Properties

Label 896.2.z.a.31.1
Level $896$
Weight $2$
Character 896.31
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 31.1
Character \(\chi\) \(=\) 896.31
Dual form 896.2.z.a.607.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.825526 - 3.08091i) q^{3} +(-1.86998 - 0.501060i) q^{5} +(-2.17953 - 1.49988i) q^{7} +(-6.21241 + 3.58674i) q^{9} +(-0.944161 - 3.52366i) q^{11} +(-0.372046 - 0.372046i) q^{13} +6.17487i q^{15} +(2.39966 + 1.38545i) q^{17} +(1.61000 + 0.431397i) q^{19} +(-2.82174 + 7.95312i) q^{21} +(1.27273 + 2.20444i) q^{23} +(-1.08436 - 0.626056i) q^{25} +(9.41278 + 9.41278i) q^{27} +(-2.14013 + 2.14013i) q^{29} +(2.74674 - 4.75749i) q^{31} +(-10.0766 + 5.81774i) q^{33} +(3.32415 + 3.89683i) q^{35} +(1.21513 - 4.53493i) q^{37} +(-0.839106 + 1.45337i) q^{39} +3.95954 q^{41} +(-4.29972 + 4.29972i) q^{43} +(13.4143 - 3.59434i) q^{45} +(-1.85655 - 3.21563i) q^{47} +(2.50070 + 6.53808i) q^{49} +(2.28744 - 8.53685i) q^{51} +(-6.49892 + 1.74138i) q^{53} +7.06225i q^{55} -5.31638i q^{57} +(8.21574 - 2.20140i) q^{59} +(-0.101519 + 0.378874i) q^{61} +(18.9198 + 1.50050i) q^{63} +(0.509302 + 0.882137i) q^{65} +(-13.8977 + 3.72389i) q^{67} +(5.74099 - 5.74099i) q^{69} +8.98576 q^{71} +(0.766294 - 1.32726i) q^{73} +(-1.03365 + 3.85764i) q^{75} +(-3.22725 + 9.09605i) q^{77} +(-3.47070 + 2.00381i) q^{79} +(10.4692 - 18.1331i) q^{81} +(-3.67570 + 3.67570i) q^{83} +(-3.79313 - 3.79313i) q^{85} +(8.36028 + 4.82681i) q^{87} +(3.35201 + 5.80586i) q^{89} +(0.252860 + 1.36891i) q^{91} +(-16.9249 - 4.53501i) q^{93} +(-2.79451 - 1.61341i) q^{95} +4.52980i q^{97} +(18.5040 + 18.5040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{11} - 12 q^{17} - 6 q^{19} + 10 q^{21} + 12 q^{23} + 24 q^{29} - 12 q^{33} - 2 q^{35} - 6 q^{37} + 4 q^{39} - 12 q^{45} - 8 q^{49} - 34 q^{51} - 6 q^{53} + 42 q^{59}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.825526 3.08091i −0.476618 1.77876i −0.615156 0.788405i \(-0.710907\pi\)
0.138539 0.990357i \(-0.455759\pi\)
\(4\) 0 0
\(5\) −1.86998 0.501060i −0.836281 0.224081i −0.184829 0.982771i \(-0.559173\pi\)
−0.651452 + 0.758690i \(0.725840\pi\)
\(6\) 0 0
\(7\) −2.17953 1.49988i −0.823785 0.566903i
\(8\) 0 0
\(9\) −6.21241 + 3.58674i −2.07080 + 1.19558i
\(10\) 0 0
\(11\) −0.944161 3.52366i −0.284675 1.06242i −0.949076 0.315046i \(-0.897980\pi\)
0.664401 0.747376i \(-0.268687\pi\)
\(12\) 0 0
\(13\) −0.372046 0.372046i −0.103187 0.103187i 0.653628 0.756816i \(-0.273246\pi\)
−0.756816 + 0.653628i \(0.773246\pi\)
\(14\) 0 0
\(15\) 6.17487i 1.59435i
