Properties

Label 784.2.j.a.195.28
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.28
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40999 - 0.109187i) q^{2} +(0.558981 + 0.558981i) q^{3} +(1.97616 - 0.307905i) q^{4} +(-2.79182 - 2.79182i) q^{5} +(0.849192 + 0.727125i) q^{6} +(2.75275 - 0.649913i) q^{8} -2.37508i q^{9} +(-4.24128 - 3.63162i) q^{10} +(-3.19144 - 3.19144i) q^{11} +(1.27675 + 0.932521i) q^{12} +(-1.34913 + 1.34913i) q^{13} -3.12115i q^{15} +(3.81039 - 1.21694i) q^{16} -1.14220i q^{17} +(-0.259327 - 3.34885i) q^{18} +(-2.20808 - 2.20808i) q^{19} +(-6.37669 - 4.65746i) q^{20} +(-4.84836 - 4.15144i) q^{22} +2.04784 q^{23} +(1.90202 + 1.17544i) q^{24} +10.5885i q^{25} +(-1.75496 + 2.04957i) q^{26} +(3.00457 - 3.00457i) q^{27} +(5.30239 + 5.30239i) q^{29} +(-0.340788 - 4.40080i) q^{30} +4.14341 q^{31} +(5.23975 - 2.13191i) q^{32} -3.56790i q^{33} +(-0.124713 - 1.61050i) q^{34} +(-0.731298 - 4.69353i) q^{36} +(-2.19573 + 2.19573i) q^{37} +(-3.35446 - 2.87228i) q^{38} -1.50828 q^{39} +(-9.49962 - 5.87074i) q^{40} +8.08732 q^{41} +(-3.82205 - 3.82205i) q^{43} +(-7.28943 - 5.32412i) q^{44} +(-6.63080 + 6.63080i) q^{45} +(2.88743 - 0.223596i) q^{46} +1.62861 q^{47} +(2.81018 + 1.44969i) q^{48} +(1.15613 + 14.9298i) q^{50} +(0.638470 - 0.638470i) q^{51} +(-2.25069 + 3.08150i) q^{52} +(2.14124 - 2.14124i) q^{53} +(3.90836 - 4.56447i) q^{54} +17.8198i q^{55} -2.46854i q^{57} +(8.05528 + 6.89738i) q^{58} +(5.10520 - 5.10520i) q^{59} +(-0.961016 - 6.16788i) q^{60} +(-4.61639 + 4.61639i) q^{61} +(5.84218 - 0.452405i) q^{62} +(7.15523 - 3.57809i) q^{64} +7.53307 q^{65} +(-0.389567 - 5.03071i) q^{66} +(-0.451116 + 0.451116i) q^{67} +(-0.351690 - 2.25718i) q^{68} +(1.14470 + 1.14470i) q^{69} -2.40482 q^{71} +(-1.54360 - 6.53800i) q^{72} +2.95932 q^{73} +(-2.85622 + 3.33571i) q^{74} +(-5.91879 + 5.91879i) q^{75} +(-5.04338 - 3.68363i) q^{76} +(-2.12666 + 0.164684i) q^{78} -1.22748i q^{79} +(-14.0354 - 7.24046i) q^{80} -3.76625 q^{81} +(11.4031 - 0.883027i) q^{82} +(2.29910 + 2.29910i) q^{83} +(-3.18883 + 3.18883i) q^{85} +(-5.80638 - 4.97175i) q^{86} +5.92787i q^{87} +(-10.8594 - 6.71106i) q^{88} +8.73308 q^{89} +(-8.62539 + 10.0734i) q^{90} +(4.04685 - 0.630538i) q^{92} +(2.31609 + 2.31609i) q^{93} +(2.29633 - 0.177822i) q^{94} +12.3291i q^{95} +(4.12062 + 1.73722i) q^{96} -8.42967i q^{97} +(-7.57992 + 7.57992i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40999 0.109187i 0.997015 0.0772066i
\(3\) 0.558981 + 0.558981i 0.322728 + 0.322728i 0.849813 0.527085i \(-0.176715\pi\)
−0.527085 + 0.849813i \(0.676715\pi\)
\(4\) 1.97616 0.307905i 0.988078 0.153952i
\(5\) −2.79182 2.79182i −1.24854 1.24854i −0.956365 0.292176i \(-0.905621\pi\)
−0.292176 0.956365i \(-0.594379\pi\)
\(6\) 0.849192 + 0.727125i 0.346681 + 0.296848i
\(7\) 0 0
\(8\) 2.75275 0.649913i 0.973243 0.229779i
\(9\) 2.37508i 0.791694i
\(10\) −4.24128 3.63162i −1.34121 1.14842i
\(11\) −3.19144 3.19144i −0.962254 0.962254i 0.0370591 0.999313i \(-0.488201\pi\)
−0.999313 + 0.0370591i \(0.988201\pi\)
\(12\) 1.27675 + 0.932521i 0.368565 + 0.269196i
\(13\) −1.34913 + 1.34913i −0.374182 + 0.374182i −0.868998 0.494816i \(-0.835236\pi\)
0.494816 + 0.868998i \(0.335236\pi\)
\(14\) 0 0
\(15\) 3.12115i 0.805877i
\(16\) 3.81039 1.21694i 0.952597 0.304234i
\(17\) 1.14220i 0.277025i −0.990361 0.138513i \(-0.955768\pi\)
0.990361 0.138513i \(-0.0442322\pi\)
\(18\) −0.259327 3.34885i −0.0611240 0.789331i
\(19\) −2.20808 2.20808i −0.506567 0.506567i 0.406904 0.913471i \(-0.366608\pi\)
−0.913471 + 0.406904i \(0.866608\pi\)
\(20\) −6.37669 4.65746i −1.42587 1.04144i
\(21\) 0 0
\(22\) −4.84836 4.15144i −1.03367 0.885089i
\(23\) 2.04784 0.427003 0.213502 0.976943i \(-0.431513\pi\)
0.213502 + 0.976943i \(0.431513\pi\)
\(24\) 1.90202 + 1.17544i 0.388248 + 0.239936i
\(25\) 10.5885i 2.11771i
\(26\) −1.75496 + 2.04957i −0.344176 + 0.401954i
\(27\) 3.00457 3.00457i 0.578229 0.578229i
\(28\) 0 0
\(29\) 5.30239 + 5.30239i 0.984630 + 0.984630i 0.999884 0.0152539i \(-0.00485565\pi\)
−0.0152539 + 0.999884i \(0.504856\pi\)
\(30\) −0.340788 4.40080i −0.0622190 0.803472i
\(31\) 4.14341 0.744179 0.372089 0.928197i \(-0.378641\pi\)
0.372089 + 0.928197i \(0.378641\pi\)
\(32\) 5.23975 2.13191i 0.926265 0.376872i
\(33\) 3.56790i 0.621092i
\(34\) −0.124713 1.61050i −0.0213882 0.276198i
\(35\) 0 0
\(36\) −0.731298 4.69353i −0.121883 0.782255i
\(37\) −2.19573 + 2.19573i −0.360977 + 0.360977i −0.864172 0.503196i \(-0.832157\pi\)
0.503196 + 0.864172i \(0.332157\pi\)
\(38\) −3.35446 2.87228i −0.544165 0.465945i
\(39\) −1.50828 −0.241518
\(40\) −9.49962 5.87074i −1.50202 0.928245i
\(41\) 8.08732 1.26303 0.631514 0.775365i \(-0.282434\pi\)
0.631514 + 0.775365i \(0.282434\pi\)
\(42\) 0 0
\(43\) −3.82205 3.82205i −0.582858 0.582858i 0.352830 0.935688i \(-0.385220\pi\)
−0.935688 + 0.352830i \(0.885220\pi\)
\(44\) −7.28943 5.32412i −1.09892 0.802641i
\(45\) −6.63080 + 6.63080i −0.988462 + 0.988462i
\(46\) 2.88743 0.223596i 0.425729 0.0329675i
\(47\) 1.62861 0.237557 0.118779 0.992921i \(-0.462102\pi\)
0.118779 + 0.992921i \(0.462102\pi\)
\(48\) 2.81018 + 1.44969i 0.405614 + 0.209245i
\(49\) 0 0
\(50\) 1.15613 + 14.9298i 0.163501 + 2.11139i
\(51\) 0.638470 0.638470i 0.0894037 0.0894037i
\(52\) −2.25069 + 3.08150i −0.312115 + 0.427327i
\(53\) 2.14124 2.14124i 0.294122 0.294122i −0.544584 0.838706i \(-0.683312\pi\)
0.838706 + 0.544584i \(0.183312\pi\)
\(54\) 3.90836 4.56447i 0.531860 0.621146i
\(55\) 17.8198i 2.40283i
\(56\) 0 0
\(57\) 2.46854i 0.326966i
\(58\) 8.05528 + 6.89738i 1.05771 + 0.905671i
\(59\) 5.10520 5.10520i 0.664640 0.664640i −0.291830 0.956470i \(-0.594264\pi\)
0.956470 + 0.291830i \(0.0942642\pi\)
\(60\) −0.961016 6.16788i −0.124067 0.796270i
\(61\) −4.61639 + 4.61639i −0.591068 + 0.591068i −0.937920 0.346852i \(-0.887251\pi\)
0.346852 + 0.937920i \(0.387251\pi\)
\(62\) 5.84218 0.452405i 0.741958 0.0574555i
\(63\) 0 0
\(64\) 7.15523 3.57809i 0.894403 0.447261i
\(65\) 7.53307 0.934363
\(66\) −0.389567 5.03071i −0.0479524 0.619238i
\(67\) −0.451116 + 0.451116i −0.0551126 + 0.0551126i −0.734126 0.679013i \(-0.762408\pi\)
0.679013 + 0.734126i \(0.262408\pi\)
\(68\) −0.351690 2.25718i −0.0426487 0.273723i
\(69\) 1.14470 + 1.14470i 0.137806 + 0.137806i
\(70\) 0 0
\(71\) −2.40482 −0.285400 −0.142700 0.989766i \(-0.545578\pi\)
−0.142700 + 0.989766i \(0.545578\pi\)
\(72\) −1.54360 6.53800i −0.181915 0.770510i
\(73\) 2.95932 0.346362 0.173181 0.984890i \(-0.444595\pi\)
0.173181 + 0.984890i \(0.444595\pi\)
\(74\) −2.85622 + 3.33571i −0.332029 + 0.387769i
\(75\) −5.91879 + 5.91879i −0.683443 + 0.683443i
\(76\) −5.04338 3.68363i −0.578515 0.422541i
\(77\) 0 0
\(78\) −2.12666 + 0.164684i −0.240797 + 0.0186468i
\(79\) 1.22748i 0.138103i −0.997613 0.0690514i \(-0.978003\pi\)
0.997613 0.0690514i \(-0.0219972\pi\)
