Properties

Label 896.2.z.a.31.7
Level $896$
Weight $2$
Character 896.31
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 31.7
Character \(\chi\) \(=\) 896.31
Dual form 896.2.z.a.607.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.204601 - 0.763582i) q^{3} +(3.81370 + 1.02188i) q^{5} +(2.64575 - 0.00379639i) q^{7} +(2.05688 - 1.18754i) q^{9} +(-1.16815 - 4.35958i) q^{11} +(-1.34913 - 1.34913i) q^{13} -3.12115i q^{15} +(0.989178 + 0.571102i) q^{17} +(-3.01629 - 0.808212i) q^{19} +(-0.544222 - 2.01947i) q^{21} +(1.02392 + 1.77348i) q^{23} +(9.16994 + 5.29427i) q^{25} +(-3.00457 - 3.00457i) q^{27} +(-5.30239 + 5.30239i) q^{29} +(-2.07171 + 3.58830i) q^{31} +(-3.08989 + 1.78395i) q^{33} +(10.0940 + 2.68915i) q^{35} +(0.803695 - 2.99943i) q^{37} +(-0.754139 + 1.30621i) q^{39} -8.08732 q^{41} +(-3.82205 + 3.82205i) q^{43} +(9.05785 - 2.42704i) q^{45} +(-0.814305 - 1.41042i) q^{47} +(6.99997 - 0.0200886i) q^{49} +(0.233696 - 0.872167i) q^{51} +(2.92499 - 0.783749i) q^{53} -17.8198i q^{55} +2.46854i q^{57} +(6.97383 - 1.86863i) q^{59} +(-1.68972 + 6.30611i) q^{61} +(5.43748 - 3.14974i) q^{63} +(-3.76654 - 6.52383i) q^{65} +(0.616236 - 0.165120i) q^{67} +(1.14470 - 1.14470i) q^{69} +2.40482 q^{71} +(1.47966 - 2.56284i) q^{73} +(2.16643 - 8.08521i) q^{75} +(-3.10717 - 11.5299i) q^{77} +(-1.06303 + 0.613742i) q^{79} +(1.88313 - 3.26167i) q^{81} +(-2.29910 + 2.29910i) q^{83} +(3.18883 + 3.18883i) q^{85} +(5.13369 + 2.96394i) q^{87} +(4.36654 + 7.56307i) q^{89} +(-3.57459 - 3.56434i) q^{91} +(3.16383 + 0.847747i) q^{93} +(-10.6773 - 6.16455i) q^{95} -8.42967i q^{97} +(-7.57992 - 7.57992i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{11} - 12 q^{17} - 6 q^{19} + 10 q^{21} + 12 q^{23} + 24 q^{29} - 12 q^{33} - 2 q^{35} - 6 q^{37} + 4 q^{39} - 12 q^{45} - 8 q^{49} - 34 q^{51} - 6 q^{53} + 42 q^{59}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.204601 0.763582i −0.118127 0.440854i 0.881375 0.472417i \(-0.156618\pi\)
−0.999502 + 0.0315627i \(0.989952\pi\)
\(4\) 0 0
\(5\) 3.81370 + 1.02188i 1.70554 + 0.456998i 0.974324 0.225150i \(-0.0722873\pi\)
0.731214 + 0.682148i \(0.238954\pi\)
\(6\) 0 0
\(7\) 2.64575 0.00379639i 0.999999 0.00143490i
\(8\) 0 0
\(9\) 2.05688 1.18754i 0.685627 0.395847i
\(10\) 0 0
\(11\) −1.16815 4.35958i −0.352209 1.31446i −0.883960 0.467562i \(-0.845132\pi\)
0.531751 0.846901i \(-0.321534\pi\)
\(12\) 0 0
\(13\) −1.34913 1.34913i −0.374182 0.374182i 0.494816 0.868998i \(-0.335236\pi\)
−0.868998 + 0.494816i \(0.835236\pi\)
\(14\) 0 0
\(15\) 3.12115i 0.805877i
\(16\) 0 0
\(17\) 0.989178 + 0.571102i 0.239911 + 0.138513i 0.615136 0.788421i \(-0.289101\pi\)
−0.375225 + 0.926934i \(0.622435\pi\)
\(18\) 0 0
\(19\) −3.01629 0.808212i −0.691984 0.185416i −0.104346 0.994541i \(-0.533275\pi\)
−0.587637 + 0.809125i \(0.699942\pi\)
\(20\) 0 0
\(21\) −0.544222 2.01947i −0.118759 0.440684i
\(22\) 0 0
\(23\) 1.02392 + 1.77348i 0.213502 + 0.369796i 0.952808 0.303573i \(-0.0981798\pi\)
−0.739306 + 0.673369i \(0.764846\pi\)
\(24\) 0 0
\(25\) 9.16994 + 5.29427i 1.83399 + 1.05885i
\(26\) 0 0
\(27\) −3.00457 3.00457i −0.578229 0.578229i
\(28\) 0 0
\(29\) −5.30239 + 5.30239i −0.984630 + 0.984630i −0.999884 0.0152539i \(-0.995144\pi\)
0.0152539 + 0.999884i \(0.495144\pi\)
\(30\) 0 0
\(31\) −2.07171 + 3.58830i −0.372089 + 0.644478i −0.989887 0.141860i \(-0.954692\pi\)
0.617797 + 0.786337i \(0.288025\pi\)
\(32\) 0 0
\(33\) −3.08989 + 1.78395i −0.537881 + 0.310546i
\(34\) 0 0
\(35\) 10.0940 + 2.68915i 1.70619 + 0.454550i
\(36\) 0 0
\(37\) 0.803695 2.99943i 0.132127 0.493103i −0.867867 0.496797i \(-0.834509\pi\)
0.999993 + 0.00369416i \(0.00117589\pi\)
\(38\) 0 0
\(39\) −0.754139 + 1.30621i −0.120759 + 0.209161i
\(40\) 0 0
\(41\) −8.08732 −1.26303 −0.631514 0.775365i \(-0.717566\pi\)
−0.631514 + 0.775365i \(0.717566\pi\)
\(42\) 0 0
\(43\) −3.82205 + 3.82205i −0.582858 + 0.582858i −0.935688 0.352830i \(-0.885220\pi\)
0.352830 + 0.935688i \(0.385220\pi\)
\(44\) 0 0
\(45\) 9.05785 2.42704i 1.35026 0.361802i
\(46\) 0 0
\(47\) −0.814305 1.41042i −0.118779 0.205731i 0.800505 0.599326i \(-0.204565\pi\)
−0.919284 + 0.393595i \(0.871231\pi\)
\(48\) 0 0
\(49\) 6.99997 0.0200886i 0.999996 0.00286980i
\(50\) 0 0
\(51\) 0.233696 0.872167i 0.0327240 0.122128i
\(52\) 0 0
\(53\) 2.92499 0.783749i 0.401779 0.107656i −0.0522704 0.998633i \(-0.516646\pi\)
0.454049 + 0.890977i \(0.349979\pi\)
\(54\) 0 0
\(55\) 17.8198i 2.40283i
\(56\) 0 0
\(57\) 2.46854i 0.326966i
\(58\) 0 0
\(59\) 6.97383 1.86863i 0.907915 0.243275i 0.225503 0.974243i \(-0.427597\pi\)
0.682412 + 0.730967i \(0.260931\pi\)
\(60\) 0 0
\(61\) −1.68972 + 6.30611i −0.216346 + 0.807414i 0.769342 + 0.638837i \(0.220584\pi\)
−0.985688 + 0.168578i \(0.946083\pi\)
\(62\) 0 0
\(63\) 5.43748 3.14974i 0.685058 0.396830i
\(64\) 0 0
\(65\) −3.76654 6.52383i −0.467181 0.809182i
\(66\) 0 0
\(67\) 0.616236 0.165120i 0.0752852 0.0201726i −0.220980 0.975278i \(-0.570926\pi\)
0.296265 + 0.955106i \(0.404259\pi\)
\(68\) 0 0
\(69\) 1.14470 1.14470i 0.137806 0.137806i
\(70\) 0 0
\(71\) 2.40482 0.285400 0.142700 0.989766i \(-0.454422\pi\)
0.142700 + 0.989766i \(0.454422\pi\)
\(72\) 0 0
\(73\) 1.47966 2.56284i 0.173181 0.299958i −0.766349 0.642424i \(-0.777929\pi\)
0.939530 + 0.342466i \(0.111262\pi\)
\(74\) 0 0
\(75\) 2.16643 8.08521i 0.250157 0.933600i
\(76\) 0 0
\(77\) −3.10717 11.5299i −0.354095 1.31396i
\(78\) 0 0
\(79\) −1.06303 + 0.613742i −0.119601 + 0.0690514i −0.558607 0.829433i \(-0.688664\pi\)
0.439006 + 0.898484i \(0.355331\pi\)
\(80\) 0 0
