pi\)
−0.257762 + 0.966208i \(0.582985\pi\)
\(192\) 0 0
\(193\) 2.12792e11 2.12792e11i 0.794639 0.794639i −0.187606 0.982244i \(-0.560073\pi\)
0.982244 + 0.187606i \(0.0600727\pi\)
\(194\) 0 0
\(195\) 2.12850e11 1.59638e11i 0.754920 0.566190i
\(196\) 0 0
\(197\) 7.90246e10 + 7.90246e10i 0.266337 + 0.266337i 0.827622 0.561285i \(-0.189693\pi\)
−0.561285 + 0.827622i \(0.689693\pi\)
\(198\) 0 0
\(199\) 4.52657e11i 1.45045i −0.688510 0.725227i \(-0.741735\pi\)
0.688510 0.725227i \(-0.258265\pi\)
\(200\) 0 0
\(201\) 3.52119e11 1.07327
\(202\) 0 0
\(203\) 2.08417e11 2.08417e11i 0.604578 0.604578i
\(204\) 0 0
\(205\) 2.86882e11 + 3.82509e11i 0.792380 + 1.05651i
\(206\) 0 0
\(207\) −4.14549e10 4.14549e10i −0.109075 0.109075i
\(208\) 0 0
\(209\) 1.91008e11i 0.478984i
\(210\) 0 0
\(211\) −1.37995e11 −0.329951 −0.164976 0.986298i \(-0.552755\pi\)
−0.164976 + 0.986298i \(0.552755\pi\)
\(212\) 0 0
\(213\) 5.71121e11 5.71121e11i 1.30266 1.30266i
\(214\) 0 0
\(215\) 2.59754e11 + 3.71078e10i 0.565419 + 0.0807742i
\(216\) 0 0
\(217\) 8.46248e10 + 8.46248e10i 0.175873 + 0.175873i
\(218\) 0 0
\(219\) 2.32900e11i 0.462327i
\(220\) 0 0
\(221\) −8.74678e11 −1.65915
\(222\) 0 0
\(223\) 1.26054e11 1.26054e11i 0.228576 0.228576i −0.583521 0.812098i \(-0.698326\pi\)
0.812098 + 0.583521i \(0.198326\pi\)
\(224\) 0 0
\(225\) 7.43344e10 + 2.16809e10i 0.128907 + 0.0375979i
\(226\) 0 0
\(227\) −1.15268e11 1.15268e11i −0.191241 0.191241i 0.604991 0.796232i \(-0.293177\pi\)
−0.796232 + 0.604991i \(0.793177\pi\)
\(228\) 0 0
\(229\) 3.29124e11i 0.522615i −0.965256 0.261308i \(-0.915846\pi\)
0.965256 0.261308i \(-0.0841537\pi\)
\(230\) 0 0
\(231\) 5.33539e11 0.811160
\(232\) 0 0
\(233\) −9.97948e10 + 9.97948e10i −0.145321 + 0.145321i −0.776024 0.630703i \(-0.782767\pi\)
0.630703 + 0.776024i \(0.282767\pi\)
\(234\) 0 0
\(235\) −1.07712e11 + 7.53985e11i −0.150288 + 1.05202i
\(236\) 0 0
\(237\) 3.60143e11 + 3.60143e11i 0.481652 + 0.481652i
\(238\) 0 0
\(239\) 3.95622e10i 0.0507331i 0.999678 + 0.0253665i \(0.00807529\pi\)
−0.999678 + 0.0253665i \(0.991925\pi\)
\(240\) 0 0
\(241\) −8.14271e11 −1.00158 −0.500788 0.865570i \(-0.666956\pi\)
−0.500788 + 0.865570i \(0.666956\pi\)
\(242\) 0 0
\(243\) 1.59856e11 1.59856e11i 0.188668 0.188668i
\(244\) 0 0
\(245\) −3.52800e11 + 2.64600e11i −0.399667 + 0.299750i
\(246\) 0 0
\(247\) −2.56248e11 2.56248e11i −0.278725 0.278725i
\(248\) 0 0
\(249\) 1.89728e12i 1.98214i
\(250\) 0 0
\(251\) −4.53171e11 −0.454877 −0.227438 0.973793i \(-0.573035\pi\)
−0.227438 + 0.973793i \(0.573035\pi\)
\(252\) 0 0
\(253\) 9.06570e11 9.06570e11i 0.874579 0.874579i
\(254\) 0 0
\(255\) −1.29017e12 1.72023e12i −1.19659 1.59546i
\(256\) 0 0
\(257\) 1.33579e12 + 1.33579e12i 1.19144 + 1.19144i 0.976663 + 0.214777i \(0.0689025\pi\)
0.214777 + 0.976663i \(0.431098\pi\)
\(258\) 0 0
\(259\) 9.48106e11i 0.813501i
\(260\) 0 0
\(261\) −1.96567e11 −0.162296
\(262\) 0 0
\(263\) 9.12065e11 9.12065e11i 0.724848 0.724848i −0.244740 0.969589i \(-0.578703\pi\)
0.969589 + 0.244740i \(0.0787027\pi\)
\(264\) 0 0
\(265\) −8.59187e11 1.22741e11i −0.657443 0.0939205i
\(266\) 0 0
\(267\) 1.42216e12 + 1.42216e12i 1.04808 + 1.04808i
\(268\) 0 0
\(269\) 1.04348e12i 0.740835i 0.928865 + 0.370417i \(0.120785\pi\)
−0.928865 + 0.370417i \(0.879215\pi\)
\(270\) 0 0
\(271\) −7.19445e11 −0.492211 −0.246105 0.969243i \(-0.579151\pi\)
−0.246105 + 0.969243i \(0.579151\pi\)
\(272\) 0 0
\(273\) −7.15772e11 + 7.15772e11i −0.472021 + 0.472021i
\(274\) 0 0
\(275\) −4.74135e11 + 1.62561e12i −0.301466 + 1.03360i
\(276\) 0 0
\(277\) −8.62576e11 8.62576e11i −0.528931 0.528931i 0.391323 0.920253i \(-0.372018\pi\)
−0.920253 + 0.391323i \(0.872018\pi\)
\(278\) 0 0
\(279\) 7.98133e10i 0.0472122i
\(280\) 0 0
\(281\) −7.89300e11 −0.450516 −0.225258 0.974299i \(-0.572323\pi\)
−0.225258 + 0.974299i \(0.572323\pi\)
\(282\) 0 0
\(283\) 6.60245e11 6.60245e11i 0.363725 0.363725i −0.501457 0.865182i \(-0.667203\pi\)
0.865182 + 0.501457i \(0.167203\pi\)
\(284\) 0 0
\(285\) 1.25991e11 8.81936e11i 0.0670062 0.469043i
\(286\) 0 0
\(287\) −1.28630e12 1.28630e12i −0.660592 0.660592i