\(80\) −14.0354 7.24046i −1.56920 0.809508i
\(81\) −3.76625 −0.418473
\(82\) 11.4031 0.883027i 1.25926 0.0975141i
\(83\) 2.29910 + 2.29910i 0.252359 + 0.252359i 0.821937 0.569578i \(-0.192893\pi\)
−0.569578 + 0.821937i \(0.692893\pi\)
\(84\) 0 0
\(85\) −3.18883 + 3.18883i −0.345877 + 0.345877i
\(86\) −5.80638 4.97175i −0.626119 0.536118i
\(87\) 5.92787i 0.635534i
\(88\) −10.8594 6.71106i −1.15761 0.715401i
\(89\) 8.73308 0.925705 0.462852 0.886435i \(-0.346826\pi\)
0.462852 + 0.886435i \(0.346826\pi\)
\(90\) −8.62539 + 10.0734i −0.909196 + 1.06183i
\(91\) 0 0
\(92\) 4.04685 0.630538i 0.421913 0.0657381i
\(93\) 2.31609 + 2.31609i 0.240167 + 0.240167i
\(94\) 2.29633 0.177822i 0.236848 0.0183410i
\(95\) 12.3291i 1.26494i
\(96\) 4.12062 + 1.73722i 0.420559 + 0.177304i
\(97\) 8.42967i 0.855903i −0.903802 0.427952i \(-0.859235\pi\)
0.903802 0.427952i \(-0.140765\pi\)
\(98\) 0 0
\(99\) −7.57992 + 7.57992i −0.761810 + 0.761810i
\(100\) 3.26026 + 20.9246i 0.326026 + 2.09246i
\(101\) 10.4187 + 10.4187i 1.03670 + 1.03670i 0.999300 + 0.0374034i \(0.0119086\pi\)
0.0374034 + 0.999300i \(0.488091\pi\)
\(102\) 0.830526 0.969951i 0.0822343 0.0960394i
\(103\) 7.93693i 0.782049i 0.920380 + 0.391024i \(0.127879\pi\)
−0.920380 + 0.391024i \(0.872121\pi\)
\(104\) −2.83700 + 4.59064i −0.278191 + 0.450149i
\(105\) 0 0
\(106\) 2.78534 3.25293i 0.270536 0.315953i
\(107\) −6.56475 6.56475i −0.634639 0.634639i 0.314589 0.949228i \(-0.398133\pi\)
−0.949228 + 0.314589i \(0.898133\pi\)
\(108\) 5.01237 6.86261i 0.482316 0.660355i
\(109\) 0.622050 + 0.622050i 0.0595816 + 0.0595816i 0.736270 0.676688i \(-0.236585\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(110\) 1.94569 + 25.1258i 0.185514 + 2.39565i
\(111\) −2.45475 −0.232994
\(112\) 0 0
\(113\) 1.91230 0.179894 0.0899469 0.995947i \(-0.471330\pi\)
0.0899469 + 0.995947i \(0.471330\pi\)
\(114\) −0.269532 3.48063i −0.0252440 0.325990i
\(115\) −5.71719 5.71719i −0.533131 0.533131i
\(116\) 12.1110 + 8.84573i 1.12448 + 0.821305i
\(117\) 3.20430 + 3.20430i 0.296238 + 0.296238i
\(118\) 6.64087 7.75571i 0.611342 0.713971i
\(119\) 0 0
\(120\) −2.02847 8.59173i −0.185174 0.784314i
\(121\) 9.37052i 0.851865i
\(122\) −6.00503 + 7.01313i −0.543670 + 0.634939i
\(123\) 4.52066 + 4.52066i 0.407614 + 0.407614i
\(124\) 8.18803 1.27578i 0.735307 0.114568i
\(125\) 15.6022 15.6022i 1.39550 1.39550i
\(126\) 0 0
\(127\) 11.9607i 1.06134i 0.847578 + 0.530671i \(0.178060\pi\)
−0.847578 + 0.530671i \(0.821940\pi\)
\(128\) 9.69813 5.82634i 0.857202 0.514980i
\(129\) 4.27291i 0.376209i
\(130\) 10.6216 0.822511i 0.931574 0.0721390i
\(131\) −3.92596 3.92596i −0.343012 0.343012i 0.514486 0.857499i \(-0.327983\pi\)
−0.857499 + 0.514486i \(0.827983\pi\)
\(132\) −1.09857 7.05073i −0.0956185 0.613687i
\(133\) 0 0
\(134\) −0.586814 + 0.685325i −0.0506930 + 0.0592031i
\(135\) −16.7764 −1.44389
\(136\) −0.742333 3.14420i −0.0636546 0.269613i
\(137\) 14.3408i 1.22521i −0.790388 0.612607i \(-0.790121\pi\)
0.790388 0.612607i \(-0.209879\pi\)
\(138\) 1.73901 + 1.48903i 0.148034 + 0.126755i
\(139\) −14.6088 + 14.6088i −1.23910 + 1.23910i −0.278731 + 0.960369i \(0.589914\pi\)
−0.960369 + 0.278731i \(0.910086\pi\)
\(140\) 0 0
\(141\) 0.910361 + 0.910361i 0.0766663 + 0.0766663i
\(142\) −3.39078 + 0.262574i −0.284548 + 0.0220347i
\(143\) 8.61134 0.720116
\(144\) −2.89032 9.04998i −0.240860 0.754165i
\(145\) 29.6067i 2.45870i
\(146\) 4.17262 0.323118i 0.345328 0.0267414i
\(147\) 0 0
\(148\) −3.66304 + 5.01519i −0.301100 + 0.412246i
\(149\) −8.33531 + 8.33531i −0.682855 + 0.682855i −0.960643 0.277788i \(-0.910399\pi\)
0.277788 + 0.960643i \(0.410399\pi\)
\(150\) −7.69919 + 8.99170i −0.628636 + 0.734169i
\(151\) −13.7076 −1.11551 −0.557755 0.830005i \(-0.688337\pi\)
−0.557755 + 0.830005i \(0.688337\pi\)
\(152\) −7.51333 4.64321i −0.609411 0.376614i
\(153\) −2.71283 −0.219319
\(154\) 0 0
\(155\) −11.5677 11.5677i −0.929138 0.929138i
\(156\) −2.98059 + 0.464406i −0.238638 + 0.0371822i
\(157\) 1.47356 1.47356i 0.117603 0.117603i −0.645856 0.763459i \(-0.723500\pi\)
0.763459 + 0.645856i \(0.223500\pi\)
\(158\) −0.134025 1.73074i −0.0106624 0.137691i
\(159\) 2.39383 0.189843
\(160\) −20.5804 8.67652i −1.62702 0.685939i
\(161\) 0 0
\(162\) −5.31039 + 0.411225i −0.417224 + 0.0323089i
\(163\) 1.27539 1.27539i 0.0998965 0.0998965i −0.655392 0.755289i \(-0.727497\pi\)
0.755289 + 0.655392i \(0.227497\pi\)
\(164\) 15.9818 2.49012i 1.24797 0.194446i
\(165\) −9.96094 + 9.96094i −0.775458 + 0.775458i
\(166\) 3.49274 + 2.99068i 0.271090 + 0.232122i
\(167\) 21.6002i 1.67147i −0.549132 0.835735i \(-0.685042\pi\)
0.549132 0.835735i \(-0.314958\pi\)
\(168\) 0 0
\(169\) 9.35968i 0.719976i
\(170\) −4.14805 + 4.84441i −0.318141 + 0.371549i
\(171\) −5.24436 + 5.24436i −0.401046 + 0.401046i
\(172\) −8.72981 6.37615i −0.665642 0.486177i
\(173\) 6.21347 6.21347i 0.472401 0.472401i −0.430290 0.902691i \(-0.641589\pi\)
0.902691 + 0.430290i \(0.141589\pi\)
\(174\) 0.647244 + 8.35825i 0.0490674 + 0.633637i
\(175\) 0 0
\(176\) −16.0444 8.27684i −1.20939 0.623890i
\(177\) 5.70741 0.428995
\(178\) 12.3136 0.953535i 0.922942 0.0714705i
\(179\) 1.23511 1.23511i 0.0923162 0.0923162i −0.659441 0.751757i \(-0.729207\pi\)
0.751757 + 0.659441i \(0.229207\pi\)
\(180\) −11.0619 + 15.1452i −0.824502 + 1.12885i
\(181\) −5.29547 5.29547i −0.393609 0.393609i 0.482362 0.875972i \(-0.339779\pi\)
−0.875972 + 0.482362i \(0.839779\pi\)
\(182\) 0 0
\(183\) −5.16095 −0.381508
\(184\) 5.63718 1.33092i 0.415578 0.0981164i
\(185\) 12.2602 0.901388
\(186\) 3.51855 + 3.01278i 0.257993 + 0.220908i
\(187\) −3.64527 + 3.64527i −0.266569 + 0.266569i
\(188\) 3.21839 0.501456i 0.234725 0.0365725i
\(189\) 0 0
\(190\) 1.34617 + 17.3839i 0.0976617 + 1.26116i
\(191\) 27.2009i 1.96819i 0.177653 + 0.984093i \(0.443150\pi\)
−0.177653 + 0.984093i \(0.556850\pi\)
\(192\) 5.99972 + 1.99955i 0.432992 + 0.144305i
\(193\) 5.76331 0.414852 0.207426 0.978251i \(-0.433491\pi\)
0.207426 + 0.978251i \(0.433491\pi\)
\(194\) −0.920407 11.8858i −0.0660814 0.853349i
\(195\) 4.21084 + 4.21084i 0.301545 + 0.301545i
\(196\) 0 0
\(197\) 12.7740 12.7740i 0.910107 0.910107i −0.0861731 0.996280i \(-0.527464\pi\)
0.996280 + 0.0861731i \(0.0274638\pi\)
\(198\) −9.86000 + 11.5153i −0.700720 + 0.818353i
\(199\) 5.50734i 0.390405i 0.980763 + 0.195202i \(0.0625364\pi\)
−0.980763 + 0.195202i \(0.937464\pi\)
\(200\) 6.88163 + 29.1476i 0.486604 + 2.06104i
\(201\) −0.504330 −0.0355727
\(202\) 15.8279 + 13.5528i 1.11365 + 0.953569i
\(203\) 0 0
\(204\) 1.06513 1.45831i 0.0745740 0.102102i
\(205\) −22.5784 22.5784i −1.57694 1.57694i
\(206\) 0.866606 + 11.1910i 0.0603793 + 0.779714i
\(207\) 4.86378i 0.338056i
\(208\) −3.49891 + 6.78253i −0.242606 + 0.470284i
\(209\) 14.0939i 0.974893i
\(210\) 0 0