\(81\) 1.88313 3.26167i 0.209236 0.362408i
\(82\) 0 0
\(83\) −2.29910 + 2.29910i −0.252359 + 0.252359i −0.821937 0.569578i \(-0.807107\pi\)
0.569578 + 0.821937i \(0.307107\pi\)
\(84\) 0 0
\(85\) 3.18883 + 3.18883i 0.345877 + 0.345877i
\(86\) 0 0
\(87\) 5.13369 + 2.96394i 0.550389 + 0.317767i
\(88\) 0 0
\(89\) 4.36654 + 7.56307i 0.462852 + 0.801684i 0.999102 0.0423758i \(-0.0134927\pi\)
−0.536249 + 0.844060i \(0.680159\pi\)
\(90\) 0 0
\(91\) −3.57459 3.56434i −0.374719 0.373645i
\(92\) 0 0
\(93\) 3.16383 + 0.847747i 0.328074 + 0.0879073i
\(94\) 0 0
\(95\) −10.6773 6.16455i −1.09547 0.632470i
\(96\) 0 0
\(97\) 8.42967i 0.855903i −0.903802 0.427952i \(-0.859235\pi\)
0.903802 0.427952i \(-0.140765\pi\)
\(98\) 0 0
\(99\) −7.57992 7.57992i −0.761810 0.761810i
\(100\) 0 0
\(101\) 3.81352 + 14.2323i 0.379460 + 1.41616i 0.846718 + 0.532042i \(0.178575\pi\)
−0.467258 + 0.884121i \(0.654758\pi\)
\(102\) 0 0
\(103\) −6.87358 + 3.96846i −0.677274 + 0.391024i −0.798827 0.601561i \(-0.794546\pi\)
0.121553 + 0.992585i \(0.461213\pi\)
\(104\) 0 0
\(105\) −0.0118491 8.25777i −0.00115635 0.805876i
\(106\) 0 0
\(107\) 8.96762 + 2.40287i 0.866932 + 0.232294i 0.664761 0.747056i \(-0.268533\pi\)
0.202172 + 0.979350i \(0.435200\pi\)
\(108\) 0 0
\(109\) −0.227686 0.849736i −0.0218084 0.0813900i 0.954164 0.299284i \(-0.0967479\pi\)
−0.975972 + 0.217894i \(0.930081\pi\)
\(110\) 0 0
\(111\) −2.45475 −0.232994
\(112\) 0 0
\(113\) 1.91230 0.179894 0.0899469 0.995947i \(-0.471330\pi\)
0.0899469 + 0.995947i \(0.471330\pi\)
\(114\) 0 0
\(115\) 2.09264 + 7.80983i 0.195140 + 0.728271i
\(116\) 0 0
\(117\) −4.37715 1.17285i −0.404668 0.108430i
\(118\) 0 0
\(119\) 2.61928 + 1.50724i 0.240109 + 0.138168i
\(120\) 0 0
\(121\) −8.11511 + 4.68526i −0.737737 + 0.425933i
\(122\) 0 0
\(123\) 1.65468 + 6.17533i 0.149197 + 0.556811i
\(124\) 0 0
\(125\) 15.6022 + 15.6022i 1.39550 + 1.39550i
\(126\) 0 0
\(127\) 11.9607i 1.06134i 0.847578 + 0.530671i \(0.178060\pi\)
−0.847578 + 0.530671i \(0.821940\pi\)
\(128\) 0 0
\(129\) 3.70045 + 2.13645i 0.325806 + 0.188104i
\(130\) 0 0
\(131\) −5.36296 1.43700i −0.468564 0.125551i 0.0168089 0.999859i \(-0.494649\pi\)
−0.485372 + 0.874307i \(0.661316\pi\)
\(132\) 0 0
\(133\) −7.98340 2.12687i −0.692249 0.184423i
\(134\) 0 0
\(135\) −8.38821 14.5288i −0.721943 1.25044i
\(136\) 0 0
\(137\) −12.4195 7.17038i −1.06107 0.612607i −0.135339 0.990799i \(-0.543212\pi\)
−0.925727 + 0.378192i \(0.876546\pi\)
\(138\) 0 0
\(139\) 14.6088 + 14.6088i 1.23910 + 1.23910i 0.960369 + 0.278731i \(0.0899137\pi\)
0.278731 + 0.960369i \(0.410086\pi\)
\(140\) 0 0
\(141\) −0.910361 + 0.910361i −0.0766663 + 0.0766663i
\(142\) 0 0
\(143\) −4.30567 + 7.45764i −0.360058 + 0.623639i
\(144\) 0 0
\(145\) −25.6401 + 14.8033i −2.12930 + 1.22935i
\(146\) 0 0
\(147\) −1.44754 5.34094i −0.119391 0.440513i
\(148\) 0 0
\(149\) 3.05093 11.3862i 0.249942 0.932797i −0.720892 0.693047i \(-0.756268\pi\)
0.970835 0.239750i \(-0.0770655\pi\)
\(150\) 0 0
\(151\) −6.85381 + 11.8712i −0.557755 + 0.966061i 0.439928 + 0.898033i \(0.355004\pi\)
−0.997683 + 0.0680276i \(0.978329\pi\)
\(152\) 0 0
\(153\) 2.71283 0.219319
\(154\) 0 0
\(155\) −11.5677 + 11.5677i −0.929138 + 0.929138i
\(156\) 0 0
\(157\) −2.01291 + 0.539359i −0.160648 + 0.0430455i −0.338247 0.941058i \(-0.609834\pi\)
0.177599 + 0.984103i \(0.443167\pi\)
\(158\) 0 0
\(159\) −1.19691 2.07311i −0.0949214 0.164409i
\(160\) 0 0
\(161\) 2.71576 + 4.68829i 0.214032 + 0.369489i
\(162\) 0 0
\(163\) 0.466826 1.74222i 0.0365647 0.136461i −0.945231 0.326403i \(-0.894163\pi\)
0.981795 + 0.189942i \(0.0608300\pi\)
\(164\) 0 0
\(165\) −13.6069 + 3.64596i −1.05930 + 0.283837i
\(166\) 0 0
\(167\) 21.6002i 1.67147i 0.549132 + 0.835735i \(0.314958\pi\)
−0.549132 + 0.835735i \(0.685042\pi\)
\(168\) 0 0
\(169\) 9.35968i 0.719976i
\(170\) 0 0
\(171\) −7.16393 + 1.91957i −0.547839 + 0.146793i
\(172\) 0 0
\(173\) 2.27429 8.48775i 0.172911 0.645312i −0.823987 0.566608i \(-0.808255\pi\)
0.996898 0.0787035i \(-0.0250780\pi\)
\(174\) 0 0
\(175\) 24.2815 + 13.9725i 1.83551 + 1.05622i
\(176\) 0 0
\(177\) −2.85371 4.94277i −0.214498 0.371521i
\(178\) 0 0
\(179\) −1.68719 + 0.452081i −0.126106 + 0.0337901i −0.321320 0.946971i \(-0.604127\pi\)
0.195214 + 0.980761i \(0.437460\pi\)
\(180\) 0 0
\(181\) −5.29547 + 5.29547i −0.393609 + 0.393609i −0.875972 0.482362i \(-0.839779\pi\)
0.482362 + 0.875972i \(0.339779\pi\)
\(182\) 0 0
\(183\) 5.16095 0.381508
\(184\) 0 0
\(185\) 6.13010 10.6176i 0.450694 0.780625i
\(186\) 0 0
\(187\) 1.33426 4.97953i 0.0975709 0.364140i
\(188\) 0 0
\(189\) −7.96073 7.93792i −0.579058 0.577399i
\(190\) 0 0
\(191\) 23.5567 13.6004i 1.70450 0.984093i 0.763423 0.645899i \(-0.223517\pi\)
0.941076 0.338195i \(-0.109816\pi\)
\(192\) 0 0
\(193\) −2.88165 + 4.99117i −0.207426 + 0.359272i −0.950903 0.309489i \(-0.899842\pi\)
0.743477 + 0.668762i \(0.233175\pi\)
\(194\) 0 0
\(195\) −4.21084 + 4.21084i −0.301545 + 0.301545i
\(196\) 0 0
\(197\) −12.7740 12.7740i −0.910107 0.910107i 0.0861731 0.996280i \(-0.472536\pi\)
−0.996280 + 0.0861731i \(0.972536\pi\)
\(198\) 0 0
\(199\) 4.76949 + 2.75367i 0.338100 + 0.195202i 0.659432 0.751764i \(-0.270797\pi\)
−0.321331 + 0.946967i \(0.604130\pi\)
\(200\) 0 0
\(201\) −0.252165 0.436763i −0.0177863 0.0308069i
\(202\) 0 0
\(203\) −14.0087 + 14.0489i −0.983216 + 0.986042i
\(204\) 0 0
\(205\) −30.8426 8.26425i −2.15414 0.577201i
\(206\) 0 0
\(207\) 4.21216 + 2.43189i 0.292765 + 0.169028i
\(208\) 0 0
\(209\) 14.0939i 0.974893i
\(210\) 0 0
