Properties

Label 784.2.w.f.19.5
Level $784$
Weight $2$
Character 784.19
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(19,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.w (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.5
Character \(\chi\) \(=\) 784.19
Dual form 784.2.w.f.619.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.610438 + 1.27568i) q^{2} +(0.204601 - 0.763582i) q^{3} +(-1.25473 - 1.55745i) q^{4} +(3.81370 - 1.02188i) q^{5} +(0.849192 + 0.727125i) q^{6} +(2.75275 - 0.649913i) q^{8} +(2.05688 + 1.18754i) q^{9} +(-1.02443 + 5.48886i) q^{10} +(-1.16815 + 4.35958i) q^{11} +(-1.44596 + 0.639434i) q^{12} +(-1.34913 + 1.34913i) q^{13} -3.12115i q^{15} +(-0.851298 + 3.90836i) q^{16} +(-0.989178 + 0.571102i) q^{17} +(-2.77052 + 1.89901i) q^{18} +(3.01629 - 0.808212i) q^{19} +(-6.37669 - 4.65746i) q^{20} +(-4.84836 - 4.15144i) q^{22} +(-1.02392 + 1.77348i) q^{23} +(0.0669534 - 2.23492i) q^{24} +(9.16994 - 5.29427i) q^{25} +(-0.897503 - 2.54463i) q^{26} +(3.00457 - 3.00457i) q^{27} +(5.30239 + 5.30239i) q^{29} +(3.98159 + 1.90527i) q^{30} +(-2.07171 - 3.58830i) q^{31} +(-4.46616 - 3.47180i) q^{32} +(3.08989 + 1.78395i) q^{33} +(-0.124713 - 1.61050i) q^{34} +(-0.731298 - 4.69353i) q^{36} +(-0.803695 - 2.99943i) q^{37} +(-0.810234 + 4.34119i) q^{38} +(0.754139 + 1.30621i) q^{39} +(9.83402 - 5.29154i) q^{40} +8.08732 q^{41} +(-3.82205 - 3.82205i) q^{43} +(8.25554 - 3.65078i) q^{44} +(9.05785 + 2.42704i) q^{45} +(-1.63736 - 2.38879i) q^{46} +(-0.814305 + 1.41042i) q^{47} +(2.81018 + 1.44969i) q^{48} +(1.15613 + 14.9298i) q^{50} +(0.233696 + 0.872167i) q^{51} +(3.79400 + 0.408407i) q^{52} +(-2.92499 - 0.783749i) q^{53} +(1.99877 + 5.66697i) q^{54} +17.8198i q^{55} -2.46854i q^{57} +(-10.0010 + 3.52739i) q^{58} +(-6.97383 - 1.86863i) q^{59} +(-4.86103 + 3.91620i) q^{60} +(-1.68972 - 6.30611i) q^{61} +(5.84218 - 0.452405i) q^{62} +(7.15523 - 3.57809i) q^{64} +(-3.76654 + 6.52383i) q^{65} +(-4.16194 + 2.85273i) q^{66} +(0.616236 + 0.165120i) q^{67} +(2.13062 + 0.824015i) q^{68} +(1.14470 + 1.14470i) q^{69} -2.40482 q^{71} +(6.43387 + 1.93221i) q^{72} +(-1.47966 - 2.56284i) q^{73} +(4.31693 + 0.805706i) q^{74} +(-2.16643 - 8.08521i) q^{75} +(-5.04338 - 3.68363i) q^{76} +(-2.12666 + 0.164684i) q^{78} +(1.06303 + 0.613742i) q^{79} +(0.747273 + 15.7752i) q^{80} +(1.88313 + 3.26167i) q^{81} +(-4.93681 + 10.3169i) q^{82} +(2.29910 + 2.29910i) q^{83} +(-3.18883 + 3.18883i) q^{85} +(7.20885 - 2.54260i) q^{86} +(5.13369 - 2.96394i) q^{87} +(-0.382263 + 12.7600i) q^{88} +(-4.36654 + 7.56307i) q^{89} +(-8.62539 + 10.0734i) q^{90} +(4.04685 - 0.630538i) q^{92} +(-3.16383 + 0.847747i) q^{93} +(-1.30216 - 1.89977i) q^{94} +(10.6773 - 6.16455i) q^{95} +(-3.56478 + 2.69995i) q^{96} -8.42967i q^{97} +(-7.57992 + 7.57992i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{2} + 6 q^{3} - 4 q^{4} + 6 q^{5} + 4 q^{8} + 24 q^{10} + 2 q^{11} + 6 q^{12} + 8 q^{16} + 12 q^{17} - 30 q^{18} + 6 q^{19} - 28 q^{22} - 12 q^{23} + 6 q^{24} + 6 q^{26} - 24 q^{29} - 18 q^{30}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.610438 + 1.27568i −0.431645 + 0.902044i
\(3\) 0.204601 0.763582i 0.118127 0.440854i −0.881375 0.472417i \(-0.843382\pi\)
0.999502 + 0.0315627i \(0.0100484\pi\)
\(4\) −1.25473 1.55745i −0.627366 0.778725i
\(5\) 3.81370 1.02188i 1.70554 0.456998i 0.731214 0.682148i \(-0.238954\pi\)
0.974324 + 0.225150i \(0.0722873\pi\)
\(6\) 0.849192 + 0.727125i 0.346681 + 0.296848i
\(7\) 0 0
\(8\) 2.75275 0.649913i 0.973243 0.229779i
\(9\) 2.05688 + 1.18754i 0.685627 + 0.395847i
\(10\) −1.02443 + 5.48886i −0.323955 + 1.73573i
\(11\) −1.16815 + 4.35958i −0.352209 + 1.31446i 0.531751 + 0.846901i \(0.321534\pi\)
−0.883960 + 0.467562i \(0.845132\pi\)
\(12\) −1.44596 + 0.639434i −0.417413 + 0.184589i
\(13\) −1.34913 + 1.34913i −0.374182 + 0.374182i −0.868998 0.494816i \(-0.835236\pi\)
0.494816 + 0.868998i \(0.335236\pi\)
\(14\) 0 0
\(15\) 3.12115i 0.805877i
\(16\) −0.851298 + 3.90836i −0.212825 + 0.977090i
\(17\) −0.989178 + 0.571102i −0.239911 + 0.138513i −0.615136 0.788421i \(-0.710899\pi\)
0.375225 + 0.926934i \(0.377565\pi\)
\(18\) −2.77052 + 1.89901i −0.653018 + 0.447600i
\(19\) 3.01629 0.808212i 0.691984 0.185416i 0.104346 0.994541i \(-0.466725\pi\)
0.587637 + 0.809125i \(0.300058\pi\)
\(20\) −6.37669 4.65746i −1.42587 1.04144i
\(21\) 0 0
\(22\) −4.84836 4.15144i −1.03367 0.885089i
\(23\) −1.02392 + 1.77348i −0.213502 + 0.369796i −0.952808 0.303573i \(-0.901820\pi\)
0.739306 + 0.673369i \(0.235154\pi\)
\(24\) 0.0669534 2.23492i 0.0136668 0.456201i
\(25\) 9.16994 5.29427i 1.83399 1.05885i
\(26\) −0.897503 2.54463i −0.176015 0.499042i
\(27\) 3.00457 3.00457i 0.578229 0.578229i
\(28\) 0 0
\(29\) 5.30239 + 5.30239i 0.984630 + 0.984630i 0.999884 0.0152539i \(-0.00485565\pi\)
−0.0152539 + 0.999884i \(0.504856\pi\)
\(30\) 3.98159 + 1.90527i 0.726936 + 0.347853i
\(31\) −2.07171 3.58830i −0.372089 0.644478i 0.617797 0.786337i \(-0.288025\pi\)
−0.989887 + 0.141860i \(0.954692\pi\)
\(32\) −4.46616 3.47180i −0.789514 0.613733i
\(33\) 3.08989 + 1.78395i 0.537881 + 0.310546i
\(34\) −0.124713 1.61050i −0.0213882 0.276198i
\(35\) 0 0
\(36\) −0.731298 4.69353i −0.121883 0.782255i
\(37\) −0.803695 2.99943i −0.132127 0.493103i 0.867867 0.496797i \(-0.165491\pi\)
−0.999993 + 0.00369416i \(0.998824\pi\)
\(38\) −0.810234 + 4.34119i −0.131437 + 0.704234i
\(39\) 0.754139 + 1.30621i 0.120759 + 0.209161i
\(40\) 9.83402 5.29154i 1.55489 0.836666i
\(41\) 8.08732 1.26303 0.631514 0.775365i \(-0.282434\pi\)
0.631514 + 0.775365i \(0.282434\pi\)
\(42\) 0 0
\(43\) −3.82205 3.82205i −0.582858 0.582858i 0.352830 0.935688i \(-0.385220\pi\)
−0.935688 + 0.352830i \(0.885220\pi\)
\(44\) 8.25554 3.65078i 1.24457 0.550375i
\(45\) 9.05785 + 2.42704i 1.35026 + 0.361802i
\(46\) −1.63736 2.38879i −0.241415 0.352208i
\(47\) −0.814305 + 1.41042i −0.118779 + 0.205731i −0.919284 0.393595i \(-0.871231\pi\)
0.800505 + 0.599326i \(0.204565\pi\)
\(48\) 2.81018 + 1.44969i 0.405614 + 0.209245i
\(49\) 0 0
\(50\) 1.15613 + 14.9298i 0.163501 + 2.11139i
\(51\) 0.233696 + 0.872167i 0.0327240 + 0.122128i
\(52\) 3.79400 + 0.408407i 0.526134 + 0.0566358i
\(53\) −2.92499 0.783749i −0.401779 0.107656i 0.0522704 0.998633i \(-0.483354\pi\)
−0.454049 + 0.890977i \(0.650021\pi\)
\(54\) 1.99877 + 5.66697i 0.271998 + 0.771177i
\(55\) 17.8198i 2.40283i
\(56\) 0 0
\(57\) 2.46854i 0.326966i
\(58\) −10.0010 + 3.52739i −1.31319 + 0.463169i
\(59\) −6.97383 1.86863i −0.907915 0.243275i −0.225503 0.974243i \(-0.572403\pi\)
−0.682412 + 0.730967i \(0.739069\pi\)
\(60\) −4.86103 + 3.91620i −0.627556 + 0.505580i
\(61\) −1.68972 6.30611i −0.216346 0.807414i −0.985688 0.168578i \(-0.946083\pi\)
0.769342 0.638837i \(-0.220584\pi\)
\(62\) 5.84218 0.452405i 0.741958 0.0574555i
\(63\) 0 0
\(64\) 7.15523 3.57809i 0.894403 0.447261i
\(65\) −3.76654 + 6.52383i −0.467181 + 0.809182i
\(66\) −4.16194 + 2.85273i −0.512300 + 0.351147i
\(67\) 0.616236 + 0.165120i 0.0752852 + 0.0201726i 0.296265 0.955106i \(-0.404259\pi\)
−0.220980 + 0.975278i \(0.570926\pi\)
\(68\) 2.13062 + 0.824015i 0.258375 + 0.0999265i
\(69\) 1.14470 + 1.14470i 0.137806 + 0.137806i
\(70\) 0 0
\(71\) −2.40482 −0.285400 −0.142700 0.989766i \(-0.545578\pi\)
−0.142700 + 0.989766i \(0.545578\pi\)