\(211\) 19.3846 19.3846i 1.33449 1.33449i 0.433192 0.901302i \(-0.357387\pi\)
0.901302 0.433192i \(-0.142613\pi\)
\(212\) 3.57213 4.89073i 0.245335 0.335897i
\(213\) −1.34425 1.34425i −0.0921064 0.0921064i
\(214\) −9.97303 8.53947i −0.681743 0.583746i
\(215\) 21.3410i 1.45544i
\(216\) 6.31810 10.2235i 0.429892 0.695622i
\(217\) 0 0
\(218\) 0.945005 + 0.809166i 0.0640038 + 0.0548036i
\(219\) 1.65420 + 1.65420i 0.111781 + 0.111781i
\(220\) 5.48681 + 35.2148i 0.369921 + 2.37418i
\(221\) 1.54099 + 1.54099i 0.103658 + 0.103658i
\(222\) −3.46117 + 0.268025i −0.232299 + 0.0179887i
\(223\) −22.1379 −1.48247 −0.741233 0.671248i \(-0.765759\pi\)
−0.741233 + 0.671248i \(0.765759\pi\)
\(224\) 0 0
\(225\) 25.1486 1.67658
\(226\) 2.69632 0.208797i 0.179357 0.0138890i
\(227\) −6.08820 6.08820i −0.404088 0.404088i 0.475583 0.879671i \(-0.342237\pi\)
−0.879671 + 0.475583i \(0.842237\pi\)
\(228\) −0.760075 4.87823i −0.0503372 0.323068i
\(229\) 17.8985 + 17.8985i 1.18277 + 1.18277i 0.979025 + 0.203741i \(0.0653101\pi\)
0.203741 + 0.979025i \(0.434690\pi\)
\(230\) −8.68544 7.43696i −0.572701 0.490379i
\(231\) 0 0
\(232\) 18.0422 + 11.1501i 1.18453 + 0.732037i
\(233\) 15.5696i 1.02000i 0.860174 + 0.510000i \(0.170355\pi\)
−0.860174 + 0.510000i \(0.829645\pi\)
\(234\) 4.86790 + 4.16817i 0.318225 + 0.272482i
\(235\) −4.54679 4.54679i −0.296600 0.296600i
\(236\) 8.51676 11.6606i 0.554394 0.759039i
\(237\) 0.686140 0.686140i 0.0445696 0.0445696i
\(238\) 0 0
\(239\) 11.6230i 0.751832i −0.926654 0.375916i \(-0.877328\pi\)
0.926654 0.375916i \(-0.122672\pi\)
\(240\) −3.79824 11.8928i −0.245175 0.767676i
\(241\) 2.81314i 0.181210i −0.995887 0.0906051i \(-0.971120\pi\)
0.995887 0.0906051i \(-0.0288801\pi\)
\(242\) 1.02314 + 13.2124i 0.0657696 + 0.849323i
\(243\) −11.1190 11.1190i −0.713282 0.713282i
\(244\) −7.70131 + 10.5441i −0.493026 + 0.675018i
\(245\) 0 0
\(246\) 6.86769 + 5.88050i 0.437868 + 0.374927i
\(247\) 5.95797 0.379097
\(248\) 11.4058 2.69286i 0.724267 0.170997i
\(249\) 2.57031i 0.162886i
\(250\) 20.2954 23.7025i 1.28360 1.49908i
\(251\) 1.99507 1.99507i 0.125928 0.125928i −0.641334 0.767262i \(-0.721619\pi\)
0.767262 + 0.641334i \(0.221619\pi\)
\(252\) 0 0
\(253\) −6.53554 6.53554i −0.410886 0.410886i
\(254\) 1.30595 + 16.8645i 0.0819426 + 1.05817i
\(255\) −3.56499 −0.223248
\(256\) 13.0381 9.27399i 0.814884 0.579625i
\(257\) 14.9591i 0.933123i 0.884489 + 0.466561i \(0.154507\pi\)
−0.884489 + 0.466561i \(0.845493\pi\)
\(258\) −0.466544 6.02477i −0.0290458 0.375086i
\(259\) 0 0
\(260\) 14.8865 2.31947i 0.923224 0.143847i
\(261\) 12.5936 12.5936i 0.779525 0.779525i
\(262\) −5.96423 5.10691i −0.368471 0.315506i
\(263\) 14.7882 0.911878 0.455939 0.890011i \(-0.349303\pi\)
0.455939 + 0.890011i \(0.349303\pi\)
\(264\) −2.31882 9.82153i −0.142714 0.604473i
\(265\) −11.9559 −0.734447
\(266\) 0 0
\(267\) 4.88162 + 4.88162i 0.298750 + 0.298750i
\(268\) −0.752575 + 1.03038i −0.0459708 + 0.0629402i
\(269\) −16.9437 + 16.9437i −1.03308 + 1.03308i −0.0336411 + 0.999434i \(0.510710\pi\)
−0.999434 + 0.0336411i \(0.989290\pi\)
\(270\) −23.6546 + 1.83176i −1.43958 + 0.111477i
\(271\) 14.7544 0.896263 0.448131 0.893968i \(-0.352090\pi\)
0.448131 + 0.893968i \(0.352090\pi\)
\(272\) −1.38999 4.35224i −0.0842805 0.263894i
\(273\) 0 0
\(274\) −1.56582 20.2204i −0.0945946 1.22156i
\(275\) 33.7926 33.7926i 2.03777 2.03777i
\(276\) 2.61457 + 1.90965i 0.157378 + 0.114947i
\(277\) 13.0070 13.0070i 0.781518 0.781518i −0.198569 0.980087i \(-0.563629\pi\)
0.980087 + 0.198569i \(0.0636294\pi\)
\(278\) −19.0032 + 22.1933i −1.13973 + 1.33107i
\(279\) 9.84094i 0.589162i
\(280\) 0 0
\(281\) 31.9694i 1.90713i 0.301185 + 0.953566i \(0.402618\pi\)
−0.301185 + 0.953566i \(0.597382\pi\)
\(282\) 1.38300 + 1.18420i 0.0823566 + 0.0705183i
\(283\) −2.32535 + 2.32535i −0.138227 + 0.138227i −0.772835 0.634607i \(-0.781162\pi\)
0.634607 + 0.772835i \(0.281162\pi\)
\(284\) −4.75230 + 0.740455i −0.281997 + 0.0439379i
\(285\) −6.89173 + 6.89173i −0.408231 + 0.408231i
\(286\) 12.1419 0.940243i 0.717967 0.0555977i
\(287\) 0 0
\(288\) −5.06347 12.4448i −0.298368 0.733318i
\(289\) 15.6954 0.923257
\(290\) −3.23265 41.7452i −0.189828 2.45136i
\(291\) 4.71202 4.71202i 0.276224 0.276224i
\(292\) 5.84808 0.911187i 0.342233 0.0533232i
\(293\) −6.98254 6.98254i −0.407925 0.407925i 0.473090 0.881014i \(-0.343139\pi\)
−0.881014 + 0.473090i \(0.843139\pi\)
\(294\) 0 0
\(295\) −28.5056 −1.65966
\(296\) −4.61727 + 7.47134i −0.268373 + 0.434263i
\(297\) −19.1778 −1.11281
\(298\) −10.8426 + 12.6628i −0.628096 + 0.733538i
\(299\) −2.76280 + 2.76280i −0.159777 + 0.159777i
\(300\) −9.87403 + 13.5189i −0.570077 + 0.780513i
\(301\) 0 0
\(302\) −19.3276 + 1.49669i −1.11218 + 0.0861248i
\(303\) 11.6478i 0.669146i
\(304\) −11.1007 5.72654i −0.636669 0.328440i
\(305\) 25.7763 1.47595
\(306\) −3.82507 + 0.296205i −0.218665 + 0.0169329i
\(307\) 23.3885 + 23.3885i 1.33485 + 1.33485i 0.900967 + 0.433888i \(0.142859\pi\)
0.433888 + 0.900967i \(0.357141\pi\)
\(308\) 0 0
\(309\) −4.43659 + 4.43659i −0.252389 + 0.252389i
\(310\) −17.5734 15.0473i −0.998100 0.854629i
\(311\) 25.1861i 1.42817i −0.700057 0.714087i \(-0.746842\pi\)
0.700057 0.714087i \(-0.253158\pi\)
\(312\) −4.15191 + 0.980249i −0.235055 + 0.0554957i
\(313\) 8.45205 0.477738 0.238869 0.971052i \(-0.423223\pi\)
0.238869 + 0.971052i \(0.423223\pi\)
\(314\) 1.91681 2.23859i 0.108172 0.126331i
\(315\) 0 0
\(316\) −0.377948 2.42570i −0.0212612 0.136456i
\(317\) −13.5325 13.5325i −0.760060 0.760060i 0.216273 0.976333i \(-0.430610\pi\)
−0.976333 + 0.216273i \(0.930610\pi\)
\(318\) 3.37528 0.261374i 0.189276 0.0146571i
\(319\) 33.8445i 1.89493i
\(320\) −29.9655 9.98673i −1.67512 0.558275i
\(321\) 7.33914i 0.409631i
\(322\) 0 0
\(323\) −2.52207 + 2.52207i −0.140332 + 0.140332i
\(324\) −7.44271 + 1.15965i −0.413484 + 0.0644248i
\(325\) −14.2853 14.2853i −0.792408 0.792408i
\(326\) 1.65904 1.93755i 0.0918856 0.107311i
\(327\) 0.695428i 0.0384572i
\(328\) 22.2623 5.25606i 1.22923 0.290217i
\(329\) 0 0
\(330\) −12.9573 + 15.1325i −0.713273 + 0.833014i
\(331\) 10.2206 + 10.2206i 0.561775 + 0.561775i 0.929811 0.368036i \(-0.119970\pi\)
−0.368036 + 0.929811i \(0.619970\pi\)
\(332\) 5.25129 + 3.83548i 0.288202 + 0.210499i
\(333\) 5.21505 + 5.21505i 0.285783 + 0.285783i
\(334\) −2.35845 30.4561i −0.129049 1.66648i
\(335\) 2.51887 0.137621
\(336\) 0 0
\(337\) −13.7159 −0.747152 −0.373576 0.927600i \(-0.621868\pi\)
−0.373576 + 0.927600i \(0.621868\pi\)
\(338\) 1.02195 + 13.1971i 0.0555869 + 0.717827i
\(339\) 1.06894 + 1.06894i 0.0580567 + 0.0580567i
\(340\) −5.31978 + 7.28349i −0.288505 + 0.395003i
\(341\) −13.2234 13.2234i −0.716089 0.716089i
\(342\) −6.82189 + 7.96712i −0.368886 + 0.430812i
\(343\) 0 0
\(344\) −13.0052 8.03715i −0.701191 0.433334i
\(345\) 6.39160i 0.344112i