\(211\) 19.3846 + 19.3846i 1.33449 + 1.33449i 0.901302 + 0.433192i \(0.142613\pi\)
0.433192 + 0.901302i \(0.357387\pi\)
\(212\) 0 0
\(213\) −0.492029 1.83628i −0.0337133 0.125820i
\(214\) 0 0
\(215\) −18.4818 + 10.6705i −1.26045 + 0.727722i
\(216\) 0 0
\(217\) −5.46759 + 9.50161i −0.371164 + 0.645011i
\(218\) 0 0
\(219\) −2.25968 0.605480i −0.152695 0.0409145i
\(220\) 0 0
\(221\) −0.564040 2.10503i −0.0379414 0.141599i
\(222\) 0 0
\(223\) −22.1379 −1.48247 −0.741233 0.671248i \(-0.765759\pi\)
−0.741233 + 0.671248i \(0.765759\pi\)
\(224\) 0 0
\(225\) 25.1486 1.67658
\(226\) 0 0
\(227\) 2.22844 + 8.31664i 0.147907 + 0.551995i 0.999609 + 0.0279688i \(0.00890392\pi\)
−0.851702 + 0.524026i \(0.824429\pi\)
\(228\) 0 0
\(229\) −24.4498 6.55130i −1.61569 0.432922i −0.665957 0.745990i \(-0.731977\pi\)
−0.949731 + 0.313067i \(0.898643\pi\)
\(230\) 0 0
\(231\) −8.16831 + 4.73162i −0.537435 + 0.311317i
\(232\) 0 0
\(233\) −13.4837 + 7.78481i −0.883346 + 0.510000i −0.871760 0.489933i \(-0.837021\pi\)
−0.0115857 + 0.999933i \(0.503688\pi\)
\(234\) 0 0
\(235\) −1.66424 6.21103i −0.108563 0.405163i
\(236\) 0 0
\(237\) 0.686140 + 0.686140i 0.0445696 + 0.0445696i
\(238\) 0 0
\(239\) 11.6230i 0.751832i −0.926654 0.375916i \(-0.877328\pi\)
0.926654 0.375916i \(-0.122672\pi\)
\(240\) 0 0
\(241\) 2.43625 + 1.40657i 0.156933 + 0.0906051i 0.576410 0.817161i \(-0.304453\pi\)
−0.419477 + 0.907766i \(0.637787\pi\)
\(242\) 0 0
\(243\) −15.1888 4.06982i −0.974361 0.261079i
\(244\) 0 0
\(245\) 26.7163 + 7.07650i 1.70684 + 0.452101i
\(246\) 0 0
\(247\) 2.97899 + 5.15975i 0.189548 + 0.328307i
\(248\) 0 0
\(249\) 2.22595 + 1.28515i 0.141064 + 0.0814432i
\(250\) 0 0
\(251\) −1.99507 1.99507i −0.125928 0.125928i 0.641334 0.767262i \(-0.278381\pi\)
−0.767262 + 0.641334i \(0.778381\pi\)
\(252\) 0 0
\(253\) 6.53554 6.53554i 0.410886 0.410886i
\(254\) 0 0
\(255\) 1.78250 3.08737i 0.111624 0.193339i
\(256\) 0 0
\(257\) 12.9550 7.47955i 0.808108 0.466561i −0.0381904 0.999270i \(-0.512159\pi\)
0.846298 + 0.532709i \(0.178826\pi\)
\(258\) 0 0
\(259\) 2.11499 7.93879i 0.131419 0.493292i
\(260\) 0 0
\(261\) −4.60958 + 17.2032i −0.285326 + 1.06485i
\(262\) 0 0
\(263\) 7.39409 12.8069i 0.455939 0.789710i −0.542802 0.839860i \(-0.682637\pi\)
0.998742 + 0.0501505i \(0.0159701\pi\)
\(264\) 0 0
\(265\) 11.9559 0.734447
\(266\) 0 0
\(267\) 4.88162 4.88162i 0.298750 0.298750i
\(268\) 0 0
\(269\) 23.1455 6.20182i 1.41121 0.378132i 0.528851 0.848715i \(-0.322623\pi\)
0.882356 + 0.470583i \(0.155956\pi\)
\(270\) 0 0
\(271\) −7.37718 12.7776i −0.448131 0.776186i 0.550133 0.835077i \(-0.314577\pi\)
−0.998264 + 0.0588906i \(0.981244\pi\)
\(272\) 0 0
\(273\) −1.99030 + 3.45876i −0.120459 + 0.209334i
\(274\) 0 0
\(275\) 12.3690 46.1616i 0.745877 2.78365i
\(276\) 0 0
\(277\) 17.7680 4.76091i 1.06757 0.286055i 0.318077 0.948065i \(-0.396963\pi\)
0.749496 + 0.662009i \(0.230296\pi\)
\(278\) 0 0
\(279\) 9.84094i 0.589162i
\(280\) 0 0
\(281\) 31.9694i 1.90713i −0.301185 0.953566i \(-0.597382\pi\)
0.301185 0.953566i \(-0.402618\pi\)
\(282\) 0 0
\(283\) −3.17648 + 0.851136i −0.188822 + 0.0505948i −0.351991 0.936003i \(-0.614495\pi\)
0.163169 + 0.986598i \(0.447829\pi\)
\(284\) 0 0
\(285\) −2.52255 + 9.41428i −0.149423 + 0.557654i
\(286\) 0 0
\(287\) −21.3970 + 0.0307026i −1.26303 + 0.00181232i
\(288\) 0 0
\(289\) −7.84768 13.5926i −0.461628 0.799564i
\(290\) 0 0
\(291\) −6.43674 + 1.72472i −0.377329 + 0.101105i
\(292\) 0 0
\(293\) −6.98254 + 6.98254i −0.407925 + 0.407925i −0.881014 0.473090i \(-0.843139\pi\)
0.473090 + 0.881014i \(0.343139\pi\)
\(294\) 0 0
\(295\) 28.5056 1.65966
\(296\) 0 0
\(297\) −9.58888 + 16.6084i −0.556403 + 0.963719i
\(298\) 0 0
\(299\) 1.01126 3.77406i 0.0584824 0.218259i
\(300\) 0 0
\(301\) −10.0977 + 10.1267i −0.582021 + 0.583694i
\(302\) 0 0
\(303\) 10.0872 5.82388i 0.579497 0.334573i
\(304\) 0 0
\(305\) −12.8881 + 22.3229i −0.737973 + 1.27821i
\(306\) 0 0
\(307\) −23.3885 + 23.3885i −1.33485 + 1.33485i −0.433888 + 0.900967i \(0.642859\pi\)
−0.900967 + 0.433888i \(0.857141\pi\)
\(308\) 0 0
\(309\) 4.43659 + 4.43659i 0.252389 + 0.252389i
\(310\) 0 0
\(311\) −21.8118 12.5931i −1.23684 0.714087i −0.268390 0.963310i \(-0.586491\pi\)
−0.968446 + 0.249223i \(0.919825\pi\)
\(312\) 0 0
\(313\) 4.22602 + 7.31969i 0.238869 + 0.413733i 0.960390 0.278659i \(-0.0898900\pi\)
−0.721521 + 0.692393i \(0.756557\pi\)
\(314\) 0 0
\(315\) 23.9556 6.45573i 1.34974 0.363739i
\(316\) 0 0
\(317\) −18.4857 4.95323i −1.03826 0.278201i −0.300868 0.953666i \(-0.597276\pi\)
−0.737393 + 0.675464i \(0.763943\pi\)
\(318\) 0 0
\(319\) 29.3102 + 16.9222i 1.64106 + 0.947464i
\(320\) 0 0
\(321\) 7.33914i 0.409631i
\(322\) 0 0
\(323\) −2.52207 2.52207i −0.140332 0.140332i
\(324\) 0 0
\(325\) −5.22880 19.5141i −0.290041 1.08245i
\(326\) 0 0
\(327\) −0.602258 + 0.347714i −0.0333050 + 0.0192286i
\(328\) 0 0
\(329\) −2.15980 3.72852i −0.119074 0.205560i
\(330\) 0 0
\(331\) −13.9616 3.74100i −0.767399 0.205624i −0.146177 0.989258i \(-0.546697\pi\)
−0.621222 + 0.783635i \(0.713364\pi\)
\(332\) 0 0
\(333\) −1.90884 7.12389i −0.104604 0.390387i
\(334\) 0 0
\(335\) 2.51887 0.137621
\(336\) 0 0
\(337\) −13.7159 −0.747152 −0.373576 0.927600i \(-0.621868\pi\)
−0.373576 + 0.927600i \(0.621868\pi\)
\(338\) 0 0
\(339\) −0.391258 1.46020i −0.0212502 0.0793069i
\(340\) 0 0
\(341\) 18.0635 + 4.84011i 0.978196 + 0.262107i
\(342\) 0 0
\(343\) 18.5201 0.0797240i 0.999991 0.00430469i
\(344\) 0 0
\(345\) 5.53529 3.19580i 0.298010 0.172056i
\(346\) 0 0
\(347\) −2.43191 9.07603i −0.130552 0.487227i 0.869425 0.494066i \(-0.164490\pi\)