\(16\) 0 0
\(17\) 2.39966 + 1.38545i 0.582003 + 0.336020i 0.761929 0.647660i \(-0.224252\pi\)
−0.179926 + 0.983680i \(0.557586\pi\)
\(18\) 0 0
\(19\) 1.61000 + 0.431397i 0.369358 + 0.0989693i 0.438724 0.898622i \(-0.355431\pi\)
−0.0693652 + 0.997591i \(0.522097\pi\)
\(20\) 0 0
\(21\) −2.82174 + 7.95312i −0.615755 + 1.73551i
\(22\) 0 0
\(23\) 1.27273 + 2.20444i 0.265383 + 0.459657i 0.967664 0.252243i \(-0.0811683\pi\)
−0.702281 + 0.711900i \(0.747835\pi\)
\(24\) 0 0
\(25\) −1.08436 0.626056i −0.216872 0.125211i
\(26\) 0 0
\(27\) 9.41278 + 9.41278i 1.81149 + 1.81149i
\(28\) 0 0
\(29\) −2.14013 + 2.14013i −0.397413 + 0.397413i −0.877319 0.479907i \(-0.840670\pi\)
0.479907 + 0.877319i \(0.340670\pi\)
\(30\) 0 0
\(31\) 2.74674 4.75749i 0.493329 0.854471i −0.506641 0.862157i \(-0.669113\pi\)
0.999970 + 0.00768582i \(0.00244650\pi\)
\(32\) 0 0
\(33\) −10.0766 + 5.81774i −1.75412 + 1.01274i
\(34\) 0 0
\(35\) 3.32415 + 3.89683i 0.561883 + 0.658684i
\(36\) 0 0
\(37\) 1.21513 4.53493i 0.199766 0.745537i −0.791215 0.611538i \(-0.790551\pi\)
0.990981 0.134000i \(-0.0427821\pi\)
\(38\) 0 0
\(39\) −0.839106 + 1.45337i −0.134364 + 0.232726i
\(40\) 0 0
\(41\) 3.95954 0.618376 0.309188 0.951001i \(-0.399943\pi\)
0.309188 + 0.951001i \(0.399943\pi\)
\(42\) 0 0
\(43\) −4.29972 + 4.29972i −0.655701 + 0.655701i −0.954360 0.298659i \(-0.903461\pi\)
0.298659 + 0.954360i \(0.403461\pi\)
\(44\) 0 0
\(45\) 13.4143 3.59434i 1.99968 0.535813i
\(46\) 0 0
\(47\) −1.85655 3.21563i −0.270805 0.469048i 0.698263 0.715841i \(-0.253957\pi\)
−0.969068 + 0.246793i \(0.920623\pi\)
\(48\) 0 0
\(49\) 2.50070 + 6.53808i 0.357242 + 0.934012i
\(50\) 0 0
\(51\) 2.28744 8.53685i 0.320306 1.19540i
\(52\) 0 0
\(53\) −6.49892 + 1.74138i −0.892696 + 0.239197i −0.675877 0.737015i \(-0.736235\pi\)
−0.216819 + 0.976212i \(0.569568\pi\)
\(54\) 0 0
\(55\) 7.06225i 0.952274i
\(56\) 0 0
\(57\) 5.31638i 0.704171i
\(58\) 0 0
\(59\) 8.21574 2.20140i 1.06960 0.286598i 0.319270 0.947664i \(-0.396562\pi\)
0.750328 + 0.661066i \(0.229896\pi\)
\(60\) 0 0
\(61\) −0.101519 + 0.378874i −0.0129982 + 0.0485098i −0.972120 0.234483i \(-0.924660\pi\)
0.959122 + 0.282992i \(0.0913271\pi\)
\(62\) 0 0
\(63\) 18.9198 + 1.50050i 2.38367 + 0.189045i
\(64\) 0 0
\(65\) 0.509302 + 0.882137i 0.0631711 + 0.109416i
\(66\) 0 0
\(67\) −13.8977 + 3.72389i −1.69788 + 0.454946i −0.972404 0.233302i \(-0.925047\pi\)
−0.725476 + 0.688248i \(0.758380\pi\)
\(68\) 0 0
\(69\) 5.74099 5.74099i 0.691134 0.691134i
\(70\) 0 0
\(71\) 8.98576 1.06641 0.533207 0.845985i \(-0.320987\pi\)