\(72\) 6.43387 + 1.93221i 0.758239 + 0.227713i
\(73\) −1.47966 2.56284i −0.173181 0.299958i 0.766349 0.642424i \(-0.222071\pi\)
−0.939530 + 0.342466i \(0.888738\pi\)
\(74\) 4.31693 + 0.805706i 0.501832 + 0.0936614i
\(75\) −2.16643 8.08521i −0.250157 0.933600i
\(76\) −5.04338 3.68363i −0.578515 0.422541i
\(77\) 0 0
\(78\) −2.12666 + 0.164684i −0.240797 + 0.0186468i
\(79\) 1.06303 + 0.613742i 0.119601 + 0.0690514i 0.558607 0.829433i \(-0.311336\pi\)
−0.439006 + 0.898484i \(0.644669\pi\)
\(80\) 0.747273 + 15.7752i 0.0835476 + 1.76373i
\(81\) 1.88313 + 3.26167i 0.209236 + 0.362408i
\(82\) −4.93681 + 10.3169i −0.545179 + 1.13931i
\(83\) 2.29910 + 2.29910i 0.252359 + 0.252359i 0.821937 0.569578i \(-0.192893\pi\)
−0.569578 + 0.821937i \(0.692893\pi\)
\(84\) 0 0
\(85\) −3.18883 + 3.18883i −0.345877 + 0.345877i
\(86\) 7.20885 2.54260i 0.777351 0.274176i
\(87\) 5.13369 2.96394i 0.550389 0.317767i
\(88\) −0.382263 + 12.7600i −0.0407493 + 1.36022i
\(89\) −4.36654 + 7.56307i −0.462852 + 0.801684i −0.999102 0.0423758i \(-0.986507\pi\)
0.536249 + 0.844060i \(0.319841\pi\)
\(90\) −8.62539 + 10.0734i −0.909196 + 1.06183i
\(91\) 0 0
\(92\) 4.04685 0.630538i 0.421913 0.0657381i
\(93\) −3.16383 + 0.847747i −0.328074 + 0.0879073i
\(94\) −1.30216 1.89977i −0.134308 0.195946i
\(95\) 10.6773 6.16455i 1.09547 0.632470i
\(96\) −3.56478 + 2.69995i −0.363829 + 0.275562i
\(97\) 8.42967i 0.855903i −0.903802 0.427952i \(-0.859235\pi\)
0.903802 0.427952i \(-0.140765\pi\)
\(98\) 0 0
\(99\) −7.57992 + 7.57992i −0.761810 + 0.761810i
\(100\) −19.7514 7.63884i −1.97514 0.763884i
\(101\) 3.81352 14.2323i 0.379460 1.41616i −0.467258 0.884121i \(-0.654758\pi\)
0.846718 0.532042i \(-0.178575\pi\)
\(102\) −1.25526 0.234281i −0.124290 0.0231973i
\(103\) −6.87358 3.96846i −0.677274 0.391024i 0.121553 0.992585i \(-0.461213\pi\)
−0.798827 + 0.601561i \(0.794546\pi\)
\(104\) −2.83700 + 4.59064i −0.278191 + 0.450149i
\(105\) 0 0
\(106\) 2.78534 3.25293i 0.270536 0.315953i
\(107\) 8.96762 2.40287i 0.866932 0.232294i 0.202172 0.979350i \(-0.435200\pi\)
0.664761 + 0.747056i \(0.268533\pi\)
\(108\) −8.44938 0.909537i −0.813042 0.0875202i
\(109\) 0.227686 0.849736i 0.0218084 0.0813900i −0.954164 0.299284i \(-0.903252\pi\)
0.975972 + 0.217894i \(0.0699188\pi\)
\(110\) −22.7325 10.8779i −2.16745 1.03717i
\(111\) −2.45475 −0.232994
\(112\) 0 0
\(113\) 1.91230 0.179894 0.0899469 0.995947i \(-0.471330\pi\)
0.0899469 + 0.995947i \(0.471330\pi\)
\(114\) 3.14908 + 1.50689i 0.294938 + 0.141133i
\(115\) −2.09264 + 7.80983i −0.195140 + 0.728271i
\(116\) 1.60513 14.9113i 0.149033 1.38448i
\(117\) −4.37715 + 1.17285i −0.404668 + 0.108430i
\(118\) 6.64087 7.75571i 0.611342 0.713971i
\(119\) 0 0
\(120\) −2.02847 8.59173i −0.185174 0.784314i
\(121\) −8.11511 4.68526i −0.737737 0.425933i
\(122\) 9.07606 + 1.69395i 0.821708 + 0.153363i
\(123\) 1.65468 6.17533i 0.149197 0.556811i
\(124\) −2.98916 + 7.72893i −0.268435 + 0.694079i
\(125\) 15.6022 15.6022i 1.39550 1.39550i
\(126\) 0 0
\(127\) 11.9607i 1.06134i 0.847578 + 0.530671i \(0.178060\pi\)
−0.847578 + 0.530671i \(0.821940\pi\)
\(128\) 0.196687 + 11.3120i 0.0173848 + 0.999849i
\(129\) −3.70045 + 2.13645i −0.325806 + 0.188104i
\(130\) −6.02310 8.78730i −0.528261 0.770697i
\(131\) 5.36296 1.43700i 0.468564 0.125551i −0.0168089 0.999859i \(-0.505351\pi\)
0.485372 + 0.874307i \(0.338684\pi\)
\(132\) −1.09857 7.05073i −0.0956185 0.613687i
\(133\) 0 0
\(134\) −0.586814 + 0.685325i −0.0506930 + 0.0592031i
\(135\) 8.38821 14.5288i 0.721943 1.25044i
\(136\) −2.35179 + 2.21498i −0.201664 + 0.189933i
\(137\) −12.4195 + 7.17038i −1.06107 + 0.612607i −0.925727 0.378192i \(-0.876546\pi\)
−0.135339 + 0.990799i \(0.543212\pi\)
\(138\) −2.15904 + 0.761506i −0.183790 + 0.0648237i
\(139\) −14.6088 + 14.6088i −1.23910 + 1.23910i −0.278731 + 0.960369i \(0.589914\pi\)
−0.960369 + 0.278731i \(0.910086\pi\)
\(140\) 0 0
\(141\) 0.910361 + 0.910361i 0.0766663 + 0.0766663i
\(142\) 1.46799 3.06779i 0.123191 0.257443i
\(143\) −4.30567 7.45764i −0.360058 0.623639i
\(144\) −6.39236 + 7.02808i −0.532696 + 0.585674i
\(145\) 25.6401 + 14.8033i 2.12930 + 1.22935i
\(146\) 4.17262 0.323118i 0.345328 0.0267414i
\(147\) 0 0
\(148\) −3.66304 + 5.01519i −0.301100 + 0.412246i
\(149\) −3.05093 11.3862i −0.249942 0.932797i −0.970835 0.239750i \(-0.922934\pi\)
0.720892 0.693047i \(-0.243732\pi\)
\(150\) 11.6366 + 2.17185i 0.950127 + 0.177331i
\(151\) 6.85381 + 11.8712i 0.557755 + 0.966061i 0.997683 + 0.0680276i \(0.0216706\pi\)
−0.439928 + 0.898033i \(0.644996\pi\)
\(152\) 7.77781 4.18513i 0.630863 0.339458i
\(153\) −2.71283 −0.219319
\(154\) 0 0
\(155\) −11.5677 11.5677i −0.929138 0.929138i
\(156\) 1.08811 2.81347i 0.0871185 0.225258i
\(157\) −2.01291 0.539359i −0.160648 0.0430455i 0.177599 0.984103i \(-0.443167\pi\)
−0.338247 + 0.941058i \(0.609834\pi\)
\(158\) −1.43186 + 0.981441i −0.113912 + 0.0780792i
\(159\) −1.19691 + 2.07311i −0.0949214 + 0.164409i
\(160\) −20.5804 8.67652i −1.62702 0.685939i
\(161\) 0 0
\(162\) −5.31039 + 0.411225i −0.417224 + 0.0323089i
\(163\) 0.466826 + 1.74222i 0.0365647 + 0.136461i 0.981795 0.189942i \(-0.0608300\pi\)
−0.945231 + 0.326403i \(0.894163\pi\)
\(164\) −10.1474 12.5956i −0.792380 0.983551i
\(165\) 13.6069 + 3.64596i 1.05930 + 0.283837i
\(166\) −4.33638 + 1.52946i −0.336568 + 0.118709i
\(167\) 21.6002i 1.67147i −0.549132 0.835735i \(-0.685042\pi\)
0.549132 0.835735i \(-0.314958\pi\)
\(168\) 0 0
\(169\) 9.35968i 0.719976i
\(170\) −2.12135 6.01452i −0.162700 0.461293i
\(171\) 7.16393 + 1.91957i 0.547839 + 0.146793i
\(172\) −1.15701 + 10.7483i −0.0882208 + 0.819551i
\(173\) 2.27429 + 8.48775i 0.172911 + 0.645312i 0.996898 + 0.0787035i \(0.0250780\pi\)
−0.823987 + 0.566608i \(0.808255\pi\)
\(174\) 0.647244 + 8.35825i 0.0490674 + 0.633637i
\(175\) 0 0
\(176\) −16.0444 8.27684i −1.20939 0.623890i
\(177\) −2.85371 + 4.94277i −0.214498 + 0.371521i
\(178\) −6.98257 10.1871i −0.523366 0.763556i
\(179\) −1.68719 0.452081i −0.126106 0.0337901i 0.195214 0.980761i \(-0.437460\pi\)
−0.321320 + 0.946971i \(0.604127\pi\)
\(180\) −7.58517 17.1524i −0.565365 1.27847i
\(181\) −5.29547 5.29547i −0.393609 0.393609i 0.482362 0.875972i \(-0.339779\pi\)
−0.875972 + 0.482362i \(0.839779\pi\)
\(182\) 0 0
\(183\) −5.16095 −0.381508
\(184\) −1.66598 + 5.54739i −0.122818 + 0.408959i
\(185\) −6.13010 10.6176i −0.450694 0.780625i
\(186\) 0.849868 4.55354i 0.0623154 0.333882i
\(187\) −1.33426 4.97953i −0.0975709 0.364140i
\(188\) 3.21839 0.501456i 0.234725 0.0365725i
\(189\) 0 0
\(190\) 1.34617 + 17.3839i 0.0976617 + 1.26116i
\(191\) −23.5567 13.6004i −1.70450 0.984093i −0.941076 0.338195i \(-0.890184\pi\)
−0.763423 0.645899i \(-0.776483\pi\)
\(192\) −1.26820 6.19568i −0.0915243 0.447135i
\(193\) −2.88165 4.99117i −0.207426 0.359272i 0.743477 0.668762i \(-0.233175\pi\)
−0.950903 + 0.309489i \(0.899842\pi\)
\(194\) 10.7536 + 5.14579i 0.772062 + 0.369446i
\(195\) 4.21084 + 4.21084i 0.301545 + 0.301545i
\(196\) 0 0
\(197\) 12.7740 12.7740i 0.910107 0.910107i −0.0861731 0.996280i \(-0.527464\pi\)
0.996280 + 0.0861731i \(0.0274638\pi\)
\(198\) −5.04250 14.2966i −0.358355 1.01602i
\(199\) 4.76949 2.75367i 0.338100 0.195202i −0.321331 0.946967i \(-0.604130\pi\)
0.659432 + 0.751764i \(0.270797\pi\)
\(200\) 21.8017 20.5334i 1.54161 1.45193i