−0.999977 + 0.00683892i \(0.997823\pi\)
\(348\) 0 0
\(349\) 8.35069 + 8.35069i 0.447002 + 0.447002i 0.894357 0.447355i \(-0.147634\pi\)
−0.447355 + 0.894357i \(0.647634\pi\)
\(350\) 0 0
\(351\) 8.10712i 0.432726i
\(352\) 0 0
\(353\) 16.9374 + 9.77882i 0.901488 + 0.520474i 0.877683 0.479242i \(-0.159089\pi\)
0.0238051 + 0.999717i \(0.492422\pi\)
\(354\) 0 0
\(355\) 9.17127 + 2.45743i 0.486760 + 0.130427i
\(356\) 0 0
\(357\) 0.614991 2.30842i 0.0325488 0.122175i
\(358\) 0 0
\(359\) −8.80385 15.2487i −0.464650 0.804797i 0.534536 0.845146i \(-0.320486\pi\)
−0.999186 + 0.0403489i \(0.987153\pi\)
\(360\) 0 0
\(361\) −8.00970 4.62440i −0.421563 0.243390i
\(362\) 0 0
\(363\) 5.23794 + 5.23794i 0.274920 + 0.274920i
\(364\) 0 0
\(365\) 8.26189 8.26189i 0.432447 0.432447i
\(366\) 0 0
\(367\) −16.4811 + 28.5462i −0.860309 + 1.49010i 0.0113220 + 0.999936i \(0.496396\pi\)
−0.871631 + 0.490163i \(0.836937\pi\)
\(368\) 0 0
\(369\) −16.6347 + 9.60402i −0.865966 + 0.499966i
\(370\) 0 0
\(371\) 7.73582 2.08471i 0.401624 0.108233i
\(372\) 0 0
\(373\) −3.47655 + 12.9747i −0.180009 + 0.671802i 0.815635 + 0.578566i \(0.196388\pi\)
−0.995644 + 0.0932356i \(0.970279\pi\)
\(374\) 0 0
\(375\) 8.72133 15.1058i 0.450368 0.780059i
\(376\) 0 0
\(377\) 14.3073 0.736861
\(378\) 0 0
\(379\) 0.617225 0.617225i 0.0317047 0.0317047i −0.691077 0.722781i \(-0.742863\pi\)
0.722781 + 0.691077i \(0.242863\pi\)
\(380\) 0 0
\(381\) 9.13298 2.44718i 0.467897 0.125373i
\(382\) 0 0
\(383\) −0.214398 0.371348i −0.0109552 0.0189750i 0.860496 0.509457i \(-0.170154\pi\)
−0.871451 + 0.490483i \(0.836821\pi\)
\(384\) 0 0
\(385\) −0.0676511 47.1468i −0.00344782 2.40282i
\(386\) 0 0
\(387\) −3.32267 + 12.4004i −0.168901 + 0.630346i
\(388\) 0 0
\(389\) −10.1095 + 2.70883i −0.512571 + 0.137343i −0.505828 0.862634i \(-0.668813\pi\)
−0.00674269 + 0.999977i \(0.502146\pi\)
\(390\) 0 0
\(391\) 2.33905i 0.118291i
\(392\) 0 0
\(393\) 4.38907i 0.221399i
\(394\) 0 0
\(395\) −4.68126 + 1.25434i −0.235540 + 0.0631126i
\(396\) 0 0
\(397\) −7.22485 + 26.9635i −0.362605 + 1.35326i 0.508034 + 0.861337i \(0.330372\pi\)
−0.870639 + 0.491922i \(0.836294\pi\)
\(398\) 0 0
\(399\) 0.00937155 + 6.53114i 0.000469165 + 0.326966i
\(400\) 0 0
\(401\) −13.1880 22.8422i −0.658575 1.14069i −0.980985 0.194085i \(-0.937826\pi\)
0.322410 0.946600i \(-0.395507\pi\)
\(402\) 0 0
\(403\) 7.63610 2.04609i 0.380381 0.101923i
\(404\) 0 0
\(405\) 10.5147 10.5147i 0.522480 0.522480i
\(406\) 0 0
\(407\) −14.0151 −0.694702
\(408\) 0 0
\(409\) −8.91434 + 15.4401i −0.440786 + 0.763463i −0.997748 0.0670744i \(-0.978634\pi\)
0.556962 + 0.830538i \(0.311967\pi\)
\(410\) 0 0
\(411\) −2.93414 + 10.9503i −0.144730 + 0.540141i
\(412\) 0 0
\(413\) 18.4439 4.97041i 0.907565 0.244578i
\(414\) 0 0
\(415\) −11.1175 + 6.41868i −0.545735 + 0.315081i
\(416\) 0 0
\(417\) 8.16602 14.1440i 0.399892 0.692633i
\(418\) 0 0
\(419\) 19.6171 19.6171i 0.958358 0.958358i −0.0408093 0.999167i \(-0.512994\pi\)
0.999167 + 0.0408093i \(0.0129936\pi\)
\(420\) 0 0
\(421\) 5.25405 + 5.25405i 0.256067 + 0.256067i 0.823452 0.567385i \(-0.192045\pi\)
−0.567385 + 0.823452i \(0.692045\pi\)
\(422\) 0 0
\(423\) −3.34986 1.93404i −0.162876 0.0940363i
\(424\) 0 0
\(425\) 6.04714 + 10.4740i 0.293329 + 0.508061i
\(426\) 0 0
\(427\) −4.44663 + 16.6908i −0.215187 + 0.807724i
\(428\) 0 0
\(429\) 6.57546 + 1.76189i 0.317466 + 0.0850648i
\(430\) 0 0
\(431\) −23.2543 13.4259i −1.12012 0.646701i −0.178687 0.983906i \(-0.557185\pi\)
−0.941431 + 0.337205i \(0.890518\pi\)
\(432\) 0 0
\(433\) 18.6517i 0.896344i 0.893947 + 0.448172i \(0.147925\pi\)
−0.893947 + 0.448172i \(0.852075\pi\)
\(434\) 0 0
\(435\) 16.5496 + 16.5496i 0.793491 + 0.793491i
\(436\) 0 0
\(437\) −1.65509 6.17686i −0.0791735 0.295479i
\(438\) 0 0
\(439\) 17.5460 10.1302i 0.837427 0.483488i −0.0189621 0.999820i \(-0.506036\pi\)
0.856389 + 0.516332i \(0.172703\pi\)
\(440\) 0 0
\(441\) 14.3742 8.35407i 0.684488 0.397813i
\(442\) 0 0
\(443\) 34.1538 + 9.15149i 1.62270 + 0.434800i 0.951792 0.306744i \(-0.0992394\pi\)
0.670904 + 0.741544i \(0.265906\pi\)
\(444\) 0 0
\(445\) 8.92414 + 33.3053i 0.423045 + 1.57882i
\(446\) 0 0
\(447\) −9.31855 −0.440752
\(448\) 0 0
\(449\) 14.0702 0.664012 0.332006 0.943277i \(-0.392275\pi\)
0.332006 + 0.943277i \(0.392275\pi\)
\(450\) 0 0
\(451\) 9.44718 + 35.2573i 0.444850 + 1.66020i
\(452\) 0 0
\(453\) 10.4669 + 2.80460i 0.491777 + 0.131771i
\(454\) 0 0
\(455\) −9.99008 17.2461i −0.468342 0.808511i
\(456\) 0 0
\(457\) −4.61613 + 2.66512i −0.215933 + 0.124669i −0.604066 0.796934i \(-0.706454\pi\)
0.388133 + 0.921604i \(0.373120\pi\)
\(458\) 0 0
\(459\) −1.25614 4.68797i −0.0586314 0.218816i
\(460\) 0 0
\(461\) 2.32075 + 2.32075i 0.108088 + 0.108088i 0.759082 0.650995i \(-0.225648\pi\)
−0.650995 + 0.759082i \(0.725648\pi\)
\(462\) 0 0
\(463\) 15.2932i 0.710736i −0.934727 0.355368i \(-0.884356\pi\)
0.934727 0.355368i \(-0.115644\pi\)
\(464\) 0 0
\(465\) 11.1996 + 6.46610i 0.519370 + 0.299858i
\(466\) 0 0
\(467\) −29.0012 7.77086i −1.34202 0.359592i −0.484835 0.874606i \(-0.661120\pi\)
−0.857182 + 0.515014i \(0.827787\pi\)
\(468\) 0 0
\(469\) 1.62978 0.439205i 0.0752561 0.0202806i
\(470\) 0 0
\(471\) 0.823689 + 1.42667i 0.0379536 + 0.0657375i
\(472\) 0 0
\(473\) 21.1273 + 12.1978i 0.971433 + 0.560857i
\(474\) 0 0
\(475\) −23.3803 23.3803i −1.07276 1.07276i
\(476\) 0 0
\(477\) 5.08563 5.08563i 0.232855 0.232855i
\(478\) 0 0
\(479\) 17.2367 29.8548i 0.787564 1.36410i −0.139892 0.990167i \(-0.544676\pi\)
0.927456 0.373933i \(-0.121991\pi\)