\(288\) 0 0
\(289\) 5.05305e12i 2.50648i
\(290\) 0 0
\(291\) −2.34372e11 −0.112316
\(292\) 0 0
\(293\) 1.79236e11 1.79236e11i 0.0830019 0.0830019i −0.664387 0.747389i \(-0.731307\pi\)
0.747389 + 0.664387i \(0.231307\pi\)
\(294\) 0 0
\(295\) −1.73517e12 + 1.30138e12i −0.776663 + 0.582497i
\(296\) 0 0
\(297\) 1.62213e12 + 1.62213e12i 0.701946 + 0.701946i
\(298\) 0 0
\(299\) 2.43243e12i 1.01785i
\(300\) 0 0
\(301\) −9.98288e11 −0.404039
\(302\) 0 0
\(303\) 3.70455e11 3.70455e11i 0.145051 0.145051i
\(304\) 0 0
\(305\) −1.69910e12 2.26546e12i −0.643753 0.858337i
\(306\) 0 0
\(307\) 1.10155e12 + 1.10155e12i 0.403937 + 0.403937i 0.879618 0.475681i \(-0.157798\pi\)
−0.475681 + 0.879618i \(0.657798\pi\)
\(308\) 0 0
\(309\) 5.49924e11i 0.195214i
\(310\) 0 0
\(311\) −5.31138e12 −1.82560 −0.912800 0.408406i \(-0.866085\pi\)
−0.912800 + 0.408406i \(0.866085\pi\)
\(312\) 0 0
\(313\) −8.40078e11 + 8.40078e11i −0.279639 + 0.279639i −0.832965 0.553326i \(-0.813358\pi\)
0.553326 + 0.832965i \(0.313358\pi\)
\(314\) 0 0
\(315\) −2.91634e11 4.16619e10i −0.0940340 0.0134334i
\(316\) 0 0
\(317\) −1.16635e12 1.16635e12i −0.364361 0.364361i 0.501055 0.865416i \(-0.332946\pi\)
−0.865416 + 0.501055i \(0.832946\pi\)
\(318\) 0 0
\(319\) 4.29868e12i 1.30131i
\(320\) 0 0
\(321\) −5.19031e11 −0.152289
\(322\) 0 0
\(323\) −2.07097e12 + 2.07097e12i −0.589062 + 0.589062i
\(324\) 0 0
\(325\) −1.54476e12 2.81692e12i −0.426035 0.776887i
\(326\) 0 0
\(327\) −1.13697e12 1.13697e12i −0.304096 0.304096i
\(328\) 0 0
\(329\) 2.89771e12i 0.751754i
\(330\) 0 0
\(331\) 4.82042e12 1.21324 0.606618 0.794994i \(-0.292526\pi\)
0.606618 + 0.794994i \(0.292526\pi\)
\(332\) 0 0
\(333\) 4.47100e11 4.47100e11i 0.109190 0.109190i
\(334\) 0 0
\(335\) 6.01296e11 4.20907e12i 0.142516 0.997614i
\(336\) 0 0
\(337\) −3.68550e12 3.68550e12i −0.847904 0.847904i 0.141967 0.989871i \(-0.454657\pi\)
−0.989871 + 0.141967i \(0.954657\pi\)
\(338\) 0 0
\(339\) 6.57010e12i 1.46748i
\(340\) 0 0
\(341\) 1.74542e12 0.378555
\(342\) 0 0
\(343\) 3.56116e12 3.56116e12i 0.750104 0.750104i
\(344\) 0 0
\(345\) −4.78386e12 + 3.58790e12i −0.978775 + 0.734082i
\(346\) 0 0
\(347\) 5.38450e12 + 5.38450e12i 1.07028 + 1.07028i 0.997336 + 0.0729452i \(0.0232398\pi\)
0.0729452 + 0.997336i \(0.476760\pi\)
\(348\) 0 0
\(349\) 8.12658e12i 1.56957i 0.619768 + 0.784785i \(0.287227\pi\)
−0.619768 + 0.784785i \(0.712773\pi\)
\(350\) 0 0
\(351\) −4.35236e12 −0.816938
\(352\) 0 0
\(353\) 5.49274e12 5.49274e12i 1.00211 1.00211i 0.00211203 0.999998i \(-0.499328\pi\)
0.999998 0.00211203i \(-0.000672280\pi\)
\(354\) 0 0
\(355\) −5.85165e12 7.80219e12i −1.03785 1.38381i
\(356\) 0 0
\(357\) 5.78479e12 + 5.78479e12i 0.997577 + 0.997577i
\(358\) 0 0
\(359\) 5.91305e12i 0.991606i 0.868435 + 0.495803i \(0.165126\pi\)
−0.868435 + 0.495803i \(0.834874\pi\)
\(360\) 0 0
\(361\) 4.91763e12 0.802084
\(362\) 0 0
\(363\) 7.55688e11 7.55688e11i 0.119897 0.119897i
\(364\) 0 0
\(365\) 2.78398e12 + 3.97712e11i 0.429737 + 0.0613910i
\(366\) 0 0
\(367\) −1.75360e12 1.75360e12i −0.263390 0.263390i 0.563040 0.826430i \(-0.309632\pi\)
−0.826430 + 0.563040i \(0.809632\pi\)
\(368\) 0 0
\(369\) 1.21317e12i 0.177332i
\(370\) 0 0
\(371\) 3.30203e12 0.469798
\(372\) 0 0
\(373\) 4.25717e12 4.25717e12i 0.589627 0.589627i −0.347904 0.937530i \(-0.613106\pi\)
0.937530 + 0.347904i \(0.113106\pi\)
\(374\) 0 0
\(375\) 3.26147e12 7.19312e12i 0.439802 0.969975i
\(376\) 0 0
\(377\) 5.76692e12 + 5.76692e12i 0.757246 + 0.757246i
\(378\) 0 0
\(379\) 7.20999e12i 0.922016i 0.887396 + 0.461008i \(0.152512\pi\)
−0.887396 + 0.461008i \(0.847488\pi\)
\(380\) 0 0
\(381\) −4.78073e12 −0.595483
\(382\) 0 0
\(383\) 6.93832e12 6.93832e12i 0.841900 0.841900i −0.147206 0.989106i \(-0.547028\pi\)
0.989106 + 0.147206i \(0.0470281\pi\)
\(384\) 0 0
\(385\) 9.11098e11 6.37769e12i 0.107711 0.753980i
\(386\) 0 0
\(387\) 4.70764e11 + 4.70764e11i 0.0542311 + 0.0542311i
\(388\) 0 0
\(389\) 1.12518e13i 1.26320i 0.775293 + 0.631601i \(0.217602\pi\)
−0.775293 + 0.631601i \(0.782398\pi\)
\(390\) 0 0
\(391\) 1.96586e13 2.15114