\(201\) 0.252165 0.436763i 0.0177863 0.0308069i
\(202\) 15.8279 + 13.5528i 1.11365 + 0.953569i
\(203\) 0 0
\(204\) 1.06513 1.45831i 0.0745740 0.102102i
\(205\) 30.8426 8.26425i 2.15414 0.577201i
\(206\) 9.25839 6.34601i 0.645063 0.442147i
\(207\) −4.21216 + 2.43189i −0.292765 + 0.169028i
\(208\) −4.12438 6.42141i −0.285975 0.445245i
\(209\) 14.0939i 0.974893i
\(210\) 0 0
\(211\) 19.3846 19.3846i 1.33449 1.33449i 0.433192 0.901302i \(-0.357387\pi\)
0.901302 0.433192i \(-0.142613\pi\)
\(212\) 2.44943 + 5.53892i 0.168227 + 0.380415i
\(213\) −0.492029 + 1.83628i −0.0337133 + 0.125820i
\(214\) −2.40888 + 12.9066i −0.164668 + 0.882279i
\(215\) −18.4818 10.6705i −1.26045 0.727722i
\(216\) 6.31810 10.2235i 0.429892 0.695622i
\(217\) 0 0
\(218\) 0.945005 + 0.809166i 0.0640038 + 0.0548036i
\(219\) −2.25968 + 0.605480i −0.152695 + 0.0409145i
\(220\) 27.7535 22.3591i 1.87114 1.50745i
\(221\) 0.564040 2.10503i 0.0379414 0.141599i
\(222\) 1.49847 3.13148i 0.100571 0.210171i
\(223\) −22.1379 −1.48247 −0.741233 0.671248i \(-0.765759\pi\)
−0.741233 + 0.671248i \(0.765759\pi\)
\(224\) 0 0
\(225\) 25.1486 1.67658
\(226\) −1.16734 + 2.43948i −0.0776502 + 0.162272i
\(227\) −2.22844 + 8.31664i −0.147907 + 0.551995i 0.851702 + 0.524026i \(0.175571\pi\)
−0.999609 + 0.0279688i \(0.991096\pi\)
\(228\) −3.84463 + 3.09736i −0.254617 + 0.205128i
\(229\) −24.4498 + 6.55130i −1.61569 + 0.432922i −0.949731 0.313067i \(-0.898643\pi\)
−0.665957 + 0.745990i \(0.731977\pi\)
\(230\) −8.68544 7.43696i −0.572701 0.490379i
\(231\) 0 0
\(232\) 18.0422 + 11.1501i 1.18453 + 0.732037i
\(233\) −13.4837 7.78481i −0.883346 0.510000i −0.0115857 0.999933i \(-0.503688\pi\)
−0.871760 + 0.489933i \(0.837021\pi\)
\(234\) 1.17579 6.29981i 0.0768638 0.411832i
\(235\) −1.66424 + 6.21103i −0.108563 + 0.405163i
\(236\) 5.83998 + 13.2060i 0.380151 + 0.859639i
\(237\) 0.686140 0.686140i 0.0445696 0.0445696i
\(238\) 0 0
\(239\) 11.6230i 0.751832i −0.926654 0.375916i \(-0.877328\pi\)
0.926654 0.375916i \(-0.122672\pi\)
\(240\) 12.1986 + 2.65703i 0.787415 + 0.171510i
\(241\) −2.43625 + 1.40657i −0.156933 + 0.0906051i −0.576410 0.817161i \(-0.695547\pi\)
0.419477 + 0.907766i \(0.362213\pi\)
\(242\) 10.9307 7.49224i 0.702650 0.481619i
\(243\) 15.1888 4.06982i 0.974361 0.261079i
\(244\) −7.70131 + 10.5441i −0.493026 + 0.675018i
\(245\) 0 0
\(246\) 6.86769 + 5.88050i 0.437868 + 0.374927i
\(247\) −2.97899 + 5.15975i −0.189548 + 0.328307i
\(248\) −8.03496 8.53125i −0.510221 0.541735i
\(249\) 2.22595 1.28515i 0.141064 0.0814432i
\(250\) 10.3793 + 29.4276i 0.656443 + 1.86117i
\(251\) 1.99507 1.99507i 0.125928 0.125928i −0.641334 0.767262i \(-0.721619\pi\)
0.767262 + 0.641334i \(0.221619\pi\)
\(252\) 0 0
\(253\) −6.53554 6.53554i −0.410886 0.410886i
\(254\) −15.2581 7.30127i −0.957377 0.458123i
\(255\) 1.78250 + 3.08737i 0.111624 + 0.193339i
\(256\) −14.5506 6.65436i −0.909411 0.415898i
\(257\) −12.9550 7.47955i −0.808108 0.466561i 0.0381904 0.999270i \(-0.487841\pi\)
−0.846298 + 0.532709i \(0.821174\pi\)
\(258\) −0.466544 6.02477i −0.0290458 0.375086i
\(259\) 0 0
\(260\) 14.8865 2.31947i 0.923224 0.143847i
\(261\) 4.60958 + 17.2032i 0.285326 + 1.06485i
\(262\) −1.44060 + 7.71863i −0.0890003 + 0.476858i
\(263\) −7.39409 12.8069i −0.455939 0.789710i 0.542802 0.839860i \(-0.317363\pi\)
−0.998742 + 0.0501505i \(0.984030\pi\)
\(264\) 9.66510 + 2.90260i 0.594846 + 0.178643i
\(265\) −11.9559 −0.734447
\(266\) 0 0
\(267\) 4.88162 + 4.88162i 0.298750 + 0.298750i
\(268\) −0.516044 1.16694i −0.0315224 0.0712820i
\(269\) 23.1455 + 6.20182i 1.41121 + 0.378132i 0.882356 0.470583i \(-0.155956\pi\)
0.528851 + 0.848715i \(0.322623\pi\)
\(270\) 13.4137 + 19.5696i 0.816330 + 1.19097i
\(271\) −7.37718 + 12.7776i −0.448131 + 0.776186i −0.998264 0.0588906i \(-0.981244\pi\)
0.550133 + 0.835077i \(0.314577\pi\)
\(272\) −1.38999 4.35224i −0.0842805 0.263894i
\(273\) 0 0
\(274\) −1.56582 20.2204i −0.0945946 1.22156i
\(275\) 12.3690 + 46.1616i 0.745877 + 2.78365i
\(276\) 0.346522 3.21911i 0.0208582 0.193767i
\(277\) −17.7680 4.76091i −1.06757 0.286055i −0.318077 0.948065i \(-0.603037\pi\)
−0.749496 + 0.662009i \(0.769704\pi\)
\(278\) −9.71841 27.5539i −0.582871 1.65257i
\(279\) 9.84094i 0.589162i
\(280\) 0 0
\(281\) 31.9694i 1.90713i 0.301185 + 0.953566i \(0.402618\pi\)
−0.301185 + 0.953566i \(0.597382\pi\)
\(282\) −1.71705 + 0.605613i −0.102249 + 0.0360637i
\(283\) 3.17648 + 0.851136i 0.188822 + 0.0505948i 0.351991 0.936003i \(-0.385505\pi\)
−0.163169 + 0.986598i \(0.552171\pi\)
\(284\) 3.01740 + 3.74539i 0.179050 + 0.222248i
\(285\) −2.52255 9.41428i −0.149423 0.557654i
\(286\) 12.1419 0.940243i 0.717967 0.0555977i
\(287\) 0 0
\(288\) −5.06347 12.4448i −0.298368 0.733318i
\(289\) −7.84768 + 13.5926i −0.461628 + 0.799564i
\(290\) −34.5361 + 23.6722i −2.02803 + 1.39008i
\(291\) −6.43674 1.72472i −0.377329 0.101105i
\(292\) −2.13493 + 5.52018i −0.124937 + 0.323044i
\(293\) −6.98254 6.98254i −0.407925 0.407925i 0.473090 0.881014i \(-0.343139\pi\)
−0.881014 + 0.473090i \(0.843139\pi\)
\(294\) 0 0
\(295\) −28.5056 −1.65966
\(296\) −4.16174 7.73434i −0.241896 0.449549i
\(297\) 9.58888 + 16.6084i 0.556403 + 0.963719i
\(298\) 16.3876 + 3.05857i 0.949310 + 0.177178i
\(299\) −1.01126 3.77406i −0.0584824 0.218259i
\(300\) −9.87403 + 13.5189i −0.570077 + 0.780513i
\(301\) 0 0
\(302\) −19.3276 + 1.49669i −1.11218 + 0.0861248i
\(303\) −10.0872 5.82388i −0.579497 0.334573i
\(304\) 0.591024 + 12.4768i 0.0338976 + 0.715592i
\(305\) −12.8881 22.3229i −0.737973 1.27821i
\(306\) 1.65601 3.46071i 0.0946680 0.197836i
\(307\) 23.3885 + 23.3885i 1.33485 + 1.33485i 0.900967 + 0.433888i \(0.142859\pi\)
0.433888 + 0.900967i \(0.357141\pi\)
\(308\) 0 0
\(309\) −4.43659 + 4.43659i −0.252389 + 0.252389i
\(310\) 21.8180 7.69533i 1.23918 0.437065i
\(311\) −21.8118 + 12.5931i −1.23684 + 0.714087i −0.968446 0.249223i \(-0.919825\pi\)
−0.268390 + 0.963310i \(0.586491\pi\)
\(312\) 2.92487 + 3.10553i 0.165588 + 0.175816i
\(313\) −4.22602 + 7.31969i −0.238869 + 0.413733i −0.960390 0.278659i \(-0.910110\pi\)
0.721521 + 0.692393i \(0.243443\pi\)
\(314\) 1.91681 2.23859i 0.108172 0.126331i
\(315\) 0 0
\(316\) −0.377948 2.42570i −0.0212612 0.136456i
\(317\) 18.4857 4.95323i 1.03826 0.278201i 0.300868 0.953666i \(-0.402724\pi\)
0.737393 + 0.675464i \(0.236057\pi\)
\(318\) −1.91399 2.79239i −0.107331 0.156589i
\(319\) −29.3102 + 16.9222i −1.64106 + 0.947464i
\(320\) 23.6315 20.9575i 1.32104 1.17156i
\(321\) 7.33914i 0.409631i
\(322\) 0 0
\(323\) −2.52207 + 2.52207i −0.140332 + 0.140332i
\(324\) 2.71707 7.02540i 0.150948 0.390300i
\(325\) −5.22880 + 19.5141i −0.290041 + 1.08245i
\(326\) −2.50749 0.467994i −0.138877 0.0259198i
\(327\) −0.602258 0.347714i −0.0333050 0.0192286i
\(328\) 22.2623 5.25606i 1.22923 0.290217i
\(329\) 0 0
\(330\) −12.9573 + 15.1325i −0.713273 + 0.833014i
\(331\) −13.9616 + 3.74100i −0.767399 + 0.205624i −0.621222 0.783635i \(-0.713364\pi\)
−0.146177 + 0.989258i \(0.546697\pi\)
\(332\) 0.695979 6.46549i 0.0381968 0.354840i
\(333\) 1.90884 7.12389i 0.104604 0.390387i
\(334\) 27.5549 + 13.1856i 1.50774 + 0.721482i
\(335\) 2.51887 0.137621
\(336\) 0 0
\(337\) −13.7159 −0.747152 −0.373576 0.927600i \(-0.621868\pi\)
−0.373576 + 0.927600i \(0.621868\pi\)
\(338\) −11.9400 5.71350i −0.649449 0.310774i
