Defining parameters
| Level: | \( N \) | = | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | = | \( 11 \) |
| Nonzero newspaces: | \( 7 \) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(4224\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(80))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1976 | 1004 | 972 |
| Cusp forms | 1864 | 976 | 888 |
| Eisenstein series | 112 | 28 | 84 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(80))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 80.11.b | \(\chi_{80}(31, \cdot)\) | 80.11.b.a | 8 | 1 |
| 80.11.b.b | 12 | |||
| 80.11.e | \(\chi_{80}(39, \cdot)\) | None | 0 | 1 |
| 80.11.g | \(\chi_{80}(71, \cdot)\) | None | 0 | 1 |
| 80.11.h | \(\chi_{80}(79, \cdot)\) | 80.11.h.a | 2 | 1 |
| 80.11.h.b | 8 | |||
| 80.11.h.c | 20 | |||
| 80.11.i | \(\chi_{80}(13, \cdot)\) | 80.11.i.a | 236 | 2 |
| 80.11.k | \(\chi_{80}(19, \cdot)\) | 80.11.k.a | 236 | 2 |
| 80.11.m | \(\chi_{80}(57, \cdot)\) | None | 0 | 2 |
| 80.11.p | \(\chi_{80}(17, \cdot)\) | 80.11.p.a | 2 | 2 |
| 80.11.p.b | 2 | |||
| 80.11.p.c | 6 | |||
| 80.11.p.d | 8 | |||
| 80.11.p.e | 10 | |||
| 80.11.p.f | 14 | |||
| 80.11.p.g | 16 | |||
| 80.11.r | \(\chi_{80}(11, \cdot)\) | 80.11.r.a | 160 | 2 |
| 80.11.t | \(\chi_{80}(53, \cdot)\) | 80.11.t.a | 236 | 2 |
Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces
\( S_{11}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)