\(392\) 0 0
\(393\) 9.52006e12 9.52006e12i 1.01549 1.01549i
\(394\) 0 0
\(395\) 4.91999e12 3.68999e12i 0.511657 0.383743i
\(396\) 0 0
\(397\) −7.94628e12 7.94628e12i −0.805770 0.805770i 0.178221 0.983991i \(-0.442966\pi\)
−0.983991 + 0.178221i \(0.942966\pi\)
\(398\) 0 0
\(399\) 3.38946e12i 0.335171i
\(400\) 0 0
\(401\) 8.81072e12 0.849747 0.424874 0.905253i \(-0.360319\pi\)
0.424874 + 0.905253i \(0.360319\pi\)
\(402\) 0 0
\(403\) −2.34158e12 + 2.34158e12i −0.220285 + 0.220285i
\(404\) 0 0
\(405\) −7.29772e12 9.73029e12i −0.669749 0.892998i
\(406\) 0 0
\(407\) 9.77755e12 + 9.77755e12i 0.875504 + 0.875504i
\(408\) 0 0
\(409\) 1.00160e13i 0.875141i −0.899184 0.437571i \(-0.855839\pi\)
0.899184 0.437571i \(-0.144161\pi\)
\(410\) 0 0
\(411\) −5.99561e12 −0.511239
\(412\) 0 0
\(413\) 5.83504e12 5.83504e12i 0.485616 0.485616i
\(414\) 0 0
\(415\) −2.26792e13 3.23989e12i −1.84242 0.263202i
\(416\) 0 0
\(417\) 4.78526e12 + 4.78526e12i 0.379512 + 0.379512i
\(418\) 0 0
\(419\) 1.48244e13i 1.14791i −0.818888 0.573954i \(-0.805409\pi\)
0.818888 0.573954i \(-0.194591\pi\)
\(420\) 0 0
\(421\) −4.68500e12 −0.354241 −0.177121 0.984189i \(-0.556678\pi\)
−0.177121 + 0.984189i \(0.556678\pi\)
\(422\) 0 0
\(423\) −1.36648e12 + 1.36648e12i −0.100902 + 0.100902i
\(424\) 0 0
\(425\) −2.27660e13 + 1.24846e13i −1.64188 + 0.900388i
\(426\) 0 0
\(427\) 7.61830e12 + 7.61830e12i 0.536684 + 0.536684i
\(428\) 0 0
\(429\) 1.47631e13i 1.01599i
\(430\) 0 0
\(431\) −2.39126e13 −1.60783 −0.803917 0.594741i \(-0.797254\pi\)
−0.803917 + 0.594741i \(0.797254\pi\)
\(432\) 0 0
\(433\) −7.41823e11 + 7.41823e11i −0.0487372 + 0.0487372i −0.731055 0.682318i \(-0.760972\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(434\) 0 0
\(435\) −2.83545e12 + 1.98482e13i −0.182044 + 1.27431i
\(436\) 0 0
\(437\) 5.75925e12 + 5.75925e12i 0.361375 + 0.361375i
\(438\) 0 0
\(439\) 2.09704e13i 1.28613i −0.765811 0.643065i \(-0.777662\pi\)
0.765811 0.643065i \(-0.222338\pi\)
\(440\) 0 0
\(441\) −1.11894e12 −0.0670832
\(442\) 0 0
\(443\) 2.38909e13 2.38909e13i 1.40028 1.40028i 0.601118 0.799160i \(-0.294722\pi\)
0.799160 0.601118i \(-0.205278\pi\)
\(444\) 0 0
\(445\) 1.94285e13 1.45713e13i 1.11337 0.835025i
\(446\) 0 0
\(447\) 7.89394e11 + 7.89394e11i 0.0442340 + 0.0442340i
\(448\) 0 0
\(449\) 2.04535e13i 1.12082i −0.828215 0.560411i \(-0.810643\pi\)
0.828215 0.560411i \(-0.189357\pi\)
\(450\) 0 0
\(451\) −2.65305e13 −1.42188
\(452\) 0 0
\(453\) −2.08379e13 + 2.08379e13i −1.09235 + 1.09235i
\(454\) 0 0
\(455\) 7.33373e12 + 9.77831e12i 0.376069 + 0.501426i
\(456\) 0 0
\(457\) 6.88521e12 + 6.88521e12i 0.345411 + 0.345411i 0.858397 0.512986i \(-0.171461\pi\)
−0.512986 + 0.858397i \(0.671461\pi\)
\(458\) 0 0
\(459\) 3.51753e13i 1.72653i
\(460\) 0 0
\(461\) −1.72039e13 −0.826268 −0.413134 0.910670i \(-0.635566\pi\)
−0.413134 + 0.910670i \(0.635566\pi\)
\(462\) 0 0
\(463\) 4.67192e11 4.67192e11i 0.0219579 0.0219579i −0.696043 0.718000i \(-0.745058\pi\)
0.718000 + 0.696043i \(0.245058\pi\)
\(464\) 0 0
\(465\) −8.05909e12 1.15130e12i −0.370699 0.0529570i
\(466\) 0 0
\(467\) −1.62768e13 1.62768e13i −0.732799 0.732799i 0.238374 0.971173i \(-0.423385\pi\)
−0.971173 + 0.238374i \(0.923385\pi\)
\(468\) 0 0
\(469\) 1.61763e13i 0.712878i
\(470\) 0 0
\(471\) 3.82206e12 0.164889
\(472\) 0 0
\(473\) −1.02951e13 + 1.02951e13i −0.434834 + 0.434834i
\(474\) 0 0
\(475\) −1.03271e13 3.01208e12i −0.427082 0.124566i
\(476\) 0 0
\(477\) −1.55714e12 1.55714e12i −0.0630574 0.0630574i
\(478\) 0 0
\(479\) 3.26759e13i 1.29584i 0.761710 + 0.647918i \(0.224360\pi\)
−0.761710 + 0.647918i \(0.775640\pi\)
\(480\) 0 0
\(481\) −2.62343e13 −1.01893
\(482\) 0 0
\(483\) 1.60872e13 1.60872e13i 0.611989 0.611989i
\(484\) 0 0
\(485\) −4.00226e11 + 2.80158e12i −0.0149141 + 0.104399i
\(486\) 0 0
\(487\) −3.91617e12 3.91617e12i −0.142961 0.142961i 0.632004 0.774965i \(-0.282232\pi\)
−0.774965 + 0.632004i \(0.782232\pi\)
\(488\) 0 0
\(489\) 1.75060e13i 0.626098i
\(490\) 0 0
\(491\) 1.66945e12 0.0585015 0.0292508 0.999572i \(-0.490688\pi\)
0.0292508 + 0.999572i \(0.490688\pi\)