\(346\) 8.08251 9.43937i 0.434519 0.507463i
\(347\) −6.64411 6.64411i −0.356675 0.356675i 0.505911 0.862586i \(-0.331156\pi\)
−0.862586 + 0.505911i \(0.831156\pi\)
\(348\) 1.82522 + 11.7144i 0.0978420 + 0.627958i
\(349\) 8.35069 8.35069i 0.447002 0.447002i −0.447355 0.894357i \(-0.647634\pi\)
0.894357 + 0.447355i \(0.147634\pi\)
\(350\) 0 0
\(351\) 8.10712i 0.432726i
\(352\) −23.5262 9.91845i −1.25395 0.528655i
\(353\) 19.5576i 1.04095i −0.853877 0.520474i \(-0.825755\pi\)
0.853877 0.520474i \(-0.174245\pi\)
\(354\) 8.04741 0.623173i 0.427715 0.0331213i
\(355\) 6.71383 + 6.71383i 0.356333 + 0.356333i
\(356\) 17.2579 2.68895i 0.914669 0.142514i
\(357\) 0 0
\(358\) 1.60663 1.87635i 0.0849133 0.0991681i
\(359\) −17.6077 −0.929299 −0.464650 0.885495i \(-0.653820\pi\)
−0.464650 + 0.885495i \(0.653820\pi\)
\(360\) −13.9435 + 22.5624i −0.734886 + 1.18914i
\(361\) 9.24881i 0.486779i
\(362\) −8.04477 6.88838i −0.422824 0.362045i
\(363\) −5.23794 + 5.23794i −0.274920 + 0.274920i
\(364\) 0 0
\(365\) −8.26189 8.26189i −0.432447 0.432447i
\(366\) −7.27690 + 0.563506i −0.380369 + 0.0294549i
\(367\) 32.9623 1.72062 0.860309 0.509773i \(-0.170271\pi\)
0.860309 + 0.509773i \(0.170271\pi\)
\(368\) 7.80306 2.49208i 0.406762 0.129909i
\(369\) 19.2080i 0.999931i
\(370\) 17.2868 1.33865i 0.898697 0.0695931i
\(371\) 0 0
\(372\) 5.29009 + 3.86382i 0.274278 + 0.200330i
\(373\) 9.49811 9.49811i 0.491793 0.491793i −0.417078 0.908871i \(-0.636946\pi\)
0.908871 + 0.417078i \(0.136946\pi\)
\(374\) −4.74179 + 5.53782i −0.245192 + 0.286354i
\(375\) 17.4427 0.900735
\(376\) 4.48315 1.05845i 0.231201 0.0545856i
\(377\) −14.3073 −0.736861
\(378\) 0 0
\(379\) 0.617225 + 0.617225i 0.0317047 + 0.0317047i 0.722781 0.691077i \(-0.242863\pi\)
−0.691077 + 0.722781i \(0.742863\pi\)
\(380\) 3.79619 + 24.3642i 0.194740 + 1.24986i
\(381\) −6.68581 + 6.68581i −0.342524 + 0.342524i
\(382\) 2.96997 + 38.3530i 0.151957 + 1.96231i
\(383\) 0.428796 0.0219104 0.0109552 0.999940i \(-0.496513\pi\)
0.0109552 + 0.999940i \(0.496513\pi\)
\(384\) 8.67788 + 2.16426i 0.442841 + 0.110444i
\(385\) 0 0
\(386\) 8.12622 0.629276i 0.413614 0.0320293i
\(387\) −9.07769 + 9.07769i −0.461445 + 0.461445i
\(388\) −2.59553 16.6583i −0.131768 0.845700i
\(389\) −7.40065 + 7.40065i −0.375228 + 0.375228i −0.869377 0.494149i \(-0.835480\pi\)
0.494149 + 0.869377i \(0.335480\pi\)
\(390\) 6.39702 + 5.47749i 0.323926 + 0.277363i
\(391\) 2.33905i 0.118291i
\(392\) 0 0
\(393\) 4.38907i 0.221399i
\(394\) 16.6164 19.4059i 0.837124 0.977657i
\(395\) −3.42692 + 3.42692i −0.172427 + 0.172427i
\(396\) −12.6452 + 17.3130i −0.635446 + 0.870011i
\(397\) −19.7386 + 19.7386i −0.990654 + 0.990654i −0.999957 0.00930231i \(-0.997039\pi\)
0.00930231 + 0.999957i \(0.497039\pi\)
\(398\) 0.601327 + 7.76530i 0.0301418 + 0.389239i
\(399\) 0 0
\(400\) 12.8856 + 40.3465i 0.644278 + 2.01732i
\(401\) 26.3759 1.31715 0.658575 0.752515i \(-0.271160\pi\)
0.658575 + 0.752515i \(0.271160\pi\)
\(402\) −0.711101 + 0.0550661i −0.0354665 + 0.00274645i
\(403\) −5.59001 + 5.59001i −0.278458 + 0.278458i
\(404\) 23.7970 + 17.3811i 1.18395 + 0.864741i
\(405\) 10.5147 + 10.5147i 0.522480 + 0.522480i
\(406\) 0 0
\(407\) 14.0151 0.694702
\(408\) 1.34260 2.17250i 0.0664684 0.107555i
\(409\) −17.8287 −0.881572 −0.440786 0.897612i \(-0.645300\pi\)
−0.440786 + 0.897612i \(0.645300\pi\)
\(410\) −34.3006 29.3701i −1.69398 1.45048i
\(411\) 8.01621 8.01621i 0.395410 0.395410i
\(412\) 2.44382 + 15.6846i 0.120398 + 0.772725i
\(413\) 0 0
\(414\) −0.531059 6.85789i −0.0261001 0.337047i
\(415\) 12.8374i 0.630161i
\(416\) −4.19288 + 9.94535i −0.205573 + 0.487611i
\(417\) −16.3320 −0.799784
\(418\) 1.53886 + 19.8722i 0.0752681 + 0.971983i
\(419\) −19.6171 19.6171i −0.958358 0.958358i 0.0408093 0.999167i \(-0.487006\pi\)
−0.999167 + 0.0408093i \(0.987006\pi\)
\(420\) 0 0
\(421\) −5.25405 + 5.25405i −0.256067 + 0.256067i −0.823452 0.567385i \(-0.807955\pi\)
0.567385 + 0.823452i \(0.307955\pi\)
\(422\) 25.2157 29.4487i 1.22748 1.43354i
\(423\) 3.86808i 0.188073i
\(424\) 4.50268 7.28592i 0.218669 0.353836i
\(425\) 12.0943 0.586659
\(426\) −2.04215 1.74861i −0.0989427 0.0847202i
\(427\) 0 0
\(428\) −14.9943 10.9517i −0.724777 0.529369i
\(429\) 4.81357 + 4.81357i 0.232401 + 0.232401i
\(430\) 2.33015 + 30.0906i 0.112370 + 1.45110i
\(431\) 26.8517i 1.29340i 0.762744 + 0.646701i \(0.223852\pi\)
−0.762744 + 0.646701i \(0.776148\pi\)
\(432\) 7.79221 15.1049i 0.374903 0.726736i
\(433\) 18.6517i 0.896344i 0.893947 + 0.448172i \(0.147925\pi\)
−0.893947 + 0.448172i \(0.852075\pi\)
\(434\) 0 0
\(435\) 16.5496 16.5496i 0.793491 0.793491i
\(436\) 1.42080 + 1.03774i 0.0680440 + 0.0496985i
\(437\) −4.52178 4.52178i −0.216306 0.216306i
\(438\) 2.51303 + 2.15179i 0.120077 + 0.102817i
\(439\) 20.2604i 0.966977i −0.875351 0.483488i \(-0.839370\pi\)
0.875351 0.483488i \(-0.160630\pi\)
\(440\) 11.5813 + 49.0535i 0.552119 + 2.33853i
\(441\) 0 0
\(442\) 2.34103 + 2.00452i 0.111352 + 0.0953454i
\(443\) −25.0023 25.0023i −1.18790 1.18790i −0.977648 0.210248i \(-0.932573\pi\)
−0.210248 0.977648i \(-0.567427\pi\)
\(444\) −4.85096 + 0.755828i −0.230217 + 0.0358700i
\(445\) −24.3812 24.3812i −1.15578 1.15578i
\(446\) −31.2143 + 2.41717i −1.47804 + 0.114456i
\(447\) −9.31855 −0.440752
\(448\) 0 0
\(449\) 14.0702 0.664012 0.332006 0.943277i \(-0.392275\pi\)
0.332006 + 0.943277i \(0.392275\pi\)
\(450\) 35.4594 2.74589i 1.67157 0.129443i
\(451\) −25.8102 25.8102i −1.21535 1.21535i
\(452\) 3.77900 0.588805i 0.177749 0.0276951i
\(453\) −7.66230 7.66230i −0.360006 0.360006i
\(454\) −9.24907 7.91957i −0.434080 0.371684i
\(455\) 0 0
\(456\) −1.60434 6.79527i −0.0751300 0.318218i
\(457\) 5.33024i 0.249338i 0.992198 + 0.124669i \(0.0397870\pi\)
−0.992198 + 0.124669i \(0.960213\pi\)
\(458\) 27.1910 + 23.2825i 1.27055 + 1.08792i
\(459\) −3.43183 3.43183i −0.160184 0.160184i
\(460\) −13.0584 9.53772i −0.608852 0.444699i
\(461\) 2.32075 2.32075i 0.108088 0.108088i −0.650995 0.759082i \(-0.725648\pi\)
0.759082 + 0.650995i \(0.225648\pi\)
\(462\) 0 0
\(463\) 15.2932i 0.710736i −0.934727 0.355368i \(-0.884356\pi\)
0.934727 0.355368i \(-0.115644\pi\)
\(464\) 26.6569 + 13.7515i 1.23751 + 0.638398i
\(465\) 12.9322i 0.599717i
\(466\) 1.69999 + 21.9530i 0.0787507 + 1.01696i
\(467\) −21.2304 21.2304i −0.982424 0.982424i 0.0174238 0.999848i \(-0.494454\pi\)
−0.999848 + 0.0174238i \(0.994454\pi\)
\(468\) 7.31882 + 5.34558i 0.338312 + 0.247099i
\(469\) 0 0
\(470\) −6.90739 5.91449i −0.318614 0.272815i
\(471\) 1.64738 0.0759072
\(472\) 10.7354 17.3712i 0.494136 0.799577i
\(473\) 24.3957i 1.12171i
\(474\) 0.892535 1.04237i 0.0409955 0.0478776i
\(475\) 23.3803 23.3803i 1.07276 1.07276i
\(476\) 0 0
\(477\) −5.08563 5.08563i −0.232855 0.232855i
\(478\) −1.26908 16.3884i −0.0580464 0.749588i
\(479\) −34.4733 −1.57513 −0.787564 0.616233i \(-0.788658\pi\)