\(339\) 0.391258 1.46020i 0.0212502 0.0793069i
\(340\) 8.96757 + 0.965317i 0.486335 + 0.0523517i
\(341\) 18.0635 4.84011i 0.978196 0.262107i
\(342\) −6.82189 + 7.96712i −0.368886 + 0.430812i
\(343\) 0 0
\(344\) −13.0052 8.03715i −0.701191 0.433334i
\(345\) 5.53529 + 3.19580i 0.298010 + 0.172056i
\(346\) −12.2160 2.27998i −0.656736 0.122572i
\(347\) −2.43191 + 9.07603i −0.130552 + 0.487227i −0.999977 0.00683892i \(-0.997823\pi\)
0.869425 + 0.494066i \(0.164490\pi\)
\(348\) −11.0576 4.27651i −0.592748 0.229245i
\(349\) 8.35069 8.35069i 0.447002 0.447002i −0.447355 0.894357i \(-0.647634\pi\)
0.894357 + 0.447355i \(0.147634\pi\)
\(350\) 0 0
\(351\) 8.10712i 0.432726i
\(352\) 20.3527 15.4150i 1.08480 0.821624i
\(353\) −16.9374 + 9.77882i −0.901488 + 0.520474i −0.877683 0.479242i \(-0.840911\pi\)
−0.0238051 + 0.999717i \(0.507578\pi\)
\(354\) −4.56339 6.65767i −0.242541 0.353851i
\(355\) −9.17127 + 2.45743i −0.486760 + 0.130427i
\(356\) 17.2579 2.68895i 0.914669 0.142514i
\(357\) 0 0
\(358\) 1.60663 1.87635i 0.0849133 0.0991681i
\(359\) 8.80385 15.2487i 0.464650 0.804797i −0.534536 0.845146i \(-0.679514\pi\)
0.999186 + 0.0403489i \(0.0128469\pi\)
\(360\) 26.5113 + 0.794222i 1.39727 + 0.0418592i
\(361\) −8.00970 + 4.62440i −0.421563 + 0.243390i
\(362\) 9.98789 3.52278i 0.524952 0.185153i
\(363\) −5.23794 + 5.23794i −0.274920 + 0.274920i
\(364\) 0 0
\(365\) −8.26189 8.26189i −0.432447 0.432447i
\(366\) 3.15044 6.58373i 0.164676 0.344137i
\(367\) −16.4811 28.5462i −0.860309 1.49010i −0.871631 0.490163i \(-0.836937\pi\)
0.0113220 0.999936i \(-0.496396\pi\)
\(368\) −6.05974 5.51160i −0.315886 0.287312i
\(369\) 16.6347 + 9.60402i 0.865966 + 0.499966i
\(370\) 17.2868 1.33865i 0.898697 0.0695931i
\(371\) 0 0
\(372\) 5.29009 + 3.86382i 0.274278 + 0.200330i
\(373\) 3.47655 + 12.9747i 0.180009 + 0.671802i 0.995644 + 0.0932356i \(0.0297210\pi\)
−0.815635 + 0.578566i \(0.803612\pi\)
\(374\) 7.16679 + 1.33760i 0.370586 + 0.0691657i
\(375\) −8.72133 15.1058i −0.450368 0.780059i
\(376\) −1.32493 + 4.41175i −0.0683279 + 0.227519i
\(377\) −14.3073 −0.736861
\(378\) 0 0
\(379\) 0.617225 + 0.617225i 0.0317047 + 0.0317047i 0.722781 0.691077i \(-0.242863\pi\)
−0.691077 + 0.722781i \(0.742863\pi\)
\(380\) −22.9981 8.89453i −1.17978 0.456280i
\(381\) 9.13298 + 2.44718i 0.467897 + 0.125373i
\(382\) 31.7297 21.7486i 1.62343 1.11275i
\(383\) −0.214398 + 0.371348i −0.0109552 + 0.0189750i −0.871451 0.490483i \(-0.836821\pi\)
0.860496 + 0.509457i \(0.170154\pi\)
\(384\) 8.67788 + 2.16426i 0.442841 + 0.110444i
\(385\) 0 0
\(386\) 8.12622 0.629276i 0.413614 0.0320293i
\(387\) −3.32267 12.4004i −0.168901 0.630346i
\(388\) −13.1288 + 10.5770i −0.666513 + 0.536964i
\(389\) 10.1095 + 2.70883i 0.512571 + 0.137343i 0.505828 0.862634i \(-0.331187\pi\)
0.00674269 + 0.999977i \(0.497854\pi\)
\(390\) −7.94216 + 2.80124i −0.402167 + 0.141846i
\(391\) 2.33905i 0.118291i
\(392\) 0 0
\(393\) 4.38907i 0.221399i
\(394\) 8.49781 + 24.0932i 0.428113 + 1.21380i
\(395\) 4.68126 + 1.25434i 0.235540 + 0.0631126i
\(396\) 21.3161 + 2.29458i 1.07117 + 0.115307i
\(397\) −7.22485 26.9635i −0.362605 1.35326i −0.870639 0.491922i \(-0.836294\pi\)
0.508034 0.861337i \(-0.330372\pi\)
\(398\) 0.601327 + 7.76530i 0.0301418 + 0.389239i
\(399\) 0 0
\(400\) 12.8856 + 40.3465i 0.644278 + 2.01732i
\(401\) −13.1880 + 22.8422i −0.658575 + 1.14069i 0.322410 + 0.946600i \(0.395507\pi\)
−0.980985 + 0.194085i \(0.937826\pi\)
\(402\) 0.403239 + 0.588299i 0.0201117 + 0.0293417i
\(403\) 7.63610 + 2.04609i 0.380381 + 0.101923i
\(404\) −26.9510 + 11.9183i −1.34086 + 0.592958i
\(405\) 10.5147 + 10.5147i 0.522480 + 0.522480i
\(406\) 0 0
\(407\) 14.0151 0.694702
\(408\) 1.21014 + 2.24897i 0.0599108 + 0.111341i
\(409\) 8.91434 + 15.4401i 0.440786 + 0.763463i 0.997748 0.0670744i \(-0.0213665\pi\)
−0.556962 + 0.830538i \(0.688033\pi\)
\(410\) −8.28494 + 44.3902i −0.409164 + 2.19228i
\(411\) 2.93414 + 10.9503i 0.144730 + 0.540141i
\(412\) 2.44382 + 15.6846i 0.120398 + 0.772725i
\(413\) 0 0
\(414\) −0.531059 6.85789i −0.0261001 0.337047i
\(415\) 11.1175 + 6.41868i 0.545735 + 0.315081i
\(416\) 10.7094 1.34153i 0.525070 0.0657740i
\(417\) 8.16602 + 14.1440i 0.399892 + 0.692633i
\(418\) −17.9793 8.60342i −0.879396 0.420807i
\(419\) −19.6171 19.6171i −0.958358 0.958358i 0.0408093 0.999167i \(-0.487006\pi\)
−0.999167 + 0.0408093i \(0.987006\pi\)
\(420\) 0 0
\(421\) −5.25405 + 5.25405i −0.256067 + 0.256067i −0.823452 0.567385i \(-0.807955\pi\)
0.567385 + 0.823452i \(0.307955\pi\)
\(422\) 12.8955 + 36.5618i 0.627745 + 1.77980i
\(423\) −3.34986 + 1.93404i −0.162876 + 0.0940363i
\(424\) −8.56113 0.256473i −0.415765 0.0124554i
\(425\) −6.04714 + 10.4740i −0.293329 + 0.508061i
\(426\) −2.04215 1.74861i −0.0989427 0.0847202i
\(427\) 0 0
\(428\) −14.9943 10.9517i −0.724777 0.529369i
\(429\) −6.57546 + 1.76189i −0.317466 + 0.0850648i
\(430\) 24.8942 17.0633i 1.20050 0.822865i
\(431\) 23.2543 13.4259i 1.12012 0.646701i 0.178687 0.983906i \(-0.442815\pi\)
0.941431 + 0.337205i \(0.109482\pi\)
\(432\) 9.18515 + 14.3007i 0.441921 + 0.688043i
\(433\) 18.6517i 0.896344i 0.893947 + 0.448172i \(0.147925\pi\)
−0.893947 + 0.448172i \(0.852075\pi\)
\(434\) 0 0
\(435\) 16.5496 16.5496i 0.793491 0.793491i
\(436\) −1.60911 + 0.711581i −0.0770622 + 0.0340785i
\(437\) −1.65509 + 6.17686i −0.0791735 + 0.295479i
\(438\) 0.606995 3.25224i 0.0290033 0.155398i
\(439\) 17.5460 + 10.1302i 0.837427 + 0.483488i 0.856389 0.516332i \(-0.172703\pi\)
−0.0189621 + 0.999820i \(0.506036\pi\)
\(440\) 11.5813 + 49.0535i 0.552119 + 2.33853i
\(441\) 0 0
\(442\) 2.34103 + 2.00452i 0.111352 + 0.0953454i
\(443\) 34.1538 9.15149i 1.62270 0.434800i 0.670904 0.741544i \(-0.265906\pi\)
0.951792 + 0.306744i \(0.0992394\pi\)
\(444\) 3.08005 + 3.82314i 0.146173 + 0.181438i
\(445\) −8.92414 + 33.3053i −0.423045 + 1.57882i
\(446\) 13.5138 28.2410i 0.639898 1.33725i
\(447\) −9.31855 −0.440752
\(448\) 0 0
\(449\) 14.0702 0.664012 0.332006 0.943277i \(-0.392275\pi\)
0.332006 + 0.943277i \(0.392275\pi\)
\(450\) −15.3517 + 32.0817i −0.723685 + 1.51234i
\(451\) −9.44718 + 35.2573i −0.444850 + 1.66020i
\(452\) −2.39942 2.97831i −0.112859 0.140088i
\(453\) 10.4669 2.80460i 0.491777 0.131771i
\(454\) −9.24907 7.91957i −0.434080 0.371684i
\(455\) 0 0
\(456\) −1.60434 6.79527i −0.0751300 0.318218i
\(457\) −4.61613 2.66512i −0.215933 0.124669i 0.388133 0.921604i \(-0.373120\pi\)
−0.604066 + 0.796934i \(0.706454\pi\)
\(458\) 6.56770 35.1893i 0.306888 1.64429i
\(459\) −1.25614 + 4.68797i −0.0586314 + 0.218816i
\(460\) 14.7891 6.54006i 0.689546 0.304932i
\(461\) 2.32075 2.32075i 0.108088 0.108088i −0.650995 0.759082i \(-0.725648\pi\)
0.759082 + 0.650995i \(0.225648\pi\)
\(462\) 0 0
\(463\) 15.2932i 0.710736i −0.934727 0.355368i \(-0.884356\pi\)
0.934727 0.355368i \(-0.115644\pi\)
\(464\) −25.2376 + 16.2098i −1.17163 + 0.752519i
\(465\) −11.1996 + 6.46610i −0.519370 + 0.299858i
\(466\) 18.1619 12.4488i 0.841334 0.576678i
\(467\) 29.0012 7.77086i 1.34202 0.359592i 0.484835 0.874606i \(-0.338880\pi\)
0.857182 + 0.515014i \(0.172213\pi\)
\(468\) 7.31882 + 5.34558i 0.338312 + 0.247099i
\(469\) 0 0
\(470\) −6.90739 5.91449i −0.318614 0.272815i
\(471\) −0.823689 + 1.42667i −0.0379536 + 0.0657375i
\(472\) −20.4116 0.611489i −0.939522 0.0281461i
\(473\) 21.1273 12.1978i 0.971433 0.560857i