\(480\) 0 0
\(481\) −5.13092 + 2.96234i −0.233950 + 0.135071i
\(482\) 0 0
\(483\) 3.02425 3.03294i 0.137608 0.138003i
\(484\) 0 0
\(485\) 8.61409 32.1482i 0.391146 1.45978i
\(486\) 0 0
\(487\) −7.45142 + 12.9062i −0.337656 + 0.584837i −0.983991 0.178216i \(-0.942967\pi\)
0.646335 + 0.763053i \(0.276301\pi\)
\(488\) 0 0
\(489\) −1.42584 −0.0644787
\(490\) 0 0
\(491\) 30.5248 30.5248i 1.37756 1.37756i 0.528844 0.848719i \(-0.322626\pi\)
0.848719 0.528844i \(-0.177374\pi\)
\(492\) 0 0
\(493\) −8.27322 + 2.21680i −0.372607 + 0.0998398i
\(494\) 0 0
\(495\) −21.1618 36.6533i −0.951151 1.64744i
\(496\) 0 0
\(497\) 6.36255 0.00912964i 0.285399 0.000409520i
\(498\) 0 0
\(499\) 2.86434 10.6899i 0.128225 0.478544i −0.871709 0.490025i \(-0.836988\pi\)
0.999934 + 0.0114806i \(0.00365448\pi\)
\(500\) 0 0
\(501\) 16.4935 4.41942i 0.736875 0.197445i
\(502\) 0 0
\(503\) 25.6811i 1.14507i −0.819882 0.572533i \(-0.805961\pi\)
0.819882 0.572533i \(-0.194039\pi\)
\(504\) 0 0
\(505\) 58.1745i 2.58873i
\(506\) 0 0
\(507\) −7.14688 + 1.91500i −0.317404 + 0.0850482i
\(508\) 0 0
\(509\) −3.97493 + 14.8346i −0.176186 + 0.657534i 0.820161 + 0.572133i \(0.193884\pi\)
−0.996347 + 0.0854009i \(0.972783\pi\)
\(510\) 0 0
\(511\) 3.90508 6.78626i 0.172750 0.300206i
\(512\) 0 0
\(513\) 6.63431 + 11.4910i 0.292912 + 0.507338i
\(514\) 0 0
\(515\) −30.2691 + 8.11057i −1.33381 + 0.357394i
\(516\) 0 0
\(517\) −5.19760 + 5.19760i −0.228590 + 0.228590i
\(518\) 0 0
\(519\) −6.94641 −0.304914
\(520\) 0 0
\(521\) 14.9189 25.8403i 0.653609 1.13208i −0.328632 0.944458i \(-0.606588\pi\)
0.982241 0.187626i \(-0.0600792\pi\)
\(522\) 0 0
\(523\) 9.32633 34.8063i 0.407812 1.52198i −0.390998 0.920392i \(-0.627870\pi\)
0.798810 0.601583i \(-0.205463\pi\)
\(524\) 0 0
\(525\) 5.70113 21.3997i 0.248818 0.933958i
\(526\) 0 0
\(527\) −4.09857 + 2.36631i −0.178537 + 0.103078i
\(528\) 0 0
\(529\) 9.40318 16.2868i 0.408834 0.708121i
\(530\) 0 0
\(531\) 12.1253 12.1253i 0.526191 0.526191i
\(532\) 0 0
\(533\) 10.9109 + 10.9109i 0.472602 + 0.472602i
\(534\) 0 0
\(535\) 31.7444 + 18.3276i 1.37243 + 0.792372i
\(536\) 0 0
\(537\) 0.690401 + 1.19581i 0.0297930 + 0.0516030i
\(538\) 0 0
\(539\) −8.26457 30.4935i −0.355980 1.31345i
\(540\) 0 0
\(541\) 13.0674 + 3.50141i 0.561813 + 0.150537i 0.528539 0.848909i \(-0.322740\pi\)
0.0332740 + 0.999446i \(0.489407\pi\)
\(542\) 0 0
\(543\) 5.12698 + 2.96007i 0.220020 + 0.127029i
\(544\) 0 0
\(545\) 3.47331i 0.148780i
\(546\) 0 0
\(547\) −19.9064 19.9064i −0.851134 0.851134i 0.139139 0.990273i \(-0.455567\pi\)
−0.990273 + 0.139139i \(0.955567\pi\)
\(548\) 0 0
\(549\) 4.01321 + 14.9775i 0.171280 + 0.639225i
\(550\) 0 0
\(551\) 20.2790 11.7081i 0.863914 0.498781i
\(552\) 0 0
\(553\) −2.81019 + 1.62784i −0.119501 + 0.0692229i
\(554\) 0 0
\(555\) −9.36167 2.50845i −0.397381 0.106478i
\(556\) 0 0
\(557\) −3.45569 12.8968i −0.146422 0.546456i −0.999688 0.0249794i \(-0.992048\pi\)
0.853265 0.521477i \(-0.174619\pi\)
\(558\) 0 0
\(559\) 10.3129 0.436190
\(560\) 0 0
\(561\) −4.07527 −0.172058
\(562\) 0 0
\(563\) 6.53907 + 24.4041i 0.275589 + 1.02851i 0.955446 + 0.295167i \(0.0953751\pi\)
−0.679857 + 0.733345i \(0.737958\pi\)
\(564\) 0 0
\(565\) 7.29293 + 1.95413i 0.306816 + 0.0822110i
\(566\) 0 0
\(567\) 4.96990 8.63671i 0.208716 0.362708i
\(568\) 0 0
\(569\) 10.8718 6.27682i 0.455768 0.263138i −0.254495 0.967074i \(-0.581909\pi\)
0.710263 + 0.703936i \(0.248576\pi\)
\(570\) 0 0
\(571\) 10.2203 + 38.1427i 0.427706 + 1.59622i 0.757942 + 0.652322i \(0.226205\pi\)
−0.330235 + 0.943899i \(0.607128\pi\)
\(572\) 0 0
\(573\) −15.2048 15.2048i −0.635188 0.635188i
\(574\) 0 0
\(575\) 21.6836i 0.904268i
\(576\) 0 0
\(577\) −20.1944 11.6592i −0.840702 0.485380i 0.0168006 0.999859i \(-0.494652\pi\)
−0.857503 + 0.514479i \(0.827985\pi\)
\(578\) 0 0
\(579\) 4.40076 + 1.17918i 0.182889 + 0.0490050i
\(580\) 0 0
\(581\) −6.07411 + 6.09157i −0.251997 + 0.252721i
\(582\) 0 0
\(583\) −6.83364 11.8362i −0.283020 0.490206i
\(584\) 0 0
\(585\) −15.4946 8.94583i −0.640624 0.369865i
\(586\) 0 0
\(587\) −24.2488 24.2488i −1.00085 1.00085i −1.00000 0.000853494i \(-0.999728\pi\)
−0.000853494 1.00000i \(-0.500272\pi\)
\(588\) 0 0
\(589\) 9.14897 9.14897i 0.376977 0.376977i
\(590\) 0 0
\(591\) −7.14040 + 12.3675i −0.293717 + 0.508732i
\(592\) 0 0
\(593\) 33.2134 19.1758i 1.36391 0.787454i 0.373768 0.927522i \(-0.378066\pi\)
0.990142 + 0.140068i \(0.0447322\pi\)
\(594\) 0 0
\(595\) 8.44895 + 8.42474i 0.346373 + 0.345381i
\(596\) 0 0
\(597\) 1.12681 4.20530i 0.0461171 0.172112i
\(598\) 0 0
\(599\) 0.398968 0.691033i 0.0163014 0.0282348i −0.857760 0.514051i \(-0.828144\pi\)
0.874061 + 0.485816i \(0.161478\pi\)
\(600\) 0 0
\(601\) 4.37578 0.178492 0.0892459 0.996010i \(-0.471554\pi\)
0.0892459 + 0.996010i \(0.471554\pi\)
\(602\) 0 0
\(603\) 1.07144 1.07144i 0.0436323 0.0436323i
\(604\) 0 0
\(605\) −35.7363 + 9.57552i −1.45289 + 0.389300i
\(606\) 0 0
\(607\) 3.27685 + 5.67568i 0.133003 + 0.230369i 0.924833 0.380373i \(-0.124205\pi\)
−0.791830 + 0.610742i \(0.790871\pi\)
\(608\) 0 0
\(609\) 13.5937 + 7.82234i 0.550844 + 0.316977i
\(610\) 0 0
\(611\) −0.804235 + 3.00145i −0.0325359 + 0.121425i
\(612\) 0 0
\(613\) 18.1595 4.86583i 0.733457 0.196529i 0.127289 0.991866i \(-0.459373\pi\)
0.606168 + 0.795337i \(0.292706\pi\)
\(614\) 0 0
\(615\) 25.2417i 1.01785i
\(616\) 0 0
\(617\) 22.2202i 0.894552i 0.894396 + 0.447276i \(0.147606\pi\)
−0.894396 + 0.447276i \(0.852394\pi\)
\(618\) 0 0
\(619\) −8.23929 + 2.20771i −0.331165 + 0.0887354i −0.420570 0.907260i \(-0.638170\pi\)