\(492\) 0 0
\(493\) 4.66076e13 4.66076e13i 1.60038 1.60038i
\(494\) 0 0
\(495\) −3.43718e12 + 2.57789e12i −0.115658 + 0.0867437i
\(496\) 0 0
\(497\) 2.62372e13 + 2.62372e13i 0.865239 + 0.865239i
\(498\) 0 0
\(499\) 2.69113e13i 0.869824i −0.900473 0.434912i \(-0.856779\pi\)
0.900473 0.434912i \(-0.143221\pi\)
\(500\) 0 0
\(501\) 4.32910e12 0.137154
\(502\) 0 0
\(503\) −2.35501e13 + 2.35501e13i −0.731397 + 0.731397i −0.970897 0.239499i \(-0.923017\pi\)
0.239499 + 0.970897i \(0.423017\pi\)
\(504\) 0 0
\(505\) −3.79564e12 5.06086e12i −0.115566 0.154087i
\(506\) 0 0
\(507\) 5.42258e12 + 5.42258e12i 0.161870 + 0.161870i
\(508\) 0 0
\(509\) 8.63621e12i 0.252775i −0.991981 0.126388i \(-0.959662\pi\)
0.991981 0.126388i \(-0.0403383\pi\)
\(510\) 0 0
\(511\) −1.06994e13 −0.307083
\(512\) 0 0
\(513\) −1.03050e13 + 1.03050e13i −0.290044 + 0.290044i
\(514\) 0 0
\(515\) −6.57355e12 9.39078e11i −0.181453 0.0259218i
\(516\) 0 0
\(517\) −2.98833e13 2.98833e13i −0.809051 0.809051i
\(518\) 0 0
\(519\) 4.25941e13i 1.13113i
\(520\) 0 0
\(521\) −6.27326e13 −1.63420 −0.817099 0.576497i \(-0.804419\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(522\) 0 0
\(523\) −1.48951e12 + 1.48951e12i −0.0380659 + 0.0380659i −0.725884 0.687818i \(-0.758569\pi\)
0.687818 + 0.725884i \(0.258569\pi\)
\(524\) 0 0
\(525\) −8.41357e12 + 2.88465e13i −0.210952 + 0.723264i
\(526\) 0 0
\(527\) 1.89244e13 + 1.89244e13i 0.465553 + 0.465553i
\(528\) 0 0
\(529\) 1.32430e13i 0.319673i
\(530\) 0 0
\(531\) −5.50327e12 −0.130361
\(532\) 0 0
\(533\) 3.55922e13 3.55922e13i 0.827405 0.827405i
\(534\) 0 0
\(535\) −8.86323e11 + 6.20426e12i −0.0202219 + 0.141554i
\(536\) 0 0
\(537\) 3.31250e13 + 3.31250e13i 0.741796 + 0.741796i
\(538\) 0 0
\(539\) 2.44699e13i 0.537884i
\(540\) 0 0
\(541\) −8.97115e13 −1.93581 −0.967903 0.251324i \(-0.919134\pi\)
−0.967903 + 0.251324i \(0.919134\pi\)
\(542\) 0 0
\(543\) 2.43391e13 2.43391e13i 0.515590 0.515590i
\(544\) 0 0
\(545\) −1.55324e13 + 1.16493e13i −0.323040 + 0.242280i
\(546\) 0 0
\(547\) −3.39955e13 3.39955e13i −0.694200 0.694200i 0.268953 0.963153i \(-0.413322\pi\)
−0.963153 + 0.268953i \(0.913322\pi\)
\(548\) 0 0
\(549\) 7.18515e12i 0.144070i
\(550\) 0 0
\(551\) 2.73086e13 0.537702
\(552\) 0 0
\(553\) −1.65449e13 + 1.65449e13i −0.319919 + 0.319919i
\(554\) 0 0
\(555\) −3.86962e13 5.15949e13i −0.734858 0.979811i
\(556\) 0 0
\(557\) 9.51915e12 + 9.51915e12i 0.177551 + 0.177551i 0.790287 0.612737i \(-0.209931\pi\)
−0.612737 + 0.790287i \(0.709931\pi\)
\(558\) 0 0
\(559\) 2.76228e13i 0.506068i
\(560\) 0 0
\(561\) 1.19314e14 2.14722
\(562\) 0 0
\(563\) −3.63651e13 + 3.63651e13i −0.642900 + 0.642900i −0.951267 0.308367i \(-0.900217\pi\)
0.308367 + 0.951267i \(0.400217\pi\)
\(564\) 0 0
\(565\) 7.85360e13 + 1.12194e13i 1.36404 + 0.194863i
\(566\) 0 0
\(567\) 3.27210e13 + 3.27210e13i 0.558356 + 0.558356i
\(568\) 0 0
\(569\) 2.82859e13i 0.474252i −0.971479 0.237126i \(-0.923795\pi\)
0.971479 0.237126i \(-0.0762054\pi\)
\(570\) 0 0
\(571\) −2.19201e12 −0.0361129 −0.0180564 0.999837i \(-0.505748\pi\)
−0.0180564 + 0.999837i \(0.505748\pi\)
\(572\) 0 0
\(573\) −2.39810e13 + 2.39810e13i −0.388235 + 0.388235i
\(574\) 0 0
\(575\) 3.47189e13 + 6.33110e13i 0.552366 + 1.00726i
\(576\) 0 0
\(577\) −2.97579e13 2.97579e13i −0.465289 0.465289i 0.435095 0.900384i \(-0.356715\pi\)
−0.900384 + 0.435095i \(0.856715\pi\)
\(578\) 0 0
\(579\) 7.78821e13i 1.19686i
\(580\) 0 0
\(581\) 8.71608e13 1.31656
\(582\) 0 0
\(583\) 3.40529e13 3.40529e13i 0.505605 0.505605i
\(584\) 0 0
\(585\) 1.15279e12 8.06955e12i 0.0168256 0.117780i
\(586\) 0 0
\(587\) −4.60333e13 4.60333e13i −0.660513 0.660513i 0.294988 0.955501i \(-0.404684\pi\)
−0.955501 + 0.294988i \(0.904684\pi\)
\(588\) 0 0
\(589\) 1.10883e13i 0.156419i
\(590\) 0 0
\(591\) 2.89230e13 0.401149
\(592\) 0 0
\(593\) −6.17714e12 + 6.17714e12i −0.0842391 + 0.0842391i −0.747971 0.663732i \(-0.768972\pi\)
0.663732 + 0.747971i \(0.268972\pi\)
\(594\) 0 0
\(595\) 7.90272e13 5.92704e13i 1.05972 0.794791i
\(596\) 0 0
\(597\) −8.28363e13 8.28363e13i −1.09232 1.09232i
\(598\) 0 0