\(474\) 0.456451 + 1.29414i 0.0209655 + 0.0594419i
\(475\) 23.3803 23.3803i 1.07276 1.07276i
\(476\) 0 0
\(477\) −5.08563 5.08563i −0.232855 0.232855i
\(478\) 14.8273 + 7.09514i 0.678185 + 0.324524i
\(479\) 17.2367 + 29.8548i 0.787564 + 1.36410i 0.927456 + 0.373933i \(0.121991\pi\)
−0.139892 + 0.990167i \(0.544676\pi\)
\(480\) −10.8360 + 13.9396i −0.494593 + 0.636251i
\(481\) 5.13092 + 2.96234i 0.233950 + 0.135071i
\(482\) −0.307157 3.96651i −0.0139906 0.180669i
\(483\) 0 0
\(484\) 2.88523 + 18.5176i 0.131147 + 0.841710i
\(485\) −8.61409 32.1482i −0.391146 1.45978i
\(486\) −4.08001 + 21.8604i −0.185073 + 0.991610i
\(487\) 7.45142 + 12.9062i 0.337656 + 0.584837i 0.983991 0.178216i \(-0.0570326\pi\)
−0.646335 + 0.763053i \(0.723699\pi\)
\(488\) −8.74978 16.2610i −0.396084 0.736099i
\(489\) 1.42584 0.0644787
\(490\) 0 0
\(491\) 30.5248 + 30.5248i 1.37756 + 1.37756i 0.848719 + 0.528844i \(0.177374\pi\)
0.528844 + 0.848719i \(0.322626\pi\)
\(492\) −11.6939 + 5.17131i −0.527204 + 0.233141i
\(493\) −8.27322 2.21680i −0.372607 0.0998398i
\(494\) −4.76372 6.94995i −0.214330 0.312693i
\(495\) −21.1618 + 36.6533i −0.951151 + 1.64744i
\(496\) 15.7880 5.04226i 0.708903 0.226404i
\(497\) 0 0
\(498\) 0.280643 + 3.62411i 0.0125759 + 0.162400i
\(499\) 2.86434 + 10.6899i 0.128225 + 0.478544i 0.999934 0.0114806i \(-0.00365448\pi\)
−0.871709 + 0.490025i \(0.836988\pi\)
\(500\) −43.8762 4.72307i −1.96220 0.211222i
\(501\) −16.4935 4.41942i −0.736875 0.197445i
\(502\) 1.32721 + 3.76294i 0.0592363 + 0.167948i
\(503\) 25.6811i 1.14507i 0.819882 + 0.572533i \(0.194039\pi\)
−0.819882 + 0.572533i \(0.805961\pi\)
\(504\) 0 0
\(505\) 58.1745i 2.58873i
\(506\) 12.3268 4.34773i 0.547994 0.193280i
\(507\) 7.14688 + 1.91500i 0.317404 + 0.0850482i
\(508\) 18.6282 15.0075i 0.826493 0.665849i
\(509\) −3.97493 14.8346i −0.176186 0.657534i −0.996347 0.0854009i \(-0.972783\pi\)
0.820161 0.572133i \(-0.193884\pi\)
\(510\) −5.02661 + 0.389249i −0.222582 + 0.0172362i
\(511\) 0 0
\(512\) 17.3711 14.4998i 0.767700 0.640809i
\(513\) 6.63431 11.4910i 0.292912 0.507338i
\(514\) 17.4497 11.9606i 0.769674 0.527560i
\(515\) −30.2691 8.11057i −1.33381 0.357394i
\(516\) 7.97049 + 3.08258i 0.350881 + 0.135703i
\(517\) −5.19760 5.19760i −0.228590 0.228590i
\(518\) 0 0
\(519\) 6.94641 0.304914
\(520\) −6.12840 + 20.4064i −0.268748 + 0.894879i
\(521\) −14.9189 25.8403i −0.653609 1.13208i −0.982241 0.187626i \(-0.939921\pi\)
0.328632 0.944458i \(-0.393412\pi\)
\(522\) −24.7597 4.62112i −1.08370 0.202261i
\(523\) −9.32633 34.8063i −0.407812 1.52198i −0.798810 0.601583i \(-0.794537\pi\)
0.390998 0.920392i \(-0.372130\pi\)
\(524\) −8.96712 6.54948i −0.391731 0.286116i
\(525\) 0 0
\(526\) 20.8512 1.61467i 0.909157 0.0704030i
\(527\) 4.09857 + 2.36631i 0.178537 + 0.103078i
\(528\) −9.60274 + 10.5577i −0.417906 + 0.459467i
\(529\) 9.40318 + 16.2868i 0.408834 + 0.708121i
\(530\) 7.29835 15.2520i 0.317020 0.662504i
\(531\) −12.1253 12.1253i −0.526191 0.526191i
\(532\) 0 0
\(533\) −10.9109 + 10.9109i −0.472602 + 0.472602i
\(534\) −9.20733 + 3.24747i −0.398440 + 0.140532i
\(535\) 31.7444 18.3276i 1.37243 0.792372i
\(536\) 1.80365 + 0.0540336i 0.0779060 + 0.00233390i
\(537\) −0.690401 + 1.19581i −0.0297930 + 0.0516030i
\(538\) −22.0405 + 25.7405i −0.950231 + 1.10975i
\(539\) 0 0
\(540\) −33.1528 + 5.16554i −1.42667 + 0.222289i
\(541\) −13.0674 + 3.50141i −0.561813 + 0.150537i −0.528539 0.848909i \(-0.677260\pi\)
−0.0332740 + 0.999446i \(0.510593\pi\)
\(542\) −11.7969 17.2109i −0.506721 0.739271i
\(543\) −5.12698 + 2.96007i −0.220020 + 0.127029i
\(544\) 6.40058 + 0.883590i 0.274423 + 0.0378836i
\(545\) 3.47331i 0.148780i
\(546\) 0 0
\(547\) −19.9064 + 19.9064i −0.851134 + 0.851134i −0.990273 0.139139i \(-0.955567\pi\)
0.139139 + 0.990273i \(0.455567\pi\)
\(548\) 26.7506 + 10.3458i 1.14273 + 0.441950i
\(549\) 4.01321 14.9775i 0.171280 0.639225i
\(550\) −66.4380 12.3999i −2.83293 0.528734i
\(551\) 20.2790 + 11.7081i 0.863914 + 0.498781i
\(552\) 3.89503 + 2.40712i 0.165783 + 0.102454i
\(553\) 0 0
\(554\) 16.9196 19.7600i 0.718847 0.839523i
\(555\) −9.36167 + 2.50845i −0.397381 + 0.106478i
\(556\) 41.0825 + 4.42234i 1.74229 + 0.187549i
\(557\) 3.45569 12.8968i 0.146422 0.546456i −0.853265 0.521477i \(-0.825381\pi\)
0.999688 0.0249794i \(-0.00795201\pi\)
\(558\) 12.5539 + 6.00728i 0.531450 + 0.254309i
\(559\) 10.3129 0.436190
\(560\) 0 0
\(561\) −4.07527 −0.172058
\(562\) −40.7827 19.5153i −1.72032 0.823203i
\(563\) −6.53907 + 24.4041i −0.275589 + 1.02851i 0.679857 + 0.733345i \(0.262042\pi\)
−0.955446 + 0.295167i \(0.904625\pi\)
\(564\) 0.275583 2.56010i 0.0116041 0.107800i
\(565\) 7.29293 1.95413i 0.306816 0.0822110i
\(566\) −3.02482 + 3.53262i −0.127143 + 0.148487i
\(567\) 0 0
\(568\) −6.61986 + 1.56292i −0.277763 + 0.0655788i
\(569\) 10.8718 + 6.27682i 0.455768 + 0.263138i 0.710263 0.703936i \(-0.248576\pi\)
−0.254495 + 0.967074i \(0.581909\pi\)
\(570\) 13.5495 + 2.52886i 0.567526 + 0.105922i
\(571\) 10.2203 38.1427i 0.427706 1.59622i −0.330235 0.943899i \(-0.607128\pi\)
0.757942 0.652322i \(-0.226205\pi\)
\(572\) −6.21244 + 16.0632i −0.259755 + 0.671636i
\(573\) −15.2048 + 15.2048i −0.635188 + 0.635188i
\(574\) 0 0
\(575\) 21.6836i 0.904268i
\(576\) 18.9666 + 1.13742i 0.790274 + 0.0473924i
\(577\) 20.1944 11.6592i 0.840702 0.485380i −0.0168006 0.999859i \(-0.505348\pi\)
0.857503 + 0.514479i \(0.172015\pi\)
\(578\) −12.5493 18.3086i −0.521982 0.761537i
\(579\) −4.40076 + 1.17918i −0.182889 + 0.0490050i
\(580\) −9.11603 58.5074i −0.378523 2.42939i
\(581\) 0 0
\(582\) 6.12943 7.15841i 0.254073 0.296725i
\(583\) 6.83364 11.8362i 0.283020 0.490206i
\(584\) −5.73875 6.09321i −0.237471 0.252139i
\(585\) −15.4946 + 8.94583i −0.640624 + 0.369865i
\(586\) 13.1699 4.64510i 0.544044 0.191887i
\(587\) 24.2488 24.2488i 1.00085 1.00085i 0.000853494 1.00000i \(-0.499728\pi\)
1.00000 0.000853494i \(-0.000271676\pi\)
\(588\) 0 0
\(589\) −9.14897 9.14897i −0.376977 0.376977i
\(590\) 17.4009 36.3641i 0.716384 1.49709i
\(591\) −7.14040 12.3675i −0.293717 0.508732i
\(592\) 12.4070 0.587721i 0.509926 0.0241552i
\(593\) −33.2134 19.1758i −1.36391 0.787454i −0.373768 0.927522i \(-0.621934\pi\)
−0.990142 + 0.140068i \(0.955268\pi\)
\(594\) −27.0405 + 2.09395i −1.10948 + 0.0859160i
\(595\) 0 0
\(596\) −13.9054 + 19.0384i −0.569587 + 0.779841i
\(597\) −1.12681 4.20530i −0.0461171 0.172112i
\(598\) 5.43181 + 1.01379i 0.222123 + 0.0414568i
\(599\) −0.398968 0.691033i −0.0163014 0.0282348i 0.857760 0.514051i \(-0.171856\pi\)
−0.874061 + 0.485816i \(0.838522\pi\)
\(600\) −11.2183 20.8486i −0.457986 0.851139i
\(601\) −4.37578 −0.178492 −0.0892459 0.996010i \(-0.528446\pi\)
−0.0892459 + 0.996010i \(0.528446\pi\)
\(602\) 0 0
\(603\) 1.07144 + 1.07144i 0.0436323 + 0.0436323i
\(604\) 9.88902 25.5696i 0.402379 1.04041i
\(605\) −35.7363 9.57552i −1.45289 0.389300i
\(606\) 13.5871 9.31301i 0.551936 0.378315i
\(607\) 3.27685 5.67568i 0.133003 0.230369i −0.791830 0.610742i \(-0.790871\pi\)
0.924833 + 0.380373i \(0.124205\pi\)
\(608\) −16.2772 6.86233i −0.660127 0.278304i
\(609\) 0 0
\(610\) 36.3444 2.81443i 1.47154 0.113953i
\(611\) −0.804235 3.00145i −0.0325359 0.121425i
\(612\) 3.40387 + 4.22509i 0.137593 + 0.170789i
\(613\) −18.1595 4.86583i −0.733457 0.196529i −0.127289 0.991866i \(-0.540627\pi\)