−0.787564 + 0.616233i \(0.788658\pi\)
\(480\) −6.65402 16.3540i −0.303713 0.746456i
\(481\) 5.92467i 0.270142i
\(482\) −0.307157 3.96651i −0.0139906 0.180669i
\(483\) 0 0
\(484\) 2.88523 + 18.5176i 0.131147 + 0.841710i
\(485\) −23.5341 + 23.5341i −1.06863 + 1.06863i
\(486\) −16.8917 14.4636i −0.766223 0.656083i
\(487\) −14.9028 −0.675312 −0.337656 0.941270i \(-0.609634\pi\)
−0.337656 + 0.941270i \(0.609634\pi\)
\(488\) −9.70750 + 15.7080i −0.439438 + 0.711068i
\(489\) 1.42584 0.0644787
\(490\) 0 0
\(491\) 30.5248 + 30.5248i 1.37756 + 1.37756i 0.848719 + 0.528844i \(0.177374\pi\)
0.528844 + 0.848719i \(0.322626\pi\)
\(492\) 10.3255 + 7.54160i 0.465508 + 0.340001i
\(493\) 6.05642 6.05642i 0.272767 0.272767i
\(494\) 8.40069 0.650531i 0.377965 0.0292688i
\(495\) 42.3236 1.90230
\(496\) 15.7880 5.04226i 0.708903 0.226404i
\(497\) 0 0
\(498\) 0.280643 + 3.62411i 0.0125759 + 0.162400i
\(499\) 7.82552 7.82552i 0.350318 0.350318i −0.509910 0.860228i \(-0.670321\pi\)
0.860228 + 0.509910i \(0.170321\pi\)
\(500\) 26.0284 35.6364i 1.16403 1.59371i
\(501\) 12.0741 12.0741i 0.539430 0.539430i
\(502\) 2.59520 3.03087i 0.115829 0.135274i
\(503\) 25.6811i 1.14507i 0.819882 + 0.572533i \(0.194039\pi\)
−0.819882 + 0.572533i \(0.805961\pi\)
\(504\) 0 0
\(505\) 58.1745i 2.58873i
\(506\) −9.92865 8.50147i −0.441382 0.377936i
\(507\) −5.23188 + 5.23188i −0.232356 + 0.232356i
\(508\) 3.68276 + 23.6362i 0.163396 + 1.04869i
\(509\) −10.8597 + 10.8597i −0.481348 + 0.481348i −0.905562 0.424214i \(-0.860550\pi\)
0.424214 + 0.905562i \(0.360550\pi\)
\(510\) −5.02661 + 0.389249i −0.222582 + 0.0172362i
\(511\) 0 0
\(512\) 17.3711 14.4998i 0.767700 0.640809i
\(513\) −13.2686 −0.585824
\(514\) 1.63333 + 21.0922i 0.0720432 + 0.930337i
\(515\) 22.1585 22.1585i 0.976420 0.976420i
\(516\) −1.31565 8.44394i −0.0579182 0.371724i
\(517\) −5.19760 5.19760i −0.228590 0.228590i
\(518\) 0 0
\(519\) 6.94641 0.304914
\(520\) 20.7366 4.89584i 0.909362 0.214697i
\(521\) 29.8378 1.30722 0.653609 0.756833i \(-0.273254\pi\)
0.653609 + 0.756833i \(0.273254\pi\)
\(522\) 16.3818 19.1320i 0.717014 0.837383i
\(523\) −25.4800 + 25.4800i −1.11416 + 1.11416i −0.121582 + 0.992581i \(0.538797\pi\)
−0.992581 + 0.121582i \(0.961203\pi\)
\(524\) −8.96712 6.54948i −0.391731 0.286116i
\(525\) 0 0
\(526\) 20.8512 1.61467i 0.909157 0.0704030i
\(527\) 4.73263i 0.206156i
\(528\) −4.34190 13.5951i −0.188957 0.591651i
\(529\) −18.8064 −0.817668
\(530\) −16.8578 + 1.30543i −0.732255 + 0.0567042i
\(531\) −12.1253 12.1253i −0.526191 0.526191i
\(532\) 0 0
\(533\) −10.9109 + 10.9109i −0.472602 + 0.472602i
\(534\) 7.41606 + 6.35004i 0.320924 + 0.274793i
\(535\) 36.6552i 1.58474i
\(536\) −0.948621 + 1.53499i −0.0409742 + 0.0663016i
\(537\) 1.38080 0.0595860
\(538\) −22.0405 + 25.7405i −0.950231 + 1.10975i
\(539\) 0 0
\(540\) −33.1528 + 5.16554i −1.42667 + 0.222289i
\(541\) 9.56603 + 9.56603i 0.411276 + 0.411276i 0.882183 0.470907i \(-0.156073\pi\)
−0.470907 + 0.882183i \(0.656073\pi\)
\(542\) 20.8035 1.61098i 0.893588 0.0691974i
\(543\) 5.92013i 0.254057i
\(544\) −2.43508 5.98486i −0.104403 0.256599i
\(545\) 3.47331i 0.148780i
\(546\) 0 0
\(547\) −19.9064 + 19.9064i −0.851134 + 0.851134i −0.990273 0.139139i \(-0.955567\pi\)
0.139139 + 0.990273i \(0.455567\pi\)
\(548\) −4.41559 28.3396i −0.188624 1.21061i
\(549\) 10.9643 + 10.9643i 0.467945 + 0.467945i
\(550\) 43.9577 51.3371i 1.87436 2.18902i
\(551\) 23.4162i 0.997562i
\(552\) 3.89503 + 2.40712i 0.165783 + 0.102454i
\(553\) 0 0
\(554\) 16.9196 19.7600i 0.718847 0.839523i
\(555\) 6.85322 + 6.85322i 0.290903 + 0.290903i
\(556\) −24.3711 + 33.3673i −1.03357 + 1.41509i
\(557\) 9.44113 + 9.44113i 0.400034 + 0.400034i 0.878245 0.478211i \(-0.158715\pi\)
−0.478211 + 0.878245i \(0.658715\pi\)
\(558\) −1.07450 13.8757i −0.0454872 0.587403i
\(559\) 10.3129 0.436190
\(560\) 0 0
\(561\) −4.07527 −0.172058
\(562\) 3.49063 + 45.0765i 0.147243 + 1.90144i
\(563\) −17.8651 17.8651i −0.752922 0.752922i 0.222101 0.975024i \(-0.428708\pi\)
−0.975024 + 0.222101i \(0.928708\pi\)
\(564\) 2.07932 + 1.51871i 0.0875552 + 0.0639493i
\(565\) −5.33879 5.33879i −0.224605 0.224605i
\(566\) −3.02482 + 3.53262i −0.127143 + 0.148487i
\(567\) 0 0
\(568\) −6.61986 + 1.56292i −0.277763 + 0.0655788i
\(569\) 12.5536i 0.526276i −0.964758 0.263138i \(-0.915243\pi\)
0.964758 0.263138i \(-0.0847574\pi\)
\(570\) −8.96480 + 10.4698i −0.375494 + 0.438531i
\(571\) 27.9224 + 27.9224i 1.16851 + 1.16851i 0.982558 + 0.185957i \(0.0595385\pi\)
0.185957 + 0.982558i \(0.440461\pi\)
\(572\) 17.0174 2.65147i 0.711531 0.110864i
\(573\) −15.2048 + 15.2048i −0.635188 + 0.635188i
\(574\) 0 0
\(575\) 21.6836i 0.904268i
\(576\) −8.49826 16.9942i −0.354094 0.708094i
\(577\) 23.3184i 0.970759i 0.874303 + 0.485380i \(0.161319\pi\)
−0.874303 + 0.485380i \(0.838681\pi\)
\(578\) 22.1303 1.71372i 0.920501 0.0712815i
\(579\) 3.22158 + 3.22158i 0.133884 + 0.133884i
\(580\) −9.11603 58.5074i −0.378523 2.42939i
\(581\) 0 0
\(582\) 6.12943 7.15841i 0.254073 0.296725i
\(583\) −13.6673 −0.566041
\(584\) 8.14625 1.92330i 0.337094 0.0795867i
\(585\) 17.8917i 0.739729i
\(586\) −10.6077 9.08293i −0.438201 0.375212i
\(587\) 24.2488 24.2488i 1.00085 1.00085i 0.000853494 1.00000i \(-0.499728\pi\)
1.00000 0.000853494i \(-0.000271676\pi\)
\(588\) 0 0
\(589\) −9.14897 9.14897i −0.376977 0.376977i
\(590\) −40.1927 + 3.11243i −1.65471 + 0.128137i
\(591\) 14.2808 0.587433
\(592\) −5.69454 + 11.0387i −0.234044 + 0.453687i
\(593\) 38.3515i 1.57491i 0.616374 + 0.787454i \(0.288601\pi\)
−0.616374 + 0.787454i \(0.711399\pi\)
\(594\) −27.0405 + 2.09395i −1.10948 + 0.0859160i
\(595\) 0 0
\(596\) −13.9054 + 19.0384i −0.569587 + 0.779841i
\(597\) −3.07849 + 3.07849i −0.125994 + 0.125994i
\(598\) −3.59387 + 4.19719i −0.146964 + 0.171636i
\(599\) 0.797936 0.0326028 0.0163014 0.999867i \(-0.494811\pi\)
0.0163014 + 0.999867i \(0.494811\pi\)
\(600\) −12.4462 + 20.1396i −0.508115 + 0.822196i
\(601\) −4.37578 −0.178492 −0.0892459 0.996010i \(-0.528446\pi\)
−0.0892459 + 0.996010i \(0.528446\pi\)
\(602\) 0 0
\(603\) 1.07144 + 1.07144i 0.0436323 + 0.0436323i
\(604\) −27.0884 + 4.22064i −1.10221 + 0.171735i
\(605\) 26.1608 26.1608i 1.06359 1.06359i
\(606\) 1.27178 + 16.4232i 0.0516625 + 0.667148i
\(607\) −6.55371 −0.266007 −0.133003 0.991116i \(-0.542462\pi\)
−0.133003 + 0.991116i \(0.542462\pi\)
\(608\) −16.2772 6.86233i −0.660127 0.278304i
\(609\) 0 0
\(610\) 36.3444 2.81443i 1.47154 0.113953i
\(611\) −2.19721 + 2.19721i −0.0888896 + 0.0888896i
\(612\) −5.36097 + 0.835292i −0.216705 + 0.0337647i
\(613\) 13.2937 13.2937i 0.536928 0.536928i −0.385698 0.922625i \(-0.626039\pi\)
0.922625 + 0.385698i \(0.126039\pi\)
\(614\) 35.5314 + 30.4239i 1.43393 + 1.22781i
\(615\) 25.2417i 1.01785i
\(616\) 0 0