\(599\) 5.80310e13i 0.752534i 0.926511 + 0.376267i \(0.122792\pi\)
−0.926511 + 0.376267i \(0.877208\pi\)
\(600\) 0 0
\(601\) 1.24750e14 1.59100 0.795499 0.605955i \(-0.207209\pi\)
0.795499 + 0.605955i \(0.207209\pi\)
\(602\) 0 0
\(603\) 7.62828e12 7.62828e12i 0.0956842 0.0956842i
\(604\) 0 0
\(605\) −7.74270e12 1.03236e13i −0.0955247 0.127366i
\(606\) 0 0
\(607\) 9.34184e13 + 9.34184e13i 1.13368 + 1.13368i 0.989561 + 0.144115i \(0.0460335\pi\)
0.144115 + 0.989561i \(0.453967\pi\)
\(608\) 0 0
\(609\) 7.62805e13i 0.910598i
\(610\) 0 0
\(611\) 8.01802e13 0.941588
\(612\) 0 0
\(613\) 1.42802e13 1.42802e13i 0.164980 0.164980i −0.619789 0.784769i \(-0.712782\pi\)
0.784769 + 0.619789i \(0.212782\pi\)
\(614\) 0 0
\(615\) 1.22499e14 + 1.74998e13i 1.39237 + 0.198910i
\(616\) 0 0
\(617\) −4.17740e12 4.17740e12i −0.0467176 0.0467176i 0.683362 0.730080i \(-0.260517\pi\)
−0.730080 + 0.683362i \(0.760517\pi\)
\(618\) 0 0
\(619\) 4.07977e13i 0.448934i −0.974482 0.224467i \(-0.927936\pi\)
0.974482 0.224467i \(-0.0720642\pi\)
\(620\) 0 0
\(621\) 9.78204e13 1.05918
\(622\) 0 0
\(623\) −6.53340e13 + 6.53340e13i −0.696144 + 0.696144i
\(624\) 0 0
\(625\) −8.04138e13 5.12695e13i −0.843200 0.537600i
\(626\) 0 0
\(627\) 3.49545e13 + 3.49545e13i 0.360716 + 0.360716i
\(628\) 0 0
\(629\) 2.12022e14i 2.15342i
\(630\) 0 0
\(631\) −8.03556e13 −0.803284 −0.401642 0.915797i \(-0.631560\pi\)
−0.401642 + 0.915797i \(0.631560\pi\)
\(632\) 0 0
\(633\) −2.52530e13 + 2.52530e13i −0.248482 + 0.248482i
\(634\) 0 0
\(635\) −8.16382e12 + 5.71467e13i −0.0790723 + 0.553506i
\(636\) 0 0
\(637\) 3.28277e13 + 3.28277e13i 0.313000 + 0.313000i
\(638\) 0 0
\(639\) 2.47454e13i 0.232269i
\(640\) 0 0
\(641\) 9.43477e13 0.871849 0.435924 0.899983i \(-0.356421\pi\)
0.435924 + 0.899983i \(0.356421\pi\)
\(642\) 0 0
\(643\) −1.98925e13 + 1.98925e13i −0.180981 + 0.180981i −0.791783 0.610802i \(-0.790847\pi\)
0.610802 + 0.791783i \(0.290847\pi\)
\(644\) 0 0
\(645\) 5.43258e13 4.07443e13i 0.486640 0.364980i
\(646\) 0 0
\(647\) −5.97289e13 5.97289e13i −0.526821 0.526821i 0.392802 0.919623i \(-0.371506\pi\)
−0.919623 + 0.392802i \(0.871506\pi\)
\(648\) 0 0
\(649\) 1.20350e14i 1.04526i
\(650\) 0 0
\(651\) 3.09727e13 0.264895
\(652\) 0 0
\(653\) −9.87072e13 + 9.87072e13i −0.831349 + 0.831349i −0.987701 0.156353i \(-0.950026\pi\)
0.156353 + 0.987701i \(0.450026\pi\)
\(654\) 0 0
\(655\) −9.75416e13 1.30055e14i −0.809065 1.07875i
\(656\) 0 0
\(657\) 5.04553e12 + 5.04553e12i 0.0412174 + 0.0412174i
\(658\) 0 0
\(659\) 5.80689e13i 0.467215i −0.972331 0.233607i \(-0.924947\pi\)
0.972331 0.233607i \(-0.0750530\pi\)
\(660\) 0 0
\(661\) −1.53137e14 −1.21360 −0.606798 0.794856i \(-0.707546\pi\)
−0.606798 + 0.794856i \(0.707546\pi\)
\(662\) 0 0
\(663\) −1.60066e14 + 1.60066e14i −1.24949 + 1.24949i
\(664\) 0 0
\(665\) 4.05161e13 + 5.78801e12i 0.311544 + 0.0445062i
\(666\) 0 0
\(667\) −1.29613e14 1.29613e14i −0.981792 0.981792i
\(668\) 0 0
\(669\) 4.61357e13i 0.344275i
\(670\) 0 0
\(671\) 1.57131e14 1.15518
\(672\) 0 0
\(673\) −8.75360e13 + 8.75360e13i −0.634032 + 0.634032i −0.949077 0.315045i \(-0.897980\pi\)
0.315045 + 0.949077i \(0.397980\pi\)
\(674\) 0 0
\(675\) −1.13283e14 + 6.21228e13i −0.808434 + 0.443335i
\(676\) 0 0
\(677\) 1.59452e12 + 1.59452e12i 0.0112121 + 0.0112121i 0.712691 0.701478i \(-0.247476\pi\)
−0.701478 + 0.712691i \(0.747476\pi\)
\(678\) 0 0
\(679\) 1.07670e13i 0.0746014i
\(680\) 0 0
\(681\) −4.21882e13 −0.288042
\(682\) 0 0
\(683\) 5.65796e13 5.65796e13i 0.380677 0.380677i −0.490669 0.871346i \(-0.663248\pi\)
0.871346 + 0.490669i \(0.163248\pi\)
\(684\) 0 0
\(685\) −1.02384e13 + 7.16689e13i −0.0678859 + 0.475201i
\(686\) 0 0
\(687\) −6.02297e13 6.02297e13i −0.393575 0.393575i
\(688\) 0 0
\(689\) 9.13676e13i 0.588432i
\(690\) 0 0
\(691\) −4.98558e12 −0.0316465 −0.0158232 0.999875i \(-0.505037\pi\)
−0.0158232 + 0.999875i \(0.505037\pi\)
\(692\) 0 0
\(693\) 1.15586e13 1.15586e13i 0.0723165 0.0723165i
\(694\) 0 0
\(695\) 6.53724e13 4.90293e13i 0.403153 0.302365i
\(696\) 0 0
\(697\) −2.87652e14 2.87652e14i −1.74865 1.74865i
\(698\) 0 0