−0.606168 + 0.795337i \(0.707294\pi\)
\(614\) −44.1136 + 15.5591i −1.78028 + 0.627914i
\(615\) 25.2417i 1.01785i
\(616\) 0 0
\(617\) 22.2202i 0.894552i −0.894396 0.447276i \(-0.852394\pi\)
0.894396 0.447276i \(-0.147606\pi\)
\(618\) −2.95142 8.36794i −0.118723 0.336608i
\(619\) 8.23929 + 2.20771i 0.331165 + 0.0887354i 0.420570 0.907260i \(-0.361830\pi\)
−0.0894053 + 0.995995i \(0.528497\pi\)
\(620\) −3.50174 + 32.5304i −0.140633 + 1.30645i
\(621\) 2.25210 + 8.40496i 0.0903738 + 0.337280i
\(622\) −2.74999 35.5123i −0.110264 1.42391i
\(623\) 0 0
\(624\) −5.74713 + 1.83548i −0.230069 + 0.0734779i
\(625\) 17.0872 29.5959i 0.683489 1.18384i
\(626\) −6.75787 9.85928i −0.270099 0.394056i
\(627\) 10.7618 + 2.88362i 0.429785 + 0.115161i
\(628\) 1.68564 + 3.81176i 0.0672645 + 0.152106i
\(629\) 2.50798 + 2.50798i 0.0999997 + 0.0999997i
\(630\) 0 0
\(631\) 45.0684 1.79415 0.897073 0.441882i \(-0.145689\pi\)
0.897073 + 0.441882i \(0.145689\pi\)
\(632\) 3.32514 + 0.998598i 0.132267 + 0.0397221i
\(633\) −10.8356 18.7679i −0.430678 0.745956i
\(634\) −4.96563 + 26.6055i −0.197210 + 1.05664i
\(635\) 12.2224 + 45.6146i 0.485031 + 1.81016i
\(636\) 4.73058 0.737070i 0.187580 0.0292267i
\(637\) 0 0
\(638\) −3.69537 47.7205i −0.146301 1.88927i
\(639\) −4.94643 2.85582i −0.195678 0.112975i
\(640\) 12.3096 + 42.9396i 0.486579 + 1.69734i
\(641\) −14.4649 25.0540i −0.571329 0.989572i −0.996430 0.0844254i \(-0.973095\pi\)
0.425100 0.905146i \(-0.360239\pi\)
\(642\) 9.36241 + 4.48009i 0.369505 + 0.176815i
\(643\) −27.4126 27.4126i −1.08105 1.08105i −0.996412 0.0846366i \(-0.973027\pi\)
−0.0846366 0.996412i \(-0.526973\pi\)
\(644\) 0 0
\(645\) −11.9292 + 11.9292i −0.469712 + 0.469712i
\(646\) −1.67780 4.75693i −0.0660120 0.187159i
\(647\) 25.8281 14.9119i 1.01541 0.586247i 0.102638 0.994719i \(-0.467272\pi\)
0.912771 + 0.408472i \(0.133938\pi\)
\(648\) 7.30358 + 7.75469i 0.286912 + 0.304633i
\(649\) 16.2929 28.2201i 0.639553 1.10774i
\(650\) −21.7020 18.5825i −0.851222 0.728864i
\(651\) 0 0
\(652\) 2.12768 2.91308i 0.0833263 0.114085i
\(653\) −12.5980 + 3.37562i −0.492997 + 0.132098i −0.496748 0.867895i \(-0.665473\pi\)
0.00375078 + 0.999993i \(0.498806\pi\)
\(654\) 0.811214 0.556032i 0.0317210 0.0217426i
\(655\) 18.9843 10.9606i 0.741776 0.428265i
\(656\) −6.88472 + 31.6082i −0.268803 + 1.23409i
\(657\) 7.02862i 0.274213i
\(658\) 0 0
\(659\) −15.1555 + 15.1555i −0.590375 + 0.590375i −0.937733 0.347358i \(-0.887079\pi\)
0.347358 + 0.937733i \(0.387079\pi\)
\(660\) −11.3946 25.7668i −0.443535 1.00297i
\(661\) −0.571930 + 2.13447i −0.0222455 + 0.0830213i −0.976156 0.217069i \(-0.930350\pi\)
0.953911 + 0.300091i \(0.0970169\pi\)
\(662\) 3.75036 20.0942i 0.145762 0.780984i
\(663\) −1.49196 0.861381i −0.0579428 0.0334533i
\(664\) 7.82305 + 4.83463i 0.303593 + 0.187620i
\(665\) 0 0
\(666\) 7.92259 + 6.78377i 0.306994 + 0.262866i
\(667\) −14.8329 + 3.97446i −0.574332 + 0.153892i
\(668\) −33.6412 + 27.1024i −1.30162 + 1.04862i
\(669\) −4.52945 + 16.9041i −0.175118 + 0.653551i
\(670\) −1.53761 + 3.21328i −0.0594032 + 0.124140i
\(671\) 29.4658 1.13752
\(672\) 0 0
\(673\) −50.4864 −1.94611 −0.973054 0.230577i \(-0.925939\pi\)
−0.973054 + 0.230577i \(0.925939\pi\)
\(674\) 8.37270 17.4971i 0.322504 0.673964i
\(675\) 11.6447 43.4587i 0.448205 1.67273i
\(676\) 14.5772 11.7439i 0.560663 0.451688i
\(677\) −28.6211 + 7.66899i −1.10000 + 0.294743i −0.762763 0.646678i \(-0.776158\pi\)
−0.337234 + 0.941421i \(0.609491\pi\)
\(678\) 1.62391 + 1.39048i 0.0623658 + 0.0534010i
\(679\) 0 0
\(680\) −6.70558 + 10.8505i −0.257147 + 0.416098i
\(681\) 5.89450 + 3.40319i 0.225878 + 0.130410i
\(682\) −4.85222 + 25.9979i −0.185801 + 0.995512i
\(683\) −0.972755 + 3.63037i −0.0372214 + 0.138912i −0.982036 0.188693i \(-0.939575\pi\)
0.944815 + 0.327605i \(0.106242\pi\)
\(684\) −5.99917 13.5660i −0.229384 0.518709i
\(685\) −40.0368 + 40.0368i −1.52973 + 1.52973i
\(686\) 0 0
\(687\) 20.0098i 0.763423i
\(688\) 18.1917 11.6843i 0.693551 0.445458i
\(689\) 5.00358 2.88882i 0.190621 0.110055i
\(690\) −7.45578 + 5.11043i −0.283837 + 0.194551i
\(691\) −13.8605 + 3.71391i −0.527278 + 0.141284i −0.512631 0.858609i \(-0.671329\pi\)
−0.0146470 + 0.999893i \(0.504662\pi\)
\(692\) 10.3656 14.1919i 0.394042 0.539496i
\(693\) 0 0
\(694\) −10.0936 8.64270i −0.383148 0.328072i
\(695\) −40.7851 + 70.6418i −1.54707 + 2.67960i
\(696\) 12.2054 11.4954i 0.462646 0.435732i
\(697\) −7.99980 + 4.61869i −0.303014 + 0.174945i
\(698\) 5.55525 + 15.7504i 0.210269 + 0.596162i
\(699\) −8.70312 + 8.70312i −0.329182 + 0.329182i
\(700\) 0 0
\(701\) 12.9519 + 12.9519i 0.489187 + 0.489187i 0.908050 0.418863i \(-0.137571\pi\)
−0.418863 + 0.908050i \(0.637571\pi\)
\(702\) −10.3421 4.94889i −0.390338 0.186784i
\(703\) −4.84835 8.39758i −0.182859 0.316721i
\(704\) 7.24063 + 35.3735i 0.272891 + 1.33319i
\(705\) 4.40212 + 2.54157i 0.165794 + 0.0957210i
\(706\) −2.13543 27.5761i −0.0803681 1.03784i
\(707\) 0 0
\(708\) 11.2787 1.75734i 0.423881 0.0660448i
\(709\) −0.167036 0.623389i −0.00627319 0.0234119i 0.962718 0.270506i \(-0.0871910\pi\)
−0.968991 + 0.247094i \(0.920524\pi\)
\(710\) 2.46358 13.1997i 0.0924566 0.495377i
\(711\) 1.45769 + 2.52479i 0.0546676 + 0.0946870i
\(712\) −7.10464 + 23.6571i −0.266258 + 0.886587i
\(713\) 8.48503 0.317767
\(714\) 0 0
\(715\) −24.0413 24.0413i −0.899094 0.899094i
\(716\) 1.41287 + 3.19495i 0.0528016 + 0.119401i
\(717\) −8.87514 2.37809i −0.331448 0.0888113i
\(718\) 14.0783 + 20.5393i 0.525398 + 0.766521i
\(719\) 15.4833 26.8178i 0.577429 1.00014i −0.418344 0.908289i \(-0.637389\pi\)
0.995773 0.0918476i \(-0.0292772\pi\)
\(720\) −17.1967 + 33.3352i −0.640883 + 1.24233i
\(721\) 0 0
\(722\) −1.00985 13.0407i −0.0375826 0.485326i
\(723\) 0.575572 + 2.14806i 0.0214057 + 0.0798873i
\(724\) −1.60303 + 14.8918i −0.0595763 + 0.553450i
\(725\) 76.6949 + 20.5503i 2.84838 + 0.763221i
\(726\) −3.48451 9.87938i −0.129322 0.366658i
\(727\) 16.7744i 0.622128i 0.950389 + 0.311064i \(0.100685\pi\)
−0.950389 + 0.311064i \(0.899315\pi\)
\(728\) 0 0
\(729\) 1.13181i 0.0419187i
\(730\) 15.5829 5.49618i 0.576750 0.203423i
\(731\) 5.96348 + 1.59791i 0.220567 + 0.0591008i
\(732\) 6.47560 + 8.03792i 0.239345 + 0.297090i
\(733\) −7.88067 29.4110i −0.291079 1.08632i −0.944282 0.329139i \(-0.893242\pi\)
0.653203 0.757183i \(-0.273425\pi\)
\(734\) 46.4766 3.59904i 1.71548 0.132843i
\(735\) 0 0
\(736\) 10.7301 4.36581i 0.395518 0.160926i
\(737\) −1.43971 + 2.49365i −0.0530323 + 0.0918546i
\(738\) −22.4061 + 15.3579i −0.824780 + 0.565331i
\(739\) 24.9711 + 6.69098i 0.918577 + 0.246132i 0.686977 0.726679i \(-0.258937\pi\)
0.231600 + 0.972811i \(0.425604\pi\)
\(740\) −8.84482 + 22.8696i −0.325142 + 0.840704i
\(741\) 3.33039 + 3.33039i 0.122345 + 0.122345i
\(742\) 0 0
\(743\) 16.7597 0.614855 0.307427 0.951572i \(-0.400532\pi\)
0.307427 + 0.951572i \(0.400532\pi\)
\(744\) −8.15827 + 4.38985i −0.299097 + 0.160940i
\(745\) −23.2707 40.3060i −0.852572 1.47670i
\(746\) −18.6738 3.48525i −0.683695 0.127604i
\(747\) 1.99870 + 7.45925i 0.0731286 + 0.272920i
\(748\) −6.08123 + 8.32602i −0.222352 + 0.304430i
\(749\) 0 0
\(750\) 24.5940 1.90450i 0.898046 0.0695427i
\(751\) −19.4065 11.2044i −0.708154 0.408853i 0.102223 0.994761i \(-0.467404\pi\)