\(617\) 22.2202i 0.894552i −0.894396 0.447276i \(-0.852394\pi\)
0.894396 0.447276i \(-0.147606\pi\)
\(618\) −5.77114 + 6.73997i −0.232149 + 0.271121i
\(619\) −6.03158 + 6.03158i −0.242430 + 0.242430i −0.817855 0.575425i \(-0.804837\pi\)
0.575425 + 0.817855i \(0.304837\pi\)
\(620\) −26.4213 19.2978i −1.06110 0.775018i
\(621\) 6.15286 6.15286i 0.246906 0.246906i
\(622\) −2.74999 35.5123i −0.110264 1.42391i
\(623\) 0 0
\(624\) −5.74713 + 1.83548i −0.230069 + 0.0734779i
\(625\) −34.1744 −1.36698
\(626\) 11.9173 0.922851i 0.476312 0.0368845i
\(627\) −7.87819 + 7.87819i −0.314625 + 0.314625i
\(628\) 2.45826 3.36569i 0.0980953 0.134306i
\(629\) 2.50798 + 2.50798i 0.0999997 + 0.0999997i
\(630\) 0 0
\(631\) 45.0684 1.79415 0.897073 0.441882i \(-0.145689\pi\)
0.897073 + 0.441882i \(0.145689\pi\)
\(632\) −0.797758 3.37895i −0.0317331 0.134408i
\(633\) 21.6713 0.861356
\(634\) −20.5583 17.6031i −0.816473 0.699109i
\(635\) 33.3922 33.3922i 1.32513 1.32513i
\(636\) 4.73058 0.737070i 0.187580 0.0292267i
\(637\) 0 0
\(638\) −3.69537 47.7205i −0.146301 1.88927i
\(639\) 5.71165i 0.225949i
\(640\) −43.3416 10.8094i −1.71323 0.427278i
\(641\) 28.9298 1.14266 0.571329 0.820721i \(-0.306428\pi\)
0.571329 + 0.820721i \(0.306428\pi\)
\(642\) −0.801336 10.3481i −0.0316262 0.408408i
\(643\) −27.4126 27.4126i −1.08105 1.08105i −0.996412 0.0846366i \(-0.973027\pi\)
−0.0846366 0.996412i \(-0.526973\pi\)
\(644\) 0 0
\(645\) −11.9292 + 11.9292i −0.469712 + 0.469712i
\(646\) −3.28073 + 3.83148i −0.129079 + 0.150748i
\(647\) 29.8238i 1.17249i 0.810133 + 0.586247i \(0.199395\pi\)
−0.810133 + 0.586247i \(0.800605\pi\)
\(648\) −10.3675 + 2.44774i −0.407276 + 0.0961562i
\(649\) −32.5858 −1.27911
\(650\) −21.7020 18.5825i −0.851222 0.728864i
\(651\) 0 0
\(652\) 2.12768 2.91308i 0.0833263 0.114085i
\(653\) 9.22237 + 9.22237i 0.360899 + 0.360899i 0.864144 0.503245i \(-0.167861\pi\)
−0.503245 + 0.864144i \(0.667861\pi\)
\(654\) 0.0759314 + 0.980548i 0.00296915 + 0.0383425i
\(655\) 21.9211i 0.856530i
\(656\) 30.8159 9.84175i 1.20316 0.384256i
\(657\) 7.02862i 0.274213i
\(658\) 0 0
\(659\) −15.1555 + 15.1555i −0.590375 + 0.590375i −0.937733 0.347358i \(-0.887079\pi\)
0.347358 + 0.937733i \(0.387079\pi\)
\(660\) −16.6174 + 22.7514i −0.646830 + 0.885597i
\(661\) −1.56254 1.56254i −0.0607758 0.0607758i 0.676066 0.736841i \(-0.263684\pi\)
−0.736841 + 0.676066i \(0.763684\pi\)
\(662\) 15.5269 + 13.2950i 0.603471 + 0.516725i
\(663\) 1.72276i 0.0669065i
\(664\) 7.82305 + 4.83463i 0.303593 + 0.187620i
\(665\) 0 0
\(666\) 7.92259 + 6.78377i 0.306994 + 0.262866i
\(667\) 10.8584 + 10.8584i 0.420440 + 0.420440i
\(668\) −6.65079 42.6853i −0.257327 1.65154i
\(669\) −12.3747 12.3747i −0.478433 0.478433i
\(670\) 3.55159 0.275027i 0.137210 0.0106252i
\(671\) 29.4658 1.13752
\(672\) 0 0
\(673\) −50.4864 −1.94611 −0.973054 0.230577i \(-0.925939\pi\)
−0.973054 + 0.230577i \(0.925939\pi\)
\(674\) −19.3393 + 1.49759i −0.744922 + 0.0576851i
\(675\) 31.8140 + 31.8140i 1.22452 + 1.22452i
\(676\) 2.88189 + 18.4962i 0.110842 + 0.711392i
\(677\) 20.9521 + 20.9521i 0.805254 + 0.805254i 0.983911 0.178658i \(-0.0571754\pi\)
−0.178658 + 0.983911i \(0.557175\pi\)
\(678\) 1.62391 + 1.39048i 0.0623658 + 0.0534010i
\(679\) 0 0
\(680\) −6.70558 + 10.8505i −0.257147 + 0.416098i
\(681\) 6.80638i 0.260821i
\(682\) −20.0888 17.2011i −0.769238 0.658665i
\(683\) −2.65762 2.65762i −0.101691 0.101691i 0.654431 0.756122i \(-0.272908\pi\)
−0.756122 + 0.654431i \(0.772908\pi\)
\(684\) −8.74891 + 11.9784i −0.334523 + 0.458007i
\(685\) −40.0368 + 40.0368i −1.52973 + 1.52973i
\(686\) 0 0
\(687\) 20.0098i 0.763423i
\(688\) −19.2147 9.91232i −0.732554 0.377904i
\(689\) 5.77764i 0.220111i
\(690\) −0.697877 9.01211i −0.0265677 0.343085i
\(691\) 10.1466 + 10.1466i 0.385994 + 0.385994i 0.873256 0.487262i \(-0.162004\pi\)
−0.487262 + 0.873256i \(0.662004\pi\)
\(692\) 10.3656 14.1919i 0.394042 0.539496i
\(693\) 0 0
\(694\) −10.0936 8.64270i −0.383148 0.328072i
\(695\) 81.5702 3.09413
\(696\) 3.85260 + 16.3179i 0.146032 + 0.618529i
\(697\) 9.23738i 0.349891i
\(698\) 10.8626 12.6862i 0.411156 0.480179i
\(699\) −8.70312 + 8.70312i −0.329182 + 0.329182i
\(700\) 0 0
\(701\) 12.9519 + 12.9519i 0.489187 + 0.489187i 0.908050 0.418863i \(-0.137571\pi\)
−0.418863 + 0.908050i \(0.637571\pi\)
\(702\) 0.885188 + 11.4310i 0.0334093 + 0.431434i
\(703\) 9.69670 0.365718
\(704\) −34.2547 11.4162i −1.29102 0.430264i
\(705\) 5.08313i 0.191442i
\(706\) −2.13543 27.5761i −0.0803681 1.03784i
\(707\) 0 0
\(708\) 11.2787 1.75734i 0.423881 0.0660448i
\(709\) −0.456352 + 0.456352i −0.0171387 + 0.0171387i −0.715624 0.698486i \(-0.753858\pi\)
0.698486 + 0.715624i \(0.253858\pi\)
\(710\) 10.1995 + 8.73339i 0.382781 + 0.327758i
\(711\) −2.91538 −0.109335
\(712\) 24.0400 5.67574i 0.900935 0.212707i
\(713\) 8.48503 0.317767
\(714\) 0 0
\(715\) −24.0413 24.0413i −0.899094 0.899094i
\(716\) 2.06047 2.82106i 0.0770034 0.105428i
\(717\) 6.49706 6.49706i 0.242637 0.242637i
\(718\) −24.8267 + 1.92253i −0.926525 + 0.0717480i
\(719\) −30.9666 −1.15486 −0.577429 0.816441i \(-0.695944\pi\)
−0.577429 + 0.816441i \(0.695944\pi\)
\(720\) −17.1967 + 33.3352i −0.640883 + 1.24233i
\(721\) 0 0
\(722\) −1.00985 13.0407i −0.0375826 0.485326i
\(723\) 1.57249 1.57249i 0.0584816 0.0584816i
\(724\) −12.0952 8.83418i −0.449514 0.328320i
\(725\) −56.1446 + 56.1446i −2.08516 + 2.08516i
\(726\) −6.81354 + 7.95737i −0.252874 + 0.295326i
\(727\) 16.7744i 0.622128i 0.950389 + 0.311064i \(0.100685\pi\)
−0.950389 + 0.311064i \(0.899315\pi\)
\(728\) 0 0
\(729\) 1.13181i 0.0419187i
\(730\) −12.5513 10.7471i −0.464544 0.397768i
\(731\) −4.36557 + 4.36557i −0.161466 + 0.161466i
\(732\) −10.1988 + 1.58908i −0.376960 + 0.0587341i
\(733\) −21.5304 + 21.5304i −0.795243 + 0.795243i −0.982341 0.187098i \(-0.940092\pi\)
0.187098 + 0.982341i \(0.440092\pi\)
\(734\) 46.4766 3.59904i 1.71548 0.132843i
\(735\) 0 0
\(736\) 10.7301 4.36581i 0.395518 0.160926i
\(737\) 2.87941 0.106065
\(738\) −2.09726 27.0832i −0.0772013 0.996946i
\(739\) −18.2801 + 18.2801i −0.672445 + 0.672445i −0.958279 0.285834i \(-0.907729\pi\)
0.285834 + 0.958279i \(0.407729\pi\)
\(740\) 24.2281 3.77497i 0.890642 0.138771i
\(741\) 3.33039 + 3.33039i 0.122345 + 0.122345i
\(742\) 0 0
\(743\) 16.7597 0.614855 0.307427 0.951572i \(-0.400532\pi\)
0.307427 + 0.951572i \(0.400532\pi\)
\(744\) 7.88086 + 4.87035i 0.288926 + 0.178556i
\(745\) 46.5414 1.70514
\(746\) 12.3552 14.4293i 0.452356 0.528295i
\(747\) 5.46055 5.46055i 0.199791 0.199791i
\(748\) −6.08123 + 8.32602i −0.222352 + 0.304430i
\(749\) 0 0
\(750\) 24.5940 1.90450i 0.898046 0.0695427i
\(751\) 22.4087i 0.817706i 0.912600 + 0.408853i \(0.134071\pi\)
−0.912600 + 0.408853i \(0.865929\pi\)
\(752\) 6.20564 1.98191i 0.226296 0.0722729i
\(753\) 2.23041 0.0812807
\(754\) −20.1731 + 1.56216i −0.734662 + 0.0568906i