0.0894053 + 0.995995i \(0.471503\pi\)
\(620\) 0 0
\(621\) 2.25210 8.40496i 0.0903738 0.337280i
\(622\) 0 0
\(623\) 11.5815 + 19.9934i 0.464002 + 0.801019i
\(624\) 0 0
\(625\) 17.0872 + 29.5959i 0.683489 + 1.18384i
\(626\) 0 0
\(627\) 10.7618 2.88362i 0.429785 0.115161i
\(628\) 0 0
\(629\) 2.50798 2.50798i 0.0999997 0.0999997i
\(630\) 0 0
\(631\) −45.0684 −1.79415 −0.897073 0.441882i \(-0.854311\pi\)
−0.897073 + 0.441882i \(0.854311\pi\)
\(632\) 0 0
\(633\) 10.8356 18.7679i 0.430678 0.745956i
\(634\) 0 0
\(635\) −12.2224 + 45.6146i −0.485031 + 1.81016i
\(636\) 0 0
\(637\) −9.47099 9.41679i −0.375254 0.373107i
\(638\) 0 0
\(639\) 4.94643 2.85582i 0.195678 0.112975i
\(640\) 0 0
\(641\) −14.4649 + 25.0540i −0.571329 + 0.989572i 0.425100 + 0.905146i \(0.360239\pi\)
−0.996430 + 0.0844254i \(0.973095\pi\)
\(642\) 0 0
\(643\) 27.4126 27.4126i 1.08105 1.08105i 0.0846366 0.996412i \(-0.473027\pi\)
0.996412 0.0846366i \(-0.0269729\pi\)
\(644\) 0 0
\(645\) 11.9292 + 11.9292i 0.469712 + 0.469712i
\(646\) 0 0
\(647\) 25.8281 + 14.9119i 1.01541 + 0.586247i 0.912771 0.408472i \(-0.133938\pi\)
0.102638 + 0.994719i \(0.467272\pi\)
\(648\) 0 0
\(649\) −16.2929 28.2201i −0.639553 1.10774i
\(650\) 0 0
\(651\) 8.37393 + 2.23091i 0.328200 + 0.0874364i
\(652\) 0 0
\(653\) 12.5980 + 3.37562i 0.492997 + 0.132098i 0.496748 0.867895i \(-0.334527\pi\)
−0.00375078 + 0.999993i \(0.501194\pi\)
\(654\) 0 0
\(655\) −18.9843 10.9606i −0.741776 0.428265i
\(656\) 0 0
\(657\) 7.02862i 0.274213i
\(658\) 0 0
\(659\) −15.1555 15.1555i −0.590375 0.590375i 0.347358 0.937733i \(-0.387079\pi\)
−0.937733 + 0.347358i \(0.887079\pi\)
\(660\) 0 0
\(661\) −0.571930 2.13447i −0.0222455 0.0830213i 0.953911 0.300091i \(-0.0970169\pi\)
−0.976156 + 0.217069i \(0.930350\pi\)
\(662\) 0 0
\(663\) −1.49196 + 0.861381i −0.0579428 + 0.0334533i
\(664\) 0 0
\(665\) −28.2729 16.2693i −1.09638 0.630897i
\(666\) 0 0
\(667\) −14.8329 3.97446i −0.574332 0.153892i
\(668\) 0 0
\(669\) 4.52945 + 16.9041i 0.175118 + 0.653551i
\(670\) 0 0
\(671\) 29.4658 1.13752
\(672\) 0 0
\(673\) −50.4864 −1.94611 −0.973054 0.230577i \(-0.925939\pi\)
−0.973054 + 0.230577i \(0.925939\pi\)
\(674\) 0 0
\(675\) −11.6447 43.4587i −0.448205 1.67273i
\(676\) 0 0
\(677\) −28.6211 7.66899i −1.10000 0.294743i −0.337234 0.941421i \(-0.609491\pi\)
−0.762763 + 0.646678i \(0.776158\pi\)
\(678\) 0 0
\(679\) −0.0320023 22.3028i −0.00122814 0.855903i
\(680\) 0 0
\(681\) 5.89450 3.40319i 0.225878 0.130410i
\(682\) 0 0
\(683\) −0.972755 3.63037i −0.0372214 0.138912i 0.944815 0.327605i \(-0.106242\pi\)
−0.982036 + 0.188693i \(0.939575\pi\)
\(684\) 0 0
\(685\) −40.0368 40.0368i −1.52973 1.52973i
\(686\) 0 0
\(687\) 20.0098i 0.763423i
\(688\) 0 0
\(689\) −5.00358 2.88882i −0.190621 0.110055i
\(690\) 0 0
\(691\) 13.8605 + 3.71391i 0.527278 + 0.141284i 0.512631 0.858609i \(-0.328671\pi\)
0.0146470 + 0.999893i \(0.495338\pi\)
\(692\) 0 0
\(693\) −20.0833 20.0258i −0.762903 0.760717i
\(694\) 0 0
\(695\) 40.7851 + 70.6418i 1.54707 + 2.67960i
\(696\) 0 0
\(697\) −7.99980 4.61869i −0.303014 0.174945i
\(698\) 0 0
\(699\) 8.70312 + 8.70312i 0.329182 + 0.329182i
\(700\) 0 0
\(701\) −12.9519 + 12.9519i −0.489187 + 0.489187i −0.908050 0.418863i \(-0.862429\pi\)
0.418863 + 0.908050i \(0.362429\pi\)
\(702\) 0 0
\(703\) −4.84835 + 8.39758i −0.182859 + 0.316721i
\(704\) 0 0
\(705\) −4.40212 + 2.54157i −0.165794 + 0.0957210i
\(706\) 0 0
\(707\) 10.1437 + 37.6405i 0.381492 + 1.41562i
\(708\) 0 0
\(709\) 0.167036 0.623389i 0.00627319 0.0234119i −0.962718 0.270506i \(-0.912809\pi\)
0.968991 + 0.247094i \(0.0794757\pi\)
\(710\) 0 0
\(711\) −1.45769 + 2.52479i −0.0546676 + 0.0946870i
\(712\) 0 0
\(713\) −8.48503 −0.317767
\(714\) 0 0
\(715\) −24.0413 + 24.0413i −0.899094 + 0.899094i
\(716\) 0 0
\(717\) −8.87514 + 2.37809i −0.331448 + 0.0888113i
\(718\) 0 0
\(719\) 15.4833 + 26.8178i 0.577429 + 1.00014i 0.995773 + 0.0918476i \(0.0292772\pi\)
−0.418344 + 0.908289i \(0.637389\pi\)
\(720\) 0 0
\(721\) −18.1707 + 10.5257i −0.676712 + 0.391996i
\(722\) 0 0
\(723\) 0.575572 2.14806i 0.0214057 0.0798873i
\(724\) 0 0
\(725\) −76.6949 + 20.5503i −2.84838 + 0.763221i
\(726\) 0 0
\(727\) 16.7744i 0.622128i −0.950389 0.311064i \(-0.899315\pi\)
0.950389 0.311064i \(-0.100685\pi\)
\(728\) 0 0
\(729\) 1.13181i 0.0419187i
\(730\) 0 0
\(731\) −5.96348 + 1.59791i −0.220567 + 0.0591008i
\(732\) 0 0
\(733\) −7.88067 + 29.4110i −0.291079 + 1.08632i 0.653203 + 0.757183i \(0.273425\pi\)
−0.944282 + 0.329139i \(0.893242\pi\)
\(734\) 0 0
\(735\) −0.0626995 21.8480i −0.00231271 0.805874i
\(736\) 0 0
\(737\) −1.43971 2.49365i −0.0530323 0.0918546i
\(738\) 0 0
\(739\) 24.9711 6.69098i 0.918577 0.246132i 0.231600 0.972811i \(-0.425604\pi\)
0.686977 + 0.726679i \(0.258937\pi\)
\(740\) 0 0
\(741\) 3.33039 3.33039i 0.122345 0.122345i
\(742\) 0 0
\(743\) −16.7597 −0.614855 −0.307427 0.951572i \(-0.599468\pi\)
−0.307427 + 0.951572i \(0.599468\pi\)
\(744\) 0 0
\(745\) 23.2707 40.3060i 0.852572 1.47670i
\(746\) 0 0
\(747\) −1.99870 + 7.45925i −0.0731286 + 0.272920i
\(748\) 0 0
\(749\) 23.7352 + 6.32334i 0.867265 + 0.231050i
\(750\) 0 0
\(751\) 19.4065 11.2044i 0.708154 0.408853i −0.102223 0.994761i \(-0.532596\pi\)
0.810377 + 0.585909i \(0.199262\pi\)
\(752\) 0 0
\(753\) −1.11521 + 1.93159i −0.0406404 + 0.0703912i
\(754\) 0 0
\(755\) −38.2692 + 38.2692i −1.39276 + 1.39276i
\(756\) 0 0
\(757\) −10.1520 10.1520i −0.368982 0.368982i 0.498124 0.867106i \(-0.334022\pi\)
−0.867106 + 0.498124i \(0.834022\pi\)
\(758\) 0 0