\(699\) 3.65249e13i 0.218879i
\(700\) 0 0
\(701\) −1.80303e14 −1.06516 −0.532578 0.846381i \(-0.678777\pi\)
−0.532578 + 0.846381i \(0.678777\pi\)
\(702\) 0 0
\(703\) −6.21147e13 + 6.21147e13i −0.361758 + 0.361758i
\(704\) 0 0
\(705\) 1.18268e14 + 1.57691e14i 0.679080 + 0.905441i
\(706\) 0 0
\(707\) 1.70187e13 + 1.70187e13i 0.0963448 + 0.0963448i
\(708\) 0 0
\(709\) 3.11543e14i 1.73895i −0.493979 0.869474i \(-0.664458\pi\)
0.493979 0.869474i \(-0.335542\pi\)
\(710\) 0 0
\(711\) 1.56042e13 0.0858805
\(712\) 0 0
\(713\) 5.26277e13 5.26277e13i 0.285606 0.285606i
\(714\) 0 0
\(715\) 1.76472e14 + 2.52102e13i 0.944375 + 0.134911i
\(716\) 0 0
\(717\) 7.23989e12 + 7.23989e12i 0.0382064 + 0.0382064i
\(718\) 0 0
\(719\) 1.65068e14i 0.859051i 0.903055 + 0.429525i \(0.141319\pi\)
−0.903055 + 0.429525i \(0.858681\pi\)
\(720\) 0 0
\(721\) 2.52634e13 0.129663
\(722\) 0 0
\(723\) −1.49012e14 + 1.49012e14i −0.754273 + 0.754273i
\(724\) 0 0
\(725\) 2.32414e14 + 6.77875e13i 1.16031 + 0.338423i
\(726\) 0 0
\(727\) −2.15314e14 2.15314e14i −1.06023 1.06023i −0.998066 0.0621642i \(-0.980200\pi\)
−0.0621642 0.998066i \(-0.519800\pi\)
\(728\) 0 0
\(729\) 1.71318e14i 0.832081i
\(730\) 0 0
\(731\) −2.23244e14 −1.06953
\(732\) 0 0
\(733\) −2.78787e14 + 2.78787e14i −1.31750 + 1.31750i −0.401759 + 0.915746i \(0.631601\pi\)
−0.915746 + 0.401759i \(0.868399\pi\)
\(734\) 0 0
\(735\) −1.61406e13 + 1.12984e14i −0.0752459 + 0.526721i
\(736\) 0 0
\(737\) 1.66822e14 + 1.66822e14i 0.767212 + 0.767212i
\(738\) 0 0
\(739\) 2.05171e14i 0.930879i 0.885080 + 0.465440i \(0.154104\pi\)
−0.885080 + 0.465440i \(0.845896\pi\)
\(740\) 0 0
\(741\) −9.37868e13 −0.419808
\(742\) 0 0
\(743\) −1.59047e14 + 1.59047e14i −0.702396 + 0.702396i −0.964924 0.262528i \(-0.915444\pi\)
0.262528 + 0.964924i \(0.415444\pi\)
\(744\) 0 0
\(745\) 1.07841e13 8.08805e12i 0.0469895 0.0352422i
\(746\) 0 0
\(747\) −4.11025e13 4.11025e13i −0.176712 0.176712i
\(748\) 0 0
\(749\) 2.38442e13i 0.101152i
\(750\) 0 0
\(751\) 1.40008e14 0.586074 0.293037 0.956101i \(-0.405334\pi\)
0.293037 + 0.956101i \(0.405334\pi\)
\(752\) 0 0
\(753\) −8.29303e13 + 8.29303e13i −0.342561 + 0.342561i
\(754\) 0 0
\(755\) 2.13503e14 + 2.84671e14i 0.870302 + 1.16040i
\(756\) 0 0
\(757\) 7.07881e13 + 7.07881e13i 0.284761 + 0.284761i 0.835004 0.550243i \(-0.185465\pi\)
−0.550243 + 0.835004i \(0.685465\pi\)
\(758\) 0 0
\(759\) 3.31805e14i 1.31727i
\(760\) 0 0
\(761\) −2.84953e14 −1.11648 −0.558238 0.829681i \(-0.688523\pi\)
−0.558238 + 0.829681i \(0.688523\pi\)
\(762\) 0 0
\(763\) 5.22324e13 5.22324e13i 0.201984 0.201984i
\(764\) 0 0
\(765\) −6.52172e13 9.31674e12i −0.248917 0.0355596i
\(766\) 0 0
\(767\) 1.61456e14 + 1.61456e14i 0.608245 + 0.608245i
\(768\) 0 0
\(769\) 3.59991e14i 1.33863i −0.742980 0.669314i \(-0.766588\pi\)
0.742980 0.669314i \(-0.233412\pi\)
\(770\) 0 0
\(771\) 4.88899e14 1.79451
\(772\) 0 0
\(773\) 1.40032e14 1.40032e14i 0.507375 0.507375i −0.406345 0.913720i \(-0.633197\pi\)
0.913720 + 0.406345i \(0.133197\pi\)
\(774\) 0 0
\(775\) −2.75242e13 + 9.43687e13i −0.0984479 + 0.337536i
\(776\) 0 0
\(777\) 1.73503e14 + 1.73503e14i 0.612637 + 0.612637i
\(778\) 0 0
\(779\) 1.68543e14i 0.587520i
\(780\) 0 0
\(781\) 5.41154e14 1.86237
\(782\) 0 0
\(783\) 2.31917e14 2.31917e14i 0.787997 0.787997i
\(784\) 0 0
\(785\) 6.52674e12 4.56872e13i 0.0218951 0.153266i
\(786\) 0 0
\(787\) −2.99888e14 2.99888e14i −0.993312 0.993312i 0.00666595 0.999978i \(-0.497878\pi\)
−0.999978 + 0.00666595i \(0.997878\pi\)
\(788\) 0 0
\(789\) 3.33816e14i 1.09175i
\(790\) 0 0
\(791\) −3.01830e14 −0.974719
\(792\) 0 0
\(793\) −2.10800e14 + 2.10800e14i −0.672208 + 0.672208i
\(794\) 0 0
\(795\) −1.79693e14 + 1.34770e14i −0.565842 + 0.424381i
\(796\) 0 0
\(797\) −2.14433e14 2.14433e14i −0.666807 0.666807i 0.290169 0.956976i \(-0.406289\pi\)
−0.956976 + 0.290169i \(0.906289\pi\)
\(798\) 0 0
\(799\) 6.48007e14i 1.98997i
\(800\) 0 0
\(801\) 6.16193e13 0.186876
\(802\) 0 0
\(803\) −1.10340e14 + 1.10340e14i −0.330488 + 0.330488i
\(804\) 0 0
\(805\) −1.64828e14 2.19770e14i −0.487585 0.650113i
\(806\) 0 0