−0.810377 + 0.585909i \(0.800738\pi\)
\(752\) −4.81921 4.38328i −0.175738 0.159842i
\(753\) −1.11521 1.93159i −0.0406404 0.0703912i
\(754\) 8.73369 18.2515i 0.318062 0.664681i
\(755\) 38.2692 + 38.2692i 1.39276 + 1.39276i
\(756\) 0 0
\(757\) 10.1520 10.1520i 0.368982 0.368982i −0.498124 0.867106i \(-0.665978\pi\)
0.867106 + 0.498124i \(0.165978\pi\)
\(758\) −1.16416 + 0.410605i −0.0422842 + 0.0149139i
\(759\) −6.32760 + 3.65324i −0.229677 + 0.132604i
\(760\) 25.3855 23.9088i 0.920830 0.867262i
\(761\) −10.0149 + 17.3464i −0.363041 + 0.628805i −0.988460 0.151484i \(-0.951595\pi\)
0.625419 + 0.780289i \(0.284928\pi\)
\(762\) −8.69694 + 10.1569i −0.315057 + 0.367947i
\(763\) 0 0
\(764\) 8.37527 + 53.7532i 0.303007 + 1.94472i
\(765\) −10.3459 + 2.77218i −0.374057 + 0.100228i
\(766\) −0.342845 0.500188i −0.0123875 0.0180725i
\(767\) 11.9297 6.88759i 0.430755 0.248696i
\(768\) −8.05821 + 9.74907i −0.290776 + 0.351789i
\(769\) 50.7365i 1.82960i 0.403902 + 0.914802i \(0.367654\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(770\) 0 0
\(771\) −8.36185 + 8.36185i −0.301144 + 0.301144i
\(772\) −4.15780 + 10.7506i −0.149642 + 0.386923i
\(773\) 7.73070 28.8514i 0.278054 1.03771i −0.675713 0.737165i \(-0.736164\pi\)
0.953767 0.300547i \(-0.0971692\pi\)
\(774\) 17.8472 + 3.33098i 0.641504 + 0.119730i
\(775\) −37.9949 21.9363i −1.36482 0.787977i
\(776\) −5.47855 23.2047i −0.196669 0.833002i
\(777\) 0 0
\(778\) −9.62681 + 11.2429i −0.345138 + 0.403078i
\(779\) 24.3937 6.53627i 0.873994 0.234186i
\(780\) 1.27470 11.8417i 0.0456415 0.423999i
\(781\) 2.80918 10.4840i 0.100520 0.375148i
\(782\) 2.98388 + 1.42784i 0.106703 + 0.0510596i
\(783\) 31.8628 1.13868
\(784\) 0 0
\(785\) −8.22781 −0.293663
\(786\) 5.59905 + 2.67925i 0.199712 + 0.0955658i
\(787\) 9.92221 37.0302i 0.353688 1.31998i −0.528438 0.848972i \(-0.677222\pi\)
0.882127 0.471012i \(-0.156111\pi\)
\(788\) −35.9227 3.86691i −1.27969 0.137753i
\(789\) −11.2920 + 3.02568i −0.402005 + 0.107717i
\(790\) −4.45775 + 5.20610i −0.158600 + 0.185225i
\(791\) 0 0
\(792\) −15.9393 + 25.7919i −0.566379 + 0.916475i
\(793\) 10.7874 + 6.22812i 0.383073 + 0.221167i
\(794\) 38.8072 + 7.24293i 1.37722 + 0.257042i
\(795\) −2.44620 + 9.12933i −0.0867577 + 0.323784i
\(796\) −10.2731 3.97313i −0.364121 0.140824i
\(797\) −18.8328 + 18.8328i −0.667092 + 0.667092i −0.957042 0.289949i \(-0.906361\pi\)
0.289949 + 0.957042i \(0.406361\pi\)
\(798\) 0 0
\(799\) 1.86021i 0.0658094i
\(800\) −59.3351 8.19111i −2.09781 0.289600i
\(801\) −17.9629 + 10.3709i −0.634688 + 0.366437i
\(802\) −21.0890 30.7674i −0.744678 1.08643i
\(803\) 12.9014 3.45692i 0.455280 0.121992i
\(804\) −0.996635 + 0.155285i −0.0351486 + 0.00547650i
\(805\) 0 0
\(806\) −7.27152 + 8.49223i −0.256128 + 0.299126i
\(807\) 9.47120 16.4046i 0.333402 0.577469i
\(808\) 1.24793 41.6563i 0.0439021 1.46546i
\(809\) 17.1772 9.91725i 0.603918 0.348672i −0.166663 0.986014i \(-0.553299\pi\)
0.770581 + 0.637342i \(0.219966\pi\)
\(810\) −19.8320 + 6.99486i −0.696826 + 0.245774i
\(811\) −3.89894 + 3.89894i −0.136910 + 0.136910i −0.772240 0.635330i \(-0.780864\pi\)
0.635330 + 0.772240i \(0.280864\pi\)
\(812\) 0 0
\(813\) 8.24740 + 8.24740i 0.289249 + 0.289249i
\(814\) −8.55534 + 17.8788i −0.299865 + 0.626652i
\(815\) 3.56067 + 6.16726i 0.124725 + 0.216030i
\(816\) −3.60769 + 0.170896i −0.126294 + 0.00598256i
\(817\) −14.6174 8.43938i −0.511400 0.295257i
\(818\) −25.1383 + 1.94665i −0.878940 + 0.0680631i
\(819\) 0 0
\(820\) −51.5704 37.6664i −1.80092 1.31537i
\(821\) −5.00859 18.6923i −0.174801 0.652366i −0.996585 0.0825677i \(-0.973688\pi\)
0.821784 0.569798i \(-0.192979\pi\)
\(822\) −15.7603 2.94148i −0.549702 0.102596i
\(823\) 20.0886 + 34.7944i 0.700243 + 1.21286i 0.968381 + 0.249476i \(0.0802583\pi\)
−0.268138 + 0.963381i \(0.586408\pi\)
\(824\) −21.5004 6.45695i −0.749001 0.224938i
\(825\) 37.7789 1.31529
\(826\) 0 0
\(827\) 11.2802 + 11.2802i 0.392250 + 0.392250i 0.875489 0.483239i \(-0.160540\pi\)
−0.483239 + 0.875489i \(0.660540\pi\)
\(828\) 9.07267 + 3.50885i 0.315297 + 0.121941i
\(829\) 40.7143 + 10.9094i 1.41407 + 0.378898i 0.883375 0.468668i \(-0.155266\pi\)
0.530691 + 0.847565i \(0.321933\pi\)
\(830\) −14.9747 + 10.2642i −0.519780 + 0.356274i
\(831\) −7.27069 + 12.5932i −0.252217 + 0.436853i
\(832\) −4.82603 + 14.4807i −0.167312 + 0.502027i
\(833\) 0 0
\(834\) −23.0281 + 1.78324i −0.797396 + 0.0617486i
\(835\) −22.0727 82.3765i −0.763858 2.85076i
\(836\) 21.9505 17.6840i 0.759173 0.611614i
\(837\) −17.0059 4.55671i −0.587809 0.157503i
\(838\) 37.0002 13.0502i 1.27815 0.450811i
\(839\) 27.4328i 0.947087i −0.880771 0.473543i \(-0.842975\pi\)
0.880771 0.473543i \(-0.157025\pi\)
\(840\) 0 0
\(841\) 27.2308i 0.938992i
\(842\) −3.49523 9.90977i −0.120454 0.341513i
\(843\) 24.4112 + 6.54097i 0.840767 + 0.225283i
\(844\) −54.5131 5.86808i −1.87642 0.201988i
\(845\) 9.56445 + 35.6950i 0.329027 + 1.22795i
\(846\) −0.422343 5.45396i −0.0145204 0.187511i
\(847\) 0 0
\(848\) 5.55322 10.7647i 0.190698 0.369662i
\(849\) 1.29982 2.25136i 0.0446098 0.0772665i
\(850\) −9.67003 14.1079i −0.331679 0.483898i
\(851\) 6.14234 + 1.64584i 0.210557 + 0.0564185i
\(852\) 3.47727 1.53772i 0.119129 0.0526816i
\(853\) 8.95019 + 8.95019i 0.306449 + 0.306449i 0.843530 0.537082i \(-0.180473\pi\)
−0.537082 + 0.843530i \(0.680473\pi\)
\(854\) 0 0
\(855\) 29.2826 1.00144
\(856\) 23.1239 12.4427i 0.790360 0.425281i
\(857\) 26.8241 + 46.4607i 0.916294 + 1.58707i 0.804995 + 0.593281i \(0.202168\pi\)
0.111299 + 0.993787i \(0.464499\pi\)
\(858\) 1.76630 9.46372i 0.0603004 0.323086i
\(859\) 3.41188 + 12.7333i 0.116412 + 0.434455i 0.999389 0.0349617i \(-0.0111309\pi\)
−0.882977 + 0.469417i \(0.844464\pi\)
\(860\) 6.57099 + 42.1731i 0.224069 + 1.43809i
\(861\) 0 0
\(862\) 2.93185 + 37.8607i 0.0998591 + 1.28954i
\(863\) 6.64111 + 3.83425i 0.226066 + 0.130519i 0.608756 0.793358i \(-0.291669\pi\)
−0.382690 + 0.923877i \(0.625002\pi\)
\(864\) −23.8501 + 2.98764i −0.811398 + 0.101642i
\(865\) 17.3469 + 30.0457i 0.589812 + 1.02158i
\(866\) −23.7937 11.3857i −0.808541 0.386902i
\(867\) 8.77341 + 8.77341i 0.297961 + 0.297961i
\(868\) 0 0
\(869\) −3.91744 + 3.91744i −0.132890 + 0.132890i
\(870\) 11.0095 + 31.2145i 0.373257 + 1.05827i
\(871\) −1.05415 + 0.608615i −0.0357186 + 0.0206221i
\(872\) 0.0745077 2.48708i 0.00252315 0.0842233i
\(873\) 10.0106 17.3388i 0.338807 0.586830i
\(874\) −6.86939 5.88195i −0.232361 0.198960i
\(875\) 0 0
\(876\) 3.77830 + 2.75962i 0.127657 + 0.0932391i
\(877\) 14.8501 3.97908i 0.501453 0.134364i 0.000778781 1.00000i \(-0.499752\pi\)
0.500674 + 0.865636i \(0.333085\pi\)
\(878\) −23.6337 + 16.1993i −0.797598 + 0.546700i
\(879\) −6.76038 + 3.90311i −0.228022 + 0.131649i
\(880\) −69.6464 15.1700i −2.34778 0.511380i
\(881\) 21.5605i 0.726392i −0.931713 0.363196i \(-0.881686\pi\)
0.931713 0.363196i \(-0.118314\pi\)
\(882\) 0 0
\(883\) 3.61325 3.61325i 0.121596 0.121596i −0.643690 0.765286i \(-0.722598\pi\)
0.765286 + 0.643690i \(0.222598\pi\)
\(884\) −3.98619 + 1.76278i −0.134070 + 0.0592886i
\(885\) −5.83228 + 21.7664i −0.196050 + 0.731668i
\(886\) −9.17439 + 49.1558i −0.308220 + 1.65142i
\(887\) 31.1537 + 17.9866i 1.04604 + 0.603930i 0.921537 0.388290i \(-0.126934\pi\)
0.124500 + 0.992220i \(0.460267\pi\)
\(888\) −6.75730 + 1.59537i −0.226760 + 0.0535372i