0.533207 + 0.845985i \(0.320987\pi\)
\(72\) 0 0
\(73\) 0.766294 1.32726i 0.0896879 0.155344i −0.817691 0.575657i \(-0.804746\pi\)
0.907379 + 0.420313i \(0.138080\pi\)
\(74\) 0 0
\(75\) −1.03365 + 3.85764i −0.119356 + 0.445442i
\(76\) 0 0
\(77\) −3.22725 + 9.09605i −0.367779 + 1.03659i
\(78\) 0 0
\(79\) −3.47070 + 2.00381i −0.390484 + 0.225446i −0.682370 0.731007i \(-0.739051\pi\)
0.291886 + 0.956453i \(0.405717\pi\)
\(80\) 0 0
\(81\) 10.4692 18.1331i 1.16324 2.01479i
\(82\) 0 0
\(83\) −3.67570 + 3.67570i −0.403460 + 0.403460i −0.879451 0.475990i \(-0.842090\pi\)
0.475990 + 0.879451i \(0.342090\pi\)
\(84\) 0 0
\(85\) −3.79313 3.79313i −0.411423 0.411423i
\(86\) 0 0
\(87\) 8.36028 + 4.82681i 0.896317 + 0.517489i
\(88\) 0 0
\(89\) 3.35201 + 5.80586i 0.355313 + 0.615420i 0.987171 0.159664i \(-0.0510410\pi\)
−0.631859 + 0.775084i \(0.717708\pi\)
\(90\) 0 0
\(91\) 0.252860 + 1.36891i 0.0265069 + 0.143501i
\(92\) 0 0
\(93\) −16.9249 4.53501i −1.75503 0.470259i
\(94\) 0 0
\(95\) −2.79451 1.61341i −0.286710 0.165532i
\(96\) 0 0
\(97\) 4.52980i 0.459931i 0.973199 + 0.229966i \(0.0738613\pi\)
−0.973199 + 0.229966i \(0.926139\pi\)
\(98\) 0 0
\(99\) 18.5040 + 18.5040i 1.85972 + 1.85972i
\(100\) 0 0
\(101\) 3.50302 + 13.0735i 0.348564 + 1.30086i 0.888393 + 0.459084i \(0.151822\pi\)
−0.539829 + 0.841775i \(0.681511\pi\)
\(102\) 0 0
\(103\) −10.9548 + 6.32478i −1.07941 + 0.623200i −0.930738 0.365687i \(-0.880834\pi\)
−0.148675 + 0.988886i \(0.547501\pi\)
\(104\) 0 0
\(105\) 9.26159 13.4583i 0.903839 1.31340i
\(106\) 0 0
\(107\) −3.48688 0.934307i −0.337090 0.0903229i 0.0863036 0.996269i \(-0.472494\pi\)
−0.423393 + 0.905946i \(0.639161\pi\)
\(108\) 0 0
\(109\) −2.63902 9.84896i −0.252772 0.943360i −0.969316 0.245817i \(-0.920944\pi\)
0.716544 0.697542i \(-0.245723\pi\)
\(110\) 0 0
\(111\) −14.9748 −1.42135
\(112\) 0 0
\(113\) −18.4361 −1.73432 −0.867160 0.498030i \(-0.834057\pi\)
−0.867160 + 0.498030i \(0.834057\pi\)
\(114\) 0 0
\(115\) −1.27543 4.75997i −0.118934 0.443869i
\(116\) 0 0
\(117\) 3.64574 + 0.976873i 0.337049 + 0.0903119i
\(118\) 0 0
\(119\) −3.15213 6.61883i −0.288955 0.606747i
\(120\) 0 0
\(121\) −1.99844 + 1.15380i −0.181676 + 0.104891i
\(122\) 0 0
\(123\) −3.26871 12.1990i −0.294729 1.09994i
\(124\) 0 0
\(125\) 8.55865 + 8.55865i 0.765509 + 0.765509i
\(126\) 0 0
\(127\) 20.5841i 1.82654i −0.407350 0.913272i \(-0.633547\pi\)
0.407350 0.913272i \(-0.366453\pi\)
\(128\) 0 0
\(129\) 16.7966 + 9.69749i 1.47885 + 0.853817i
\(130\) 0 0