\(807\) 1.90956e14 + 1.90956e14i 0.557913 + 0.557913i
\(808\) 0 0
\(809\) 3.71569e14i 1.07225i 0.844138 + 0.536126i \(0.180113\pi\)
−0.844138 + 0.536126i \(0.819887\pi\)
\(810\) 0 0
\(811\) −4.25889e14 −1.21393 −0.606963 0.794730i \(-0.707612\pi\)
−0.606963 + 0.794730i \(0.707612\pi\)
\(812\) 0 0
\(813\) −1.31658e14 + 1.31658e14i −0.370677 + 0.370677i
\(814\) 0 0
\(815\) 2.09259e14 + 2.98941e13i 0.581963 + 0.0831376i
\(816\) 0 0
\(817\) −6.54023e13 6.54023e13i −0.179673 0.179673i
\(818\) 0 0
\(819\) 3.10129e13i 0.0841633i
\(820\) 0 0
\(821\) 4.73944e14 1.27061 0.635304 0.772262i \(-0.280875\pi\)
0.635304 + 0.772262i \(0.280875\pi\)
\(822\) 0 0
\(823\) 3.93378e14 3.93378e14i 1.04186 1.04186i 0.0427794 0.999085i \(-0.486379\pi\)
0.999085 0.0427794i \(-0.0136212\pi\)
\(824\) 0 0
\(825\) 2.10719e14 + 3.84253e14i 0.551359 + 1.00542i
\(826\) 0 0
\(827\) 2.32822e14 + 2.32822e14i 0.601861 + 0.601861i 0.940806 0.338945i \(-0.110070\pi\)
−0.338945 + 0.940806i \(0.610070\pi\)
\(828\) 0 0
\(829\) 9.73337e13i 0.248594i −0.992245 0.124297i \(-0.960332\pi\)
0.992245 0.124297i \(-0.0396675\pi\)
\(830\) 0 0
\(831\) −3.15703e14 −0.796661
\(832\) 0 0
\(833\) 2.65310e14 2.65310e14i 0.661499 0.661499i
\(834\) 0 0
\(835\) 7.39258e12 5.17481e13i 0.0182123 0.127486i
\(836\) 0 0
\(837\) 9.41670e13 + 9.41670e13i 0.229230 + 0.229230i
\(838\) 0 0
\(839\) 3.82848e14i 0.920910i −0.887683 0.460455i \(-0.847686\pi\)
0.887683 0.460455i \(-0.152314\pi\)
\(840\) 0 0
\(841\) −1.93879e14 −0.460840
\(842\) 0 0
\(843\) −1.44442e14 + 1.44442e14i −0.339278 + 0.339278i
\(844\) 0 0
\(845\) 7.40789e13 5.55592e13i 0.171954 0.128965i
\(846\) 0 0
\(847\) 3.47162e13 + 3.47162e13i 0.0796371 + 0.0796371i
\(848\) 0 0
\(849\) 2.41650e14i 0.547833i
\(850\) 0 0
\(851\) 5.89622e14 1.32107
\(852\) 0 0
\(853\) 4.25918e14 4.25918e14i 0.943149 0.943149i −0.0553196 0.998469i \(-0.517618\pi\)
0.998469 + 0.0553196i \(0.0176178\pi\)
\(854\) 0 0
\(855\) −1.63768e13 2.18357e13i −0.0358424 0.0477899i
\(856\) 0 0
\(857\) −3.58497e14 3.58497e14i −0.775498 0.775498i 0.203563 0.979062i \(-0.434748\pi\)
−0.979062 + 0.203563i \(0.934748\pi\)
\(858\) 0 0
\(859\) 7.30888e14i 1.56273i 0.624071 + 0.781367i \(0.285477\pi\)
−0.624071 + 0.781367i \(0.714523\pi\)
\(860\) 0 0
\(861\) −4.70786e14 −0.994965
\(862\) 0 0
\(863\) −1.48513e14 + 1.48513e14i −0.310249 + 0.310249i −0.845006 0.534757i \(-0.820403\pi\)
0.534757 + 0.845006i \(0.320403\pi\)
\(864\) 0 0
\(865\) 5.09151e14 + 7.27359e13i 1.05140 + 0.150199i
\(866\) 0 0
\(867\) 9.24709e14 + 9.24709e14i 1.88760 + 1.88760i
\(868\) 0 0
\(869\) 3.41247e14i 0.688604i
\(870\) 0 0
\(871\) −4.47601e14 −0.892895
\(872\) 0 0
\(873\) −5.07742e12 + 5.07742e12i −0.0100132 + 0.0100132i
\(874\) 0 0
\(875\) 3.30451e14 + 1.49832e14i 0.644268 + 0.292122i
\(876\) 0 0
\(877\) −3.85609e13 3.85609e13i −0.0743274 0.0743274i 0.668966 0.743293i \(-0.266737\pi\)
−0.743293 + 0.668966i \(0.766737\pi\)
\(878\) 0 0
\(879\) 6.56005e13i 0.125015i
\(880\) 0 0
\(881\) −4.11264e14 −0.774892 −0.387446 0.921892i \(-0.626643\pi\)
−0.387446 + 0.921892i \(0.626643\pi\)
\(882\) 0 0
\(883\) 6.34116e14 6.34116e14i 1.18131 1.18131i 0.201908 0.979404i \(-0.435286\pi\)
0.979404 0.201908i \(-0.0647143\pi\)
\(884\) 0 0
\(885\) −7.93841e13 + 5.55689e14i −0.146224 + 1.02356i
\(886\) 0 0
\(887\) −7.15241e14 7.15241e14i −1.30267 1.30267i −0.926586 0.376083i \(-0.877271\pi\)
−0.376083 0.926586i \(-0.622729\pi\)
\(888\) 0 0
\(889\) 2.19626e14i 0.395526i
\(890\) 0 0
\(891\) 6.74885e14 1.20182
\(892\) 0 0
\(893\) 1.89842e14 1.89842e14i 0.334299 0.334299i
\(894\) 0 0
\(895\) 4.52527e14 3.39395e14i 0.788006 0.591005i
\(896\) 0 0
\(897\) 4.45134e14 + 4.45134e14i 0.766530 + 0.766530i
\(898\) 0 0
\(899\) 2.49545e14i 0.424962i
\(900\) 0 0
\(901\) 7.38423e14 1.24360
\(902\) 0 0
\(903\) −1.82687e14 + 1.82687e14i −0.304276 + 0.304276i
\(904\) 0 0
\(905\) −2.49376e14 3.32501e14i −0.410782 0.547709i
\(906\) 0 0
\(907\) −4.62743e14 4.62743e14i −0.753882 0.753882i 0.221320 0.975201i \(-0.428964\pi\)
−0.975201 + 0.221320i \(0.928964\pi\)
\(908\) 0 0
\(909\) 1.60510e13i 0.0258633i