\(889\) 0 0
\(890\) −37.0394 31.7152i −1.24156 1.06310i
\(891\) −16.4193 + 4.39954i −0.550067 + 0.147390i
\(892\) 27.7772 + 34.4787i 0.930048 + 1.15443i
\(893\) −1.31626 + 4.91235i −0.0440470 + 0.164386i
\(894\) 5.68840 11.8875i 0.190248 0.397578i
\(895\) −6.89640 −0.230521
\(896\) 0 0
\(897\) −3.08871 −0.103129
\(898\) −8.58896 + 17.9491i −0.286617 + 0.598968i
\(899\) 8.04158 30.0116i 0.268202 1.00094i
\(900\) −31.5548 39.1677i −1.05183 1.30559i
\(901\) 3.34094 0.895202i 0.111303 0.0298235i
\(902\) −39.2103 33.5740i −1.30556 1.11789i
\(903\) 0 0
\(904\) 5.26407 1.24283i 0.175080 0.0413358i
\(905\) −25.6067 14.7840i −0.851194 0.491437i
\(906\) −2.81161 + 15.0645i −0.0934096 + 0.500483i
\(907\) 4.95935 18.5085i 0.164672 0.614566i −0.833409 0.552656i \(-0.813614\pi\)
0.998082 0.0619098i \(-0.0197191\pi\)
\(908\) 15.7488 6.96447i 0.522644 0.231124i
\(909\) 24.7454 24.7454i 0.820752 0.820752i
\(910\) 0 0
\(911\) 16.9566i 0.561797i −0.959737 0.280899i \(-0.909368\pi\)
0.959737 0.280899i \(-0.0906325\pi\)
\(912\) 9.64796 + 2.10147i 0.319476 + 0.0695865i
\(913\) −12.7088 + 7.33743i −0.420600 + 0.242833i
\(914\) 6.21771 4.26182i 0.205664 0.140969i
\(915\) −19.6823 + 5.27386i −0.650677 + 0.174348i
\(916\) 40.8813 + 29.8592i 1.35075 + 0.986576i
\(917\) 0 0
\(918\) −5.21356 4.46414i −0.172073 0.147339i
\(919\) 19.0403 32.9788i 0.628083 1.08787i −0.359853 0.933009i \(-0.617173\pi\)
0.987936 0.154863i \(-0.0494935\pi\)
\(920\) −0.684792 + 22.8585i −0.0225769 + 0.753623i
\(921\) 22.6444 13.0737i 0.746158 0.430794i
\(922\) 1.54386 + 4.37720i 0.0508444 + 0.144156i
\(923\) 3.24442 3.24442i 0.106791 0.106791i
\(924\) 0 0
\(925\) −23.2496 23.2496i −0.764443 0.764443i
\(926\) 19.5093 + 9.33555i 0.641115 + 0.306785i
\(927\) −9.42543 16.3253i −0.309572 0.536194i
\(928\) −5.27252 42.0902i −0.173079 1.38168i
\(929\) 3.92408 + 2.26557i 0.128745 + 0.0743309i 0.562989 0.826464i \(-0.309651\pi\)
−0.434244 + 0.900795i \(0.642985\pi\)
\(930\) −1.41202 18.2343i −0.0463021 0.597927i
\(931\) 0 0
\(932\) 4.79396 + 30.7680i 0.157031 + 1.00784i
\(933\) 5.15311 + 19.2317i 0.168705 + 0.629617i
\(934\) −7.79030 + 41.7400i −0.254906 + 1.36577i
\(935\) −10.1770 17.6270i −0.332822 0.576464i
\(936\) −11.2869 + 6.07334i −0.368925 + 0.198513i
\(937\) 37.0969 1.21190 0.605952 0.795501i \(-0.292792\pi\)
0.605952 + 0.795501i \(0.292792\pi\)
\(938\) 0 0
\(939\) 4.72453 + 4.72453i 0.154179 + 0.154179i
\(940\) 11.7615 5.20120i 0.383619 0.169645i
\(941\) −2.17799 0.583589i −0.0710003 0.0190245i 0.223144 0.974785i \(-0.428368\pi\)
−0.294144 + 0.955761i \(0.595035\pi\)
\(942\) −1.31717 1.92166i −0.0429157 0.0626111i
\(943\) −8.28076 + 14.3427i −0.269659 + 0.467062i
\(944\) 13.2401 25.6655i 0.430928 0.835340i
\(945\) 0 0
\(946\) 2.66368 + 34.3977i 0.0866038 + 1.11837i
\(947\) −4.22082 15.7523i −0.137158 0.511882i −0.999980 0.00637300i \(-0.997971\pi\)
0.862821 0.505509i \(-0.168695\pi\)
\(948\) −1.92955 0.207707i −0.0626689 0.00674601i
\(949\) 5.45387 + 1.46136i 0.177040 + 0.0474378i
\(950\) 15.5536 + 44.0980i 0.504626 + 1.43073i
\(951\) 15.1288i 0.490585i
\(952\) 0 0
\(953\) 27.9419i 0.905126i 0.891733 + 0.452563i \(0.149490\pi\)
−0.891733 + 0.452563i \(0.850510\pi\)
\(954\) 9.59210 3.38319i 0.310556 0.109535i
\(955\) −103.736 27.7960i −3.35682 0.899456i
\(956\) −18.1023 + 14.5838i −0.585470 + 0.471674i
\(957\) 6.92462 + 25.8430i 0.223841 + 0.835387i
\(958\) −48.6071 + 3.76403i −1.57043 + 0.121610i
\(959\) 0 0
\(960\) −11.1678 22.3325i −0.360438 0.720779i
\(961\) 6.91607 11.9790i 0.223099 0.386419i
\(962\) −6.91111 + 4.73710i −0.222823 + 0.152730i
\(963\) 21.2988 + 5.70700i 0.686345 + 0.183906i
\(964\) 5.24750 + 2.02947i 0.169011 + 0.0653648i
\(965\) −16.0901 16.0901i −0.517960 0.517960i
\(966\) 0 0
\(967\) −47.4478 −1.52582 −0.762910 0.646505i \(-0.776230\pi\)
−0.762910 + 0.646505i \(0.776230\pi\)
\(968\) −25.3838 7.62322i −0.815868 0.245020i
\(969\) 1.40979 + 2.44183i 0.0452890 + 0.0784428i
\(970\) 46.2693 + 8.63565i 1.48562 + 0.277274i
\(971\) 8.47546 + 31.6308i 0.271990 + 1.01508i 0.957832 + 0.287330i \(0.0927678\pi\)
−0.685841 + 0.727751i \(0.740566\pi\)
\(972\) −25.3964 18.5492i −0.814590 0.594967i
\(973\) 0 0
\(974\) −21.0129 + 1.62719i −0.673296 + 0.0521385i
\(975\) 13.8308 + 7.98523i 0.442941 + 0.255732i
\(976\) 26.0850 1.23565i 0.834961 0.0395521i
\(977\) 15.9234 + 27.5802i 0.509435 + 0.882368i 0.999940 + 0.0109296i \(0.00347908\pi\)
−0.490505 + 0.871438i \(0.663188\pi\)
\(978\) −0.870387 + 1.81892i −0.0278319 + 0.0581626i
\(979\) −27.8711 27.8711i −0.890763 0.890763i
\(980\) 0 0
\(981\) 1.47742 1.47742i 0.0471704 0.0471704i
\(982\) −57.5734 + 20.3064i −1.83724 + 0.648004i
\(983\) −37.4979 + 21.6494i −1.19600 + 0.690509i −0.959660 0.281162i \(-0.909280\pi\)
−0.236337 + 0.971671i \(0.575947\pi\)
\(984\) 0.541474 18.0745i 0.0172616 0.576195i
\(985\) 35.6626 61.7695i 1.13631 1.96814i
\(986\) 7.87822 9.20078i 0.250894 0.293013i
\(987\) 0 0
\(988\) 11.7739 1.83449i 0.374577 0.0583628i
\(989\) 10.6918 2.86486i 0.339980 0.0910973i
\(990\) −33.8400 49.3703i −1.07551 1.56909i
\(991\) −16.4220 + 9.48127i −0.521663 + 0.301183i −0.737615 0.675222i \(-0.764048\pi\)
0.215952 + 0.976404i \(0.430715\pi\)
\(992\) −3.20527 + 23.2185i −0.101768 + 0.737188i
\(993\) 11.4262i 0.362601i
\(994\) 0 0
\(995\) 15.3755 15.3755i 0.487436 0.487436i
\(996\) −4.79453 1.85428i −0.151920 0.0587552i
\(997\) −7.83295 + 29.2330i −0.248072 + 0.925818i 0.723742 + 0.690070i \(0.242420\pi\)
−0.971814 + 0.235747i \(0.924246\pi\)
\(998\) −15.3854 2.87151i −0.487015 0.0908960i
\(999\) −11.4267 6.59723i −0.361526 0.208727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.w.f.19.5 56
7.2 even 3 784.2.j.a.195.28 56
7.3 odd 6 inner 784.2.w.f.227.6 56
7.4 even 3 112.2.v.a.3.6 56
7.5 odd 6 784.2.j.a.195.27 56
7.6 odd 2 112.2.v.a.19.5 yes 56
16.11 odd 4 inner 784.2.w.f.411.6 56
28.11 odd 6 448.2.z.a.367.8 56
28.27 even 2 448.2.z.a.47.8 56
56.11 odd 6 896.2.z.a.479.7 56
56.13 odd 2 896.2.z.b.607.8 56
56.27 even 2 896.2.z.a.607.7 56
56.53 even 6 896.2.z.b.479.8 56
112.11 odd 12 112.2.v.a.59.5 yes 56
112.13 odd 4 896.2.z.a.159.7 56
112.27 even 4 112.2.v.a.75.6 yes 56
112.53 even 12 448.2.z.a.143.8 56
112.59 even 12 inner 784.2.w.f.619.5 56
112.67 odd 12 896.2.z.b.31.8 56
112.69 odd 4 448.2.z.a.271.8 56
112.75 even 12 784.2.j.a.587.28 56
112.83 even 4 896.2.z.b.159.8 56
112.107 odd 12 784.2.j.a.587.27 56
112.109 even 12 896.2.z.a.31.7 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.6 56 7.4 even 3
112.2.v.a.19.5 yes 56 7.6 odd 2
112.2.v.a.59.5 yes 56 112.11 odd 12
112.2.v.a.75.6 yes 56 112.27 even 4
448.2.z.a.47.8 56 28.27 even 2
448.2.z.a.143.8 56 112.53 even 12
448.2.z.a.271.8 56 112.69 odd 4
448.2.z.a.367.8 56 28.11 odd 6
784.2.j.a.195.27 56 7.5 odd 6
784.2.j.a.195.28 56 7.2 even 3
784.2.j.a.587.27 56 112.107 odd 12
784.2.j.a.587.28 56 112.75 even 12
784.2.w.f.19.5 56 1.1 even 1 trivial
784.2.w.f.227.6 56 7.3 odd 6 inner
784.2.w.f.411.6 56 16.11 odd 4 inner
784.2.w.f.619.5 56 112.59 even 12 inner
896.2.z.a.31.7 56 112.109 even 12
896.2.z.a.159.7 56 112.13 odd 4
896.2.z.a.479.7 56 56.11 odd 6
896.2.z.a.607.7 56 56.27 even 2
896.2.z.b.31.8 56 112.67 odd 12
896.2.z.b.159.8 56 112.83 even 4
896.2.z.b.479.8 56 56.53 even 6
896.2.z.b.607.8 56 56.13 odd 2