\(755\) 38.2692 + 38.2692i 1.39276 + 1.39276i
\(756\) 0 0
\(757\) 10.1520 10.1520i 0.368982 0.368982i −0.498124 0.867106i \(-0.665978\pi\)
0.867106 + 0.498124i \(0.165978\pi\)
\(758\) 0.937675 + 0.802889i 0.0340579 + 0.0291623i
\(759\) 7.30648i 0.265208i
\(760\) 8.01284 + 33.9389i 0.290656 + 1.23109i
\(761\) 20.0298 0.726081 0.363041 0.931773i \(-0.381739\pi\)
0.363041 + 0.931773i \(0.381739\pi\)
\(762\) −8.69694 + 10.1569i −0.315057 + 0.367947i
\(763\) 0 0
\(764\) 8.37527 + 53.7532i 0.303007 + 1.94472i
\(765\) 7.57373 + 7.57373i 0.273829 + 0.273829i
\(766\) 0.604598 0.0468187i 0.0218450 0.00169163i
\(767\) 13.7752i 0.497393i
\(768\) 12.4720 + 2.10408i 0.450046 + 0.0759246i
\(769\) 50.7365i 1.82960i 0.403902 + 0.914802i \(0.367654\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(770\) 0 0
\(771\) −8.36185 + 8.36185i −0.301144 + 0.301144i
\(772\) 11.3892 1.77455i 0.409906 0.0638674i
\(773\) 21.1207 + 21.1207i 0.759658 + 0.759658i 0.976260 0.216602i \(-0.0694974\pi\)
−0.216602 + 0.976260i \(0.569497\pi\)
\(774\) −11.8083 + 13.7906i −0.424441 + 0.495694i
\(775\) 43.8727i 1.57595i
\(776\) −5.47855 23.2047i −0.196669 0.833002i
\(777\) 0 0
\(778\) −9.62681 + 11.2429i −0.345138 + 0.403078i
\(779\) −17.8574 17.8574i −0.639808 0.639808i
\(780\) 9.61782 + 7.02475i 0.344373 + 0.251526i
\(781\) 7.67483 + 7.67483i 0.274627 + 0.274627i
\(782\) −0.255393 3.29804i −0.00913283 0.117938i
\(783\) 31.8628 1.13868
\(784\) 0 0
\(785\) −8.22781 −0.293663
\(786\) −0.479227 6.18855i −0.0170935 0.220738i
\(787\) 27.1080 + 27.1080i 0.966295 + 0.966295i 0.999450 0.0331553i \(-0.0105556\pi\)
−0.0331553 + 0.999450i \(0.510556\pi\)
\(788\) 21.3102 29.1765i 0.759144 1.03937i
\(789\) 8.26631 + 8.26631i 0.294288 + 0.294288i
\(790\) −4.45775 + 5.20610i −0.158600 + 0.185225i
\(791\) 0 0
\(792\) −15.9393 + 25.7919i −0.566379 + 0.916475i
\(793\) 12.4562i 0.442334i
\(794\) −25.6761 + 29.9865i −0.911212 + 1.06418i
\(795\) −6.68314 6.68314i −0.237026 0.237026i
\(796\) 1.69573 + 10.8834i 0.0601037 + 0.385750i
\(797\) −18.8328 + 18.8328i −0.667092 + 0.667092i −0.957042 0.289949i \(-0.906361\pi\)
0.289949 + 0.957042i \(0.406361\pi\)
\(798\) 0 0
\(799\) 1.86021i 0.0658094i
\(800\) 22.5738 + 55.4813i 0.798106 + 1.96156i
\(801\) 20.7418i 0.732875i
\(802\) 37.1898 2.87990i 1.31322 0.101693i
\(803\) −9.44447 9.44447i −0.333288 0.333288i
\(804\) −0.996635 + 0.155285i −0.0351486 + 0.00547650i
\(805\) 0 0
\(806\) −7.27152 + 8.49223i −0.256128 + 0.299126i
\(807\) −18.9424 −0.666804
\(808\) 35.4514 + 21.9089i 1.24718 + 0.770752i
\(809\) 19.8345i 0.697344i 0.937245 + 0.348672i \(0.113367\pi\)
−0.937245 + 0.348672i \(0.886633\pi\)
\(810\) 15.9737 + 13.6776i 0.561260 + 0.480582i
\(811\) −3.89894 + 3.89894i −0.136910 + 0.136910i −0.772240 0.635330i \(-0.780864\pi\)
0.635330 + 0.772240i \(0.280864\pi\)
\(812\) 0 0
\(813\) 8.24740 + 8.24740i 0.289249 + 0.289249i
\(814\) 19.7612 1.53026i 0.692629 0.0536356i
\(815\) −7.12134 −0.249450
\(816\) 1.65584 3.20980i 0.0579661 0.112365i
\(817\) 16.8788i 0.590513i
\(818\) −25.1383 + 1.94665i −0.878940 + 0.0680631i
\(819\) 0 0
\(820\) −51.5704 37.6664i −1.80092 1.31537i
\(821\) −13.6837 + 13.6837i −0.477565 + 0.477565i −0.904352 0.426787i \(-0.859645\pi\)
0.426787 + 0.904352i \(0.359645\pi\)
\(822\) 10.4275 12.1781i 0.363702 0.424758i
\(823\) −40.1771 −1.40049 −0.700243 0.713905i \(-0.746925\pi\)
−0.700243 + 0.713905i \(0.746925\pi\)
\(824\) 5.15831 + 21.8484i 0.179698 + 0.761123i
\(825\) 37.7789 1.31529
\(826\) 0 0
\(827\) 11.2802 + 11.2802i 0.392250 + 0.392250i 0.875489 0.483239i \(-0.160540\pi\)
−0.483239 + 0.875489i \(0.660540\pi\)
\(828\) −1.49758 9.61159i −0.0520445 0.334026i
\(829\) −29.8049 + 29.8049i −1.03517 + 1.03517i −0.0358090 + 0.999359i \(0.511401\pi\)
−0.999359 + 0.0358090i \(0.988599\pi\)
\(830\) −1.40167 18.1006i −0.0486526 0.628280i
\(831\) 14.5414 0.504435
\(832\) −4.82603 + 14.4807i −0.167312 + 0.502027i
\(833\) 0 0
\(834\) −23.0281 + 1.78324i −0.797396 + 0.0617486i
\(835\) −60.3038 + 60.3038i −2.08690 + 2.08690i
\(836\) 4.33956 + 27.8517i 0.150087 + 0.963270i
\(837\) 12.4492 12.4492i 0.430306 0.430306i
\(838\) −29.8019 25.5180i −1.02949 0.881506i
\(839\) 27.4328i 0.947087i −0.880771 0.473543i \(-0.842975\pi\)
0.880771 0.473543i \(-0.157025\pi\)
\(840\) 0 0
\(841\) 27.2308i 0.938992i
\(842\) −6.83450 + 7.98185i −0.235532 + 0.275073i
\(843\) −17.8703 + 17.8703i −0.615484 + 0.615484i
\(844\) 32.3385 44.2757i 1.11314 1.52403i
\(845\) 26.1306 26.1306i 0.898919 0.898919i
\(846\) −0.422343 5.45396i −0.0145204 0.187511i
\(847\) 0 0
\(848\) 5.55322 10.7647i 0.190698 0.369662i
\(849\) −2.59965 −0.0892197
\(850\) 17.0528 1.32053i 0.584907 0.0452939i
\(851\) −4.49651 + 4.49651i −0.154138 + 0.154138i
\(852\) −3.07035 2.24255i −0.105188 0.0768283i
\(853\) 8.95019 + 8.95019i 0.306449 + 0.306449i 0.843530 0.537082i \(-0.180473\pi\)
−0.537082 + 0.843530i \(0.680473\pi\)
\(854\) 0 0
\(855\) 29.2826 1.00144
\(856\) −22.3376 13.8046i −0.763484 0.471831i
\(857\) −53.6482 −1.83259 −0.916294 0.400506i \(-0.868834\pi\)
−0.916294 + 0.400506i \(0.868834\pi\)
\(858\) 7.31268 + 6.26152i 0.249651 + 0.213765i
\(859\) 9.32143 9.32143i 0.318043 0.318043i −0.529972 0.848015i \(-0.677798\pi\)
0.848015 + 0.529972i \(0.177798\pi\)
\(860\) 6.57099 + 42.1731i 0.224069 + 1.43809i
\(861\) 0 0
\(862\) 2.93185 + 37.8607i 0.0998591 + 1.28954i
\(863\) 7.66849i 0.261039i −0.991446 0.130519i \(-0.958336\pi\)
0.991446 0.130519i \(-0.0416644\pi\)
\(864\) 9.33769 22.1486i 0.317675 0.753512i
\(865\) −34.6938 −1.17962
\(866\) 2.03652 + 26.2988i 0.0692036 + 0.893668i
\(867\) 8.77341 + 8.77341i 0.297961 + 0.297961i
\(868\) 0 0
\(869\) −3.91744 + 3.91744i −0.132890 + 0.132890i
\(870\) 21.5278 25.1417i 0.729859 0.852385i
\(871\) 1.21723i 0.0412443i
\(872\) 2.11662 + 1.30807i 0.0716779 + 0.0442968i
\(873\) −20.0212 −0.677613
\(874\) −6.86939 5.88195i −0.232361 0.198960i
\(875\) 0 0
\(876\) 3.77830 + 2.75962i 0.127657 + 0.0932391i
\(877\) −10.8710 10.8710i −0.367089 0.367089i 0.499325 0.866415i \(-0.333581\pi\)
−0.866415 + 0.499325i \(0.833581\pi\)
\(878\) −2.21217 28.5670i −0.0746570 0.964091i
\(879\) 7.80621i 0.263297i
\(880\) 21.6856 + 67.9005i 0.731021 + 2.28893i
\(881\) 21.5605i 0.726392i −0.931713 0.363196i \(-0.881686\pi\)
0.931713 0.363196i \(-0.118314\pi\)
\(882\) 0 0
\(883\) 3.61325 3.61325i 0.121596 0.121596i −0.643690 0.765286i \(-0.722598\pi\)
0.765286 + 0.643690i \(0.222598\pi\)
\(884\) 3.51970 + 2.57075i 0.118380 + 0.0864637i
\(885\) −15.9341 15.9341i −0.535618 0.535618i
\(886\) −37.9830 32.5232i −1.27606 1.09264i
\(887\) 35.9731i 1.20786i −0.797037 0.603930i \(-0.793601\pi\)
0.797037 0.603930i \(-0.206399\pi\)
\(888\) −6.75730 + 1.59537i −0.226760 + 0.0535372i
\(889\) 0 0
\(890\) −37.0394 31.7152i −1.24156 1.06310i