\(759\) −6.32760 3.65324i −0.229677 0.132604i
\(760\) 0 0
\(761\) 10.0149 + 17.3464i 0.363041 + 0.628805i 0.988460 0.151484i \(-0.0484053\pi\)
−0.625419 + 0.780289i \(0.715072\pi\)
\(762\) 0 0
\(763\) −0.605626 2.24732i −0.0219251 0.0813586i
\(764\) 0 0
\(765\) 10.3459 + 2.77218i 0.374057 + 0.100228i
\(766\) 0 0
\(767\) −11.9297 6.88759i −0.430755 0.248696i
\(768\) 0 0
\(769\) 50.7365i 1.82960i 0.403902 + 0.914802i \(0.367654\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(770\) 0 0
\(771\) −8.36185 8.36185i −0.301144 0.301144i
\(772\) 0 0
\(773\) 7.73070 + 28.8514i 0.278054 + 1.03771i 0.953767 + 0.300547i \(0.0971692\pi\)
−0.675713 + 0.737165i \(0.736164\pi\)
\(774\) 0 0
\(775\) −37.9949 + 21.9363i −1.36482 + 0.787977i
\(776\) 0 0
\(777\) −6.49464 + 0.00931918i −0.232994 + 0.000334324i
\(778\) 0 0
\(779\) 24.3937 + 6.53627i 0.873994 + 0.234186i
\(780\) 0 0
\(781\) −2.80918 10.4840i −0.100520 0.375148i
\(782\) 0 0
\(783\) 31.8628 1.13868
\(784\) 0 0
\(785\) −8.22781 −0.293663
\(786\) 0 0
\(787\) −9.92221 37.0302i −0.353688 1.31998i −0.882127 0.471012i \(-0.843889\pi\)
0.528438 0.848972i \(-0.322778\pi\)
\(788\) 0 0
\(789\) −11.2920 3.02568i −0.402005 0.107717i
\(790\) 0 0
\(791\) 5.05946 0.00725983i 0.179894 0.000258130i
\(792\) 0 0
\(793\) 10.7874 6.22812i 0.383073 0.221167i
\(794\) 0 0
\(795\) −2.44620 9.12933i −0.0867577 0.323784i
\(796\) 0 0
\(797\) −18.8328 18.8328i −0.667092 0.667092i 0.289949 0.957042i \(-0.406361\pi\)
−0.957042 + 0.289949i \(0.906361\pi\)
\(798\) 0 0
\(799\) 1.86021i 0.0658094i
\(800\) 0 0
\(801\) 17.9629 + 10.3709i 0.634688 + 0.366437i
\(802\) 0 0
\(803\) −12.9014 3.45692i −0.455280 0.121992i
\(804\) 0 0
\(805\) 5.56624 + 20.6549i 0.196184 + 0.727990i
\(806\) 0 0
\(807\) −9.47120 16.4046i −0.333402 0.577469i
\(808\) 0 0
\(809\) 17.1772 + 9.91725i 0.603918 + 0.348672i 0.770581 0.637342i \(-0.219966\pi\)
−0.166663 + 0.986014i \(0.553299\pi\)
\(810\) 0 0
\(811\) 3.89894 + 3.89894i 0.136910 + 0.136910i 0.772240 0.635330i \(-0.219136\pi\)
−0.635330 + 0.772240i \(0.719136\pi\)
\(812\) 0 0
\(813\) −8.24740 + 8.24740i −0.289249 + 0.289249i
\(814\) 0 0
\(815\) 3.56067 6.16726i 0.124725 0.216030i
\(816\) 0 0
\(817\) 14.6174 8.43938i 0.511400 0.295257i
\(818\) 0 0
\(819\) −11.5853 3.08646i −0.404823 0.107850i
\(820\) 0 0
\(821\) 5.00859 18.6923i 0.174801 0.652366i −0.821784 0.569798i \(-0.807021\pi\)
0.996585 0.0825677i \(-0.0263121\pi\)
\(822\) 0 0
\(823\) −20.0886 + 34.7944i −0.700243 + 1.21286i 0.268138 + 0.963381i \(0.413592\pi\)
−0.968381 + 0.249476i \(0.919742\pi\)
\(824\) 0 0
\(825\) −37.7789 −1.31529
\(826\) 0 0
\(827\) 11.2802 11.2802i 0.392250 0.392250i −0.483239 0.875489i \(-0.660540\pi\)
0.875489 + 0.483239i \(0.160540\pi\)
\(828\) 0 0
\(829\) 40.7143 10.9094i 1.41407 0.378898i 0.530691 0.847565i \(-0.321933\pi\)
0.883375 + 0.468668i \(0.155266\pi\)
\(830\) 0 0
\(831\) −7.27069 12.5932i −0.252217 0.436853i
\(832\) 0 0
\(833\) 6.93569 + 3.97783i 0.240307 + 0.137824i
\(834\) 0 0
\(835\) −22.0727 + 82.3765i −0.763858 + 2.85076i
\(836\) 0 0
\(837\) 17.0059 4.55671i 0.587809 0.157503i
\(838\) 0 0
\(839\) 27.4328i 0.947087i 0.880771 + 0.473543i \(0.157025\pi\)
−0.880771 + 0.473543i \(0.842975\pi\)
\(840\) 0 0
\(841\) 27.2308i 0.938992i
\(842\) 0 0
\(843\) −24.4112 + 6.54097i −0.840767 + 0.225283i
\(844\) 0 0
\(845\) 9.56445 35.6950i 0.329027 1.22795i
\(846\) 0 0
\(847\) −21.4527 + 12.4268i −0.737125 + 0.426991i
\(848\) 0 0
\(849\) 1.29982 + 2.25136i 0.0446098 + 0.0772665i
\(850\) 0 0
\(851\) 6.14234 1.64584i 0.210557 0.0564185i
\(852\) 0 0
\(853\) 8.95019 8.95019i 0.306449 0.306449i −0.537082 0.843530i \(-0.680473\pi\)
0.843530 + 0.537082i \(0.180473\pi\)
\(854\) 0 0
\(855\) −29.2826 −1.00144
\(856\) 0 0
\(857\) −26.8241 + 46.4607i −0.916294 + 1.58707i −0.111299 + 0.993787i \(0.535501\pi\)
−0.804995 + 0.593281i \(0.797832\pi\)
\(858\) 0 0
\(859\) −3.41188 + 12.7333i −0.116412 + 0.434455i −0.999389 0.0349617i \(-0.988869\pi\)
0.882977 + 0.469417i \(0.155536\pi\)
\(860\) 0 0
\(861\) 4.40130 + 16.3321i 0.149996 + 0.556596i
\(862\) 0 0
\(863\) −6.64111 + 3.83425i −0.226066 + 0.130519i −0.608756 0.793358i \(-0.708331\pi\)
0.382690 + 0.923877i \(0.374998\pi\)
\(864\) 0 0
\(865\) 17.3469 30.0457i 0.589812 1.02158i
\(866\) 0 0
\(867\) −8.77341 + 8.77341i −0.297961 + 0.297961i
\(868\) 0 0
\(869\) 3.91744 + 3.91744i 0.132890 + 0.132890i
\(870\) 0 0
\(871\) −1.05415 0.608615i −0.0357186 0.0206221i
\(872\) 0 0
\(873\) −10.0106 17.3388i −0.338807 0.586830i
\(874\) 0 0
\(875\) 41.3387 + 41.2203i 1.39750 + 1.39350i
\(876\) 0 0
\(877\) −14.8501 3.97908i −0.501453 0.134364i −0.000778781 1.00000i \(-0.500248\pi\)
−0.500674 + 0.865636i \(0.666915\pi\)
\(878\) 0 0
\(879\) 6.76038 + 3.90311i 0.228022 + 0.131649i
\(880\) 0 0
\(881\) 21.5605i 0.726392i −0.931713 0.363196i \(-0.881686\pi\)
0.931713 0.363196i \(-0.118314\pi\)
\(882\) 0 0
\(883\) 3.61325 + 3.61325i 0.121596 + 0.121596i 0.765286 0.643690i \(-0.222598\pi\)
−0.643690 + 0.765286i \(0.722598\pi\)
\(884\) 0 0
\(885\) −5.83228 21.7664i −0.196050 0.731668i
\(886\) 0 0
\(887\) 31.1537 17.9866i 1.04604 0.603930i 0.124500 0.992220i \(-0.460267\pi\)
0.921537 + 0.388290i \(0.126934\pi\)
\(888\) 0 0
\(889\) 0.0454076 + 31.6450i 0.00152292 + 1.06134i
\(890\) 0 0
\(891\) −16.4193 4.39954i −0.550067 0.147390i
\(892\) 0 0
\(893\) 1.31626 + 4.91235i 0.0440470 + 0.164386i
\(894\) 0 0
\(895\) −6.89640 −0.230521
\(896\) 0 0
\(897\) −3.08871 −0.103129
\(898\) 0 0
\(899\) −8.04158 30.0116i −0.268202 1.00094i
\(900\) 0 0
\(901\) 3.34094 + 0.895202i 0.111303 + 0.0298235i