\(910\) 0 0
\(911\) 2.41312e14 0.384580 0.192290 0.981338i \(-0.438409\pi\)
0.192290 + 0.981338i \(0.438409\pi\)
\(912\) 0 0
\(913\) 8.98864e14 8.98864e14i 1.41690 1.41690i
\(914\) 0 0
\(915\) −7.25515e14 1.03645e14i −1.13120 0.161601i
\(916\) 0 0
\(917\) 4.37351e14 + 4.37351e14i 0.674502 + 0.674502i
\(918\) 0 0
\(919\) 3.74682e14i 0.571591i 0.958291 + 0.285795i \(0.0922577\pi\)
−0.958291 + 0.285795i \(0.907742\pi\)
\(920\) 0 0
\(921\) 4.03169e14 0.608399
\(922\) 0 0
\(923\) −7.25988e14 + 7.25988e14i −1.08373 + 1.08373i
\(924\) 0 0
\(925\) −6.82822e14 + 3.74451e14i −1.00832 + 0.552951i
\(926\) 0 0
\(927\) −1.19135e13 1.19135e13i −0.0174037 0.0174037i
\(928\) 0 0
\(929\) 4.47351e14i 0.646501i 0.946313 + 0.323251i \(0.104776\pi\)
−0.946313 + 0.323251i \(0.895224\pi\)
\(930\) 0 0
\(931\) 1.55452e14 0.222253
\(932\) 0 0
\(933\) −9.71983e14 + 9.71983e14i −1.37484 + 1.37484i
\(934\) 0 0
\(935\) 2.03746e14 1.42622e15i 0.285123 1.99586i
\(936\) 0 0
\(937\) −2.34215e14 2.34215e14i −0.324278 0.324278i 0.526128 0.850405i \(-0.323643\pi\)
−0.850405 + 0.526128i \(0.823643\pi\)
\(938\) 0 0
\(939\) 3.07469e14i 0.421185i
\(940\) 0 0
\(941\) −3.80526e13 −0.0515746 −0.0257873 0.999667i \(-0.508209\pi\)
−0.0257873 + 0.999667i \(0.508209\pi\)
\(942\) 0 0
\(943\) −7.99943e14 + 7.99943e14i −1.07276 + 1.07276i
\(944\) 0 0
\(945\) 3.93236e14 2.94927e14i 0.521788 0.391341i
\(946\) 0 0
\(947\) −1.26567e13 1.26567e13i −0.0166176 0.0166176i 0.698749 0.715367i \(-0.253740\pi\)
−0.715367 + 0.698749i \(0.753740\pi\)
\(948\) 0 0
\(949\) 2.96054e14i 0.384627i
\(950\) 0 0
\(951\) −4.26883e14 −0.548790
\(952\) 0 0
\(953\) −7.73544e14 + 7.73544e14i −0.984057 + 0.984057i −0.999875 0.0158178i \(-0.994965\pi\)
0.0158178 + 0.999875i \(0.494965\pi\)
\(954\) 0 0
\(955\) 2.45707e14 + 3.27610e14i 0.309315 + 0.412420i
\(956\) 0 0
\(957\) −7.86659e14 7.86659e14i −0.980001 0.980001i
\(958\) 0 0
\(959\) 2.75438e14i 0.339571i
\(960\) 0 0
\(961\) −7.18304e14 −0.876378
\(962\) 0 0
\(963\) −1.12442e13 + 1.12442e13i −0.0135768 + 0.0135768i
\(964\) 0 0
\(965\) −9.30967e14 1.32995e14i −1.11249 0.158928i
\(966\) 0 0
\(967\) 5.57904e14 + 5.57904e14i 0.659822 + 0.659822i 0.955338 0.295516i \(-0.0954915\pi\)
−0.295516 + 0.955338i \(0.595492\pi\)
\(968\) 0 0
\(969\) 7.57975e14i 0.887229i
\(970\) 0 0
\(971\) −1.01087e14 −0.117112 −0.0585559 0.998284i \(-0.518650\pi\)
−0.0585559 + 0.998284i \(0.518650\pi\)
\(972\) 0 0
\(973\) −2.19834e14 + 2.19834e14i −0.252076 + 0.252076i
\(974\) 0 0
\(975\) −7.98188e14 2.32805e14i −0.905903 0.264222i
\(976\) 0 0
\(977\) −7.13366e14 7.13366e14i −0.801382 0.801382i 0.181929 0.983312i \(-0.441766\pi\)
−0.983312 + 0.181929i \(0.941766\pi\)
\(978\) 0 0
\(979\) 1.34754e15i 1.49840i
\(980\) 0 0
\(981\) −4.92626e13 −0.0542215
\(982\) 0 0
\(983\) 5.14731e14 5.14731e14i 0.560806 0.560806i −0.368731 0.929536i \(-0.620208\pi\)
0.929536 + 0.368731i \(0.120208\pi\)
\(984\) 0 0
\(985\) 4.93904e13 3.45733e14i 0.0532674 0.372872i
\(986\) 0 0
\(987\) −5.30282e14 5.30282e14i −0.566136 0.566136i
\(988\) 0 0
\(989\) 6.20830e14i 0.656132i
\(990\) 0 0
\(991\) −1.13356e15 −1.18598 −0.592990 0.805210i \(-0.702053\pi\)
−0.592990 + 0.805210i \(0.702053\pi\)
\(992\) 0 0
\(993\) 8.82137e14 8.82137e14i 0.913671 0.913671i
\(994\) 0 0
\(995\) −1.13164e15 + 8.48732e14i −1.16036 + 0.870273i
\(996\) 0 0
\(997\) 6.55685e14 + 6.55685e14i 0.665609 + 0.665609i 0.956696 0.291087i \(-0.0940171\pi\)
−0.291087 + 0.956696i \(0.594017\pi\)
\(998\) 0 0
\(999\) 1.05501e15i 1.06030i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.11.p.b.17.1 2
4.3 odd 2 10.11.c.a.7.1 yes 2
5.3 odd 4 inner 80.11.p.b.33.1 2
12.11 even 2 90.11.g.b.37.1 2
20.3 even 4 10.11.c.a.3.1 2
20.7 even 4 50.11.c.c.43.1 2
20.19 odd 2 50.11.c.c.7.1 2
60.23 odd 4 90.11.g.b.73.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.11.c.a.3.1 2 20.3 even 4
10.11.c.a.7.1 yes 2 4.3 odd 2
50.11.c.c.7.1 2 20.19 odd 2
50.11.c.c.43.1 2 20.7 even 4
80.11.p.b.17.1 2 1.1 even 1 trivial
80.11.p.b.33.1 2 5.3 odd 4 inner
90.11.g.b.37.1 2 12.11 even 2
90.11.g.b.73.1 2 60.23 odd 4