\(891\) 12.0198 + 12.0198i 0.402677 + 0.402677i
\(892\) −43.7480 + 6.81637i −1.46479 + 0.228229i
\(893\) −3.59609 3.59609i −0.120339 0.120339i
\(894\) −13.1391 + 1.01746i −0.439437 + 0.0340290i
\(895\) −6.89640 −0.230521
\(896\) 0 0
\(897\) −3.08871 −0.103129
\(898\) 19.8388 1.53627i 0.662030 0.0512661i
\(899\) 21.9700 + 21.9700i 0.732741 + 0.732741i
\(900\) 49.6976 7.74338i 1.65659 0.258113i
\(901\) −2.44574 2.44574i −0.0814793 0.0814793i
\(902\) −39.2103 33.5740i −1.30556 1.11789i
\(903\) 0 0
\(904\) 5.26407 1.24283i 0.175080 0.0413358i
\(905\) 29.5680i 0.982874i
\(906\) −11.6404 9.96716i −0.386726 0.331137i
\(907\) 13.5492 + 13.5492i 0.449894 + 0.449894i 0.895319 0.445425i \(-0.146948\pi\)
−0.445425 + 0.895319i \(0.646948\pi\)
\(908\) −13.9058 10.1567i −0.461481 0.337061i
\(909\) 24.7454 24.7454i 0.820752 0.820752i
\(910\) 0 0
\(911\) 16.9566i 0.561797i −0.959737 0.280899i \(-0.909368\pi\)
0.959737 0.280899i \(-0.0906325\pi\)
\(912\) −3.00406 9.40611i −0.0994742 0.311467i
\(913\) 14.6749i 0.485667i
\(914\) 0.581991 + 7.51560i 0.0192506 + 0.248594i
\(915\) 14.4084 + 14.4084i 0.476329 + 0.476329i
\(916\) 40.8813 + 29.8592i 1.35075 + 0.986576i
\(917\) 0 0
\(918\) −5.21356 4.46414i −0.172073 0.147339i
\(919\) −38.0807 −1.25617 −0.628083 0.778146i \(-0.716160\pi\)
−0.628083 + 0.778146i \(0.716160\pi\)
\(920\) −19.4537 12.0223i −0.641368 0.396364i
\(921\) 26.1475i 0.861589i
\(922\) 3.01884 3.52563i 0.0994202 0.116110i
\(923\) 3.24442 3.24442i 0.106791 0.106791i
\(924\) 0 0
\(925\) −23.2496 23.2496i −0.764443 0.764443i
\(926\) −1.66981 21.5633i −0.0548735 0.708614i
\(927\) 18.8509 0.619143
\(928\) 39.0874 + 16.4790i 1.28311 + 0.540948i
\(929\) 4.53114i 0.148662i −0.997234 0.0743309i \(-0.976318\pi\)
0.997234 0.0743309i \(-0.0236821\pi\)
\(930\) −1.41202 18.2343i −0.0463021 0.597927i
\(931\) 0 0
\(932\) 4.79396 + 30.7680i 0.157031 + 1.00784i
\(933\) 14.0786 14.0786i 0.460911 0.460911i
\(934\) −32.2527 27.6166i −1.05534 0.903642i
\(935\) 20.3539 0.665644
\(936\) 10.9031 + 6.73811i 0.356380 + 0.220242i
\(937\) 37.0969 1.21190 0.605952 0.795501i \(-0.292792\pi\)
0.605952 + 0.795501i \(0.292792\pi\)
\(938\) 0 0
\(939\) 4.72453 + 4.72453i 0.154179 + 0.154179i
\(940\) −10.3851 7.58519i −0.338726 0.247402i
\(941\) 1.59440 1.59440i 0.0519758 0.0519758i −0.680641 0.732617i \(-0.738299\pi\)
0.732617 + 0.680641i \(0.238299\pi\)
\(942\) 2.32279 0.179872i 0.0756806 0.00586053i
\(943\) 16.5615 0.539317
\(944\) 13.2401 25.6655i 0.430928 0.835340i
\(945\) 0 0
\(946\) 2.66368 + 34.3977i 0.0866038 + 1.11837i
\(947\) −11.5315 + 11.5315i −0.374724 + 0.374724i −0.869194 0.494471i \(-0.835362\pi\)
0.494471 + 0.869194i \(0.335362\pi\)
\(948\) 1.14465 1.56719i 0.0371767 0.0508998i
\(949\) −3.99251 + 3.99251i −0.129602 + 0.129602i
\(950\) 30.4132 35.5188i 0.986735 1.15238i
\(951\) 15.1288i 0.490585i
\(952\) 0 0
\(953\) 27.9419i 0.905126i 0.891733 + 0.452563i \(0.149490\pi\)
−0.891733 + 0.452563i \(0.850510\pi\)
\(954\) −7.72597 6.61541i −0.250138 0.214182i
\(955\) 75.9400 75.9400i 2.45736 2.45736i
\(956\) −3.57879 22.9690i −0.115746 0.742869i
\(957\) 18.9184 18.9184i 0.611546 0.611546i
\(958\) −48.6071 + 3.76403i −1.57043 + 0.121610i
\(959\) 0 0
\(960\) −11.1678 22.3325i −0.360438 0.720779i
\(961\) −13.8321 −0.446198
\(962\) −0.646895 8.35375i −0.0208567 0.269336i
\(963\) −15.5918 + 15.5918i −0.502439 + 0.502439i
\(964\) −0.866179 5.55920i −0.0278977 0.179050i
\(965\) −16.0901 16.0901i −0.517960 0.517960i
\(966\) 0 0
\(967\) −47.4478 −1.52582 −0.762910 0.646505i \(-0.776230\pi\)
−0.762910 + 0.646505i \(0.776230\pi\)
\(968\) 6.09002 + 25.7947i 0.195741 + 0.829072i
\(969\) −2.81958 −0.0905780
\(970\) −30.6133 + 35.7526i −0.982935 + 1.14795i
\(971\) 23.1554 23.1554i 0.743091 0.743091i −0.230080 0.973172i \(-0.573899\pi\)
0.973172 + 0.230080i \(0.0738989\pi\)
\(972\) −25.3964 18.5492i −0.814590 0.594967i
\(973\) 0 0
\(974\) −21.0129 + 1.62719i −0.673296 + 0.0521385i
\(975\) 15.9705i 0.511464i
\(976\) −11.9724 + 23.2081i −0.383227 + 0.742873i
\(977\) −31.8468 −1.01887 −0.509435 0.860509i \(-0.670146\pi\)
−0.509435 + 0.860509i \(0.670146\pi\)
\(978\) 2.01042 0.155683i 0.0642863 0.00497818i
\(979\) −27.8711 27.8711i −0.890763 0.890763i
\(980\) 0 0
\(981\) 1.47742 1.47742i 0.0471704 0.0471704i
\(982\) 46.3726 + 39.7068i 1.47981 + 1.26709i
\(983\) 43.2988i 1.38102i −0.723324 0.690509i \(-0.757386\pi\)
0.723324 0.690509i \(-0.242614\pi\)
\(984\) 15.3823 + 9.50619i 0.490368 + 0.303046i
\(985\) −71.3253 −2.27261
\(986\) 7.87822 9.20078i 0.250894 0.293013i
\(987\) 0 0
\(988\) 11.7739 1.83449i 0.374577 0.0583628i
\(989\) −7.82694 7.82694i −0.248882 0.248882i
\(990\) 59.6759 4.62117i 1.89662 0.146870i
\(991\) 18.9625i 0.602365i −0.953567 0.301183i \(-0.902619\pi\)
0.953567 0.301183i \(-0.0973813\pi\)
\(992\) 21.7104 8.83339i 0.689307 0.280461i
\(993\) 11.4262i 0.362601i
\(994\) 0 0
\(995\) 15.3755 15.3755i 0.487436 0.487436i
\(996\) 0.791409 + 5.07933i 0.0250767 + 0.160945i
\(997\) −21.4000 21.4000i −0.677746 0.677746i 0.281744 0.959490i \(-0.409087\pi\)
−0.959490 + 0.281744i \(0.909087\pi\)
\(998\) 10.1795 11.8884i 0.322226 0.376320i
\(999\) 13.1945i 0.417454i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.28 56
7.2 even 3 112.2.v.a.3.6 56
7.3 odd 6 112.2.v.a.19.5 yes 56
7.4 even 3 784.2.w.f.19.5 56
7.5 odd 6 784.2.w.f.227.6 56
7.6 odd 2 inner 784.2.j.a.195.27 56
16.11 odd 4 inner 784.2.j.a.587.27 56
28.3 even 6 448.2.z.a.47.8 56
28.23 odd 6 448.2.z.a.367.8 56
56.3 even 6 896.2.z.a.607.7 56
56.37 even 6 896.2.z.b.479.8 56
56.45 odd 6 896.2.z.b.607.8 56
56.51 odd 6 896.2.z.a.479.7 56
112.3 even 12 896.2.z.b.159.8 56
112.11 odd 12 784.2.w.f.411.6 56
112.27 even 4 inner 784.2.j.a.587.28 56
112.37 even 12 448.2.z.a.143.8 56
112.45 odd 12 896.2.z.a.159.7 56
112.51 odd 12 896.2.z.b.31.8 56
112.59 even 12 112.2.v.a.75.6 yes 56
112.75 even 12 784.2.w.f.619.5 56
112.93 even 12 896.2.z.a.31.7 56
112.101 odd 12 448.2.z.a.271.8 56
112.107 odd 12 112.2.v.a.59.5 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.6 56 7.2 even 3
112.2.v.a.19.5 yes 56 7.3 odd 6
112.2.v.a.59.5 yes 56 112.107 odd 12
112.2.v.a.75.6 yes 56 112.59 even 12
448.2.z.a.47.8 56 28.3 even 6
448.2.z.a.143.8 56 112.37 even 12
448.2.z.a.271.8 56 112.101 odd 12
448.2.z.a.367.8 56 28.23 odd 6
784.2.j.a.195.27 56 7.6 odd 2 inner
784.2.j.a.195.28 56 1.1 even 1 trivial
784.2.j.a.587.27 56 16.11 odd 4 inner
784.2.j.a.587.28 56 112.27 even 4 inner
784.2.w.f.19.5 56 7.4 even 3
784.2.w.f.227.6 56 7.5 odd 6
784.2.w.f.411.6 56 112.11 odd 12
784.2.w.f.619.5 56 112.75 even 12
896.2.z.a.31.7 56 112.93 even 12
896.2.z.a.159.7 56 112.45 odd 12
896.2.z.a.479.7 56 56.51 odd 6
896.2.z.a.607.7 56 56.3 even 6
896.2.z.b.31.8 56 112.51 odd 12
896.2.z.b.159.8 56 112.3 even 12
896.2.z.b.479.8 56 56.37 even 6
896.2.z.b.607.8 56 56.45 odd 6