\(902\) 0 0
\(903\) 9.79857 + 5.63847i 0.326076 + 0.187637i
\(904\) 0 0
\(905\) −25.6067 + 14.7840i −0.851194 + 0.491437i
\(906\) 0 0
\(907\) 4.95935 + 18.5085i 0.164672 + 0.614566i 0.998082 + 0.0619098i \(0.0197191\pi\)
−0.833409 + 0.552656i \(0.813614\pi\)
\(908\) 0 0
\(909\) 24.7454 + 24.7454i 0.820752 + 0.820752i
\(910\) 0 0
\(911\) 16.9566i 0.561797i −0.959737 0.280899i \(-0.909368\pi\)
0.959737 0.280899i \(-0.0906325\pi\)
\(912\) 0 0
\(913\) 12.7088 + 7.33743i 0.420600 + 0.242833i
\(914\) 0 0
\(915\) 19.6823 + 5.27386i 0.650677 + 0.174348i
\(916\) 0 0
\(917\) −14.1945 3.78158i −0.468743 0.124879i
\(918\) 0 0
\(919\) −19.0403 32.9788i −0.628083 1.08787i −0.987936 0.154863i \(-0.950507\pi\)
0.359853 0.933009i \(-0.382827\pi\)
\(920\) 0 0
\(921\) 22.6444 + 13.0737i 0.746158 + 0.430794i
\(922\) 0 0
\(923\) −3.24442 3.24442i −0.106791 0.106791i
\(924\) 0 0
\(925\) 23.2496 23.2496i 0.764443 0.764443i
\(926\) 0 0
\(927\) −9.42543 + 16.3253i −0.309572 + 0.536194i
\(928\) 0 0
\(929\) −3.92408 + 2.26557i −0.128745 + 0.0743309i −0.562989 0.826464i \(-0.690349\pi\)
0.434244 + 0.900795i \(0.357015\pi\)
\(930\) 0 0
\(931\) −21.1302 5.59686i −0.692513 0.183430i
\(932\) 0 0
\(933\) −5.15311 + 19.2317i −0.168705 + 0.629617i
\(934\) 0 0
\(935\) 10.1770 17.6270i 0.332822 0.576464i
\(936\) 0 0
\(937\) −37.0969 −1.21190 −0.605952 0.795501i \(-0.707208\pi\)
−0.605952 + 0.795501i \(0.707208\pi\)
\(938\) 0 0
\(939\) 4.72453 4.72453i 0.154179 0.154179i
\(940\) 0 0
\(941\) −2.17799 + 0.583589i −0.0710003 + 0.0190245i −0.294144 0.955761i \(-0.595035\pi\)
0.223144 + 0.974785i \(0.428368\pi\)
\(942\) 0 0
\(943\) −8.28076 14.3427i −0.269659 0.467062i
\(944\) 0 0
\(945\) −22.2483 38.4077i −0.723736 1.24940i
\(946\) 0 0
\(947\) −4.22082 + 15.7523i −0.137158 + 0.511882i 0.862821 + 0.505509i \(0.168695\pi\)
−0.999980 + 0.00637300i \(0.997971\pi\)
\(948\) 0 0
\(949\) −5.45387 + 1.46136i −0.177040 + 0.0474378i
\(950\) 0 0
\(951\) 15.1288i 0.490585i
\(952\) 0 0
\(953\) 27.9419i 0.905126i −0.891733 0.452563i \(-0.850510\pi\)
0.891733 0.452563i \(-0.149490\pi\)
\(954\) 0 0
\(955\) 103.736 27.7960i 3.35682 0.899456i
\(956\) 0 0
\(957\) 6.92462 25.8430i 0.223841 0.835387i
\(958\) 0 0
\(959\) −32.8860 18.9239i −1.06194 0.611084i
\(960\) 0 0
\(961\) 6.91607 + 11.9790i 0.223099 + 0.386419i
\(962\) 0 0
\(963\) 21.2988 5.70700i 0.686345 0.183906i
\(964\) 0 0
\(965\) −16.0901 + 16.0901i −0.517960 + 0.517960i
\(966\) 0 0
\(967\) 47.4478 1.52582 0.762910 0.646505i \(-0.223770\pi\)
0.762910 + 0.646505i \(0.223770\pi\)
\(968\) 0 0
\(969\) −1.40979 + 2.44183i −0.0452890 + 0.0784428i
\(970\) 0 0
\(971\) −8.47546 + 31.6308i −0.271990 + 1.01508i 0.685841 + 0.727751i \(0.259434\pi\)
−0.957832 + 0.287330i \(0.907232\pi\)
\(972\) 0 0
\(973\) 38.7066 + 38.5957i 1.24088 + 1.23732i
\(974\) 0 0
\(975\) −13.8308 + 7.98523i −0.442941 + 0.255732i
\(976\) 0 0
\(977\) 15.9234 27.5802i 0.509435 0.882368i −0.490505 0.871438i \(-0.663188\pi\)
0.999940 0.0109296i \(-0.00347908\pi\)
\(978\) 0 0
\(979\) 27.8711 27.8711i 0.890763 0.890763i
\(980\) 0 0
\(981\) −1.47742 1.47742i −0.0471704 0.0471704i
\(982\) 0 0
\(983\) −37.4979 21.6494i −1.19600 0.690509i −0.236337 0.971671i \(-0.575947\pi\)
−0.959660 + 0.281162i \(0.909280\pi\)
\(984\) 0 0
\(985\) −35.6626 61.7695i −1.13631 1.96814i
\(986\) 0 0
\(987\) −2.40513 + 2.41204i −0.0765562 + 0.0767762i
\(988\) 0 0
\(989\) −10.6918 2.86486i −0.339980 0.0910973i
\(990\) 0 0
\(991\) 16.4220 + 9.48127i 0.521663 + 0.301183i 0.737615 0.675222i \(-0.235952\pi\)
−0.215952 + 0.976404i \(0.569285\pi\)
\(992\) 0 0
\(993\) 11.4262i 0.362601i
\(994\) 0 0
\(995\) 15.3755 + 15.3755i 0.487436 + 0.487436i
\(996\) 0 0
\(997\) −7.83295 29.2330i −0.248072 0.925818i −0.971814 0.235747i \(-0.924246\pi\)
0.723742 0.690070i \(-0.242420\pi\)
\(998\) 0 0
\(999\) −11.4267 + 6.59723i −0.361526 + 0.208727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.a.31.7 56
4.3 odd 2 896.2.z.b.31.8 56
7.5 odd 6 inner 896.2.z.a.159.7 56
8.3 odd 2 112.2.v.a.59.5 yes 56
8.5 even 2 448.2.z.a.143.8 56
16.3 odd 4 inner 896.2.z.a.479.7 56
16.5 even 4 112.2.v.a.3.6 56
16.11 odd 4 448.2.z.a.367.8 56
16.13 even 4 896.2.z.b.479.8 56
28.19 even 6 896.2.z.b.159.8 56
56.3 even 6 784.2.j.a.587.28 56
56.5 odd 6 448.2.z.a.271.8 56
56.11 odd 6 784.2.j.a.587.27 56
56.19 even 6 112.2.v.a.75.6 yes 56
56.27 even 2 784.2.w.f.619.5 56
56.51 odd 6 784.2.w.f.411.6 56
112.5 odd 12 112.2.v.a.19.5 yes 56
112.19 even 12 inner 896.2.z.a.607.7 56
112.37 even 12 784.2.w.f.19.5 56
112.53 even 12 784.2.j.a.195.28 56
112.61 odd 12 896.2.z.b.607.8 56
112.69 odd 4 784.2.w.f.227.6 56
112.75 even 12 448.2.z.a.47.8 56
112.101 odd 12 784.2.j.a.195.27 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.6 56 16.5 even 4
112.2.v.a.19.5 yes 56 112.5 odd 12
112.2.v.a.59.5 yes 56 8.3 odd 2
112.2.v.a.75.6 yes 56 56.19 even 6
448.2.z.a.47.8 56 112.75 even 12
448.2.z.a.143.8 56 8.5 even 2
448.2.z.a.271.8 56 56.5 odd 6
448.2.z.a.367.8 56 16.11 odd 4
784.2.j.a.195.27 56 112.101 odd 12
784.2.j.a.195.28 56 112.53 even 12
784.2.j.a.587.27 56 56.11 odd 6
784.2.j.a.587.28 56 56.3 even 6
784.2.w.f.19.5 56 112.37 even 12
784.2.w.f.227.6 56 112.69 odd 4
784.2.w.f.411.6 56 56.51 odd 6
784.2.w.f.619.5 56 56.27 even 2
896.2.z.a.31.7 56 1.1 even 1 trivial
896.2.z.a.159.7 56 7.5 odd 6 inner
896.2.z.a.479.7 56 16.3 odd 4 inner
896.2.z.a.607.7 56 112.19 even 12 inner
896.2.z.b.31.8 56 4.3 odd 2
896.2.z.b.159.8 56 28.19 even 6
896.2.z.b.479.8 56 16.13 even 4
896.2.z.b.607.8 56 112.61 odd 12