\(131\) −15.3810 4.12134i −1.34385 0.360083i −0.485987 0.873966i \(-0.661540\pi\)
−0.857860 + 0.513883i \(0.828207\pi\)
\(132\) 0 0
\(133\) −2.86199 3.35505i −0.248166 0.290920i
\(134\) 0 0
\(135\) −12.8853 22.3181i −1.10899 1.92083i
\(136\) 0 0
\(137\) 1.13536 + 0.655503i 0.0970008 + 0.0560034i 0.547716 0.836665i \(-0.315498\pi\)
−0.450715 + 0.892668i \(0.648831\pi\)
\(138\) 0 0
\(139\) −15.6775 15.6775i −1.32975 1.32975i −0.905583 0.424169i \(-0.860566\pi\)
−0.424169 0.905583i \(-0.639434\pi\)
\(140\) 0 0
\(141\) −8.37444 + 8.37444i −0.705255 + 0.705255i
\(142\) 0 0
\(143\) −0.959692 + 1.66224i −0.0802535 + 0.139003i
\(144\) 0 0
\(145\) 5.07434 2.92967i 0.421401 0.243296i
\(146\) 0 0
\(147\) 18.0788 13.1018i 1.49112 1.08062i
\(148\) 0 0
\(149\) −3.24672 + 12.1169i −0.265981 + 0.992656i 0.695666 + 0.718366i \(0.255109\pi\)
−0.961647 + 0.274290i \(0.911557\pi\)
\(150\) 0 0
\(151\) −4.56845 + 7.91278i −0.371775 + 0.643933i −0.989839 0.142195i \(-0.954584\pi\)
0.618064 + 0.786128i \(0.287917\pi\)
\(152\) 0 0
\(153\) −19.8769 −1.60695
\(154\) 0 0
\(155\) −7.52014 + 7.52014i −0.604032 + 0.604032i
\(156\) 0 0
\(157\) 12.7686 3.42134i 1.01905 0.273053i 0.289642 0.957135i \(-0.406464\pi\)
0.729405 + 0.684083i \(0.239797\pi\)
\(158\) 0 0
\(159\) 10.7301 + 18.5850i 0.850949 + 1.47389i
\(160\) 0 0
\(161\) 0.532442 6.71358i 0.0419623 0.529104i
\(162\) 0 0
\(163\) −0.102694 + 0.383258i −0.00804358 + 0.0300191i −0.969831 0.243778i \(-0.921613\pi\)
0.961787 + 0.273797i \(0.0882798\pi\)
\(164\) 0 0
\(165\) 21.7581 5.83007i 1.69387 0.453871i
\(166\) 0 0
\(167\) 23.6587i 1.83076i −0.402588 0.915381i \(-0.631889\pi\)
0.402588 0.915381i \(-0.368111\pi\)
\(168\) 0 0
\(169\) 12.7232i 0.978705i
\(170\) 0 0
\(171\) −11.5493 + 3.09462i −0.883195 + 0.236651i
\(172\) 0 0
\(173\) −3.98004 + 14.8537i −0.302597 + 1.12931i 0.632398 + 0.774644i \(0.282071\pi\)
−0.934994 + 0.354662i \(0.884596\pi\)
\(174\) 0 0
\(175\) 1.42439 + 2.99092i 0.107673 + 0.226093i
\(176\) 0 0
\(177\) −13.5646 23.4946i −1.01958 1.76596i
\(178\) 0 0
\(179\) 0.555832 0.148935i 0.0415448 0.0111319i −0.237987 0.971268i \(-0.576487\pi\)
0.279532 + 0.960136i \(0.409821\pi\)
\(180\) 0 0
\(181\) −0.240422 + 0.240422i −0.0178705 + 0.0178705i −0.715986 0.698115i \(-0.754022\pi\)
0.698115 + 0.715986i \(0.254022\pi\)
\(182\) 0 0
\(183\) 1.25108 0.0924826
\(184\) 0 0
\(185\) −4.54454 + 7.87137i −0.334121 + 0.578715i
\(186\) 0 0
\(187\) 2.61617 9.76367i 0.191313 0.713990i
\(188\) 0 0
\(189\) −6.39735 34.6335i −0.465339 2.51922i
\(190\) 0 0
\(191\) −4.57833 + 2.64330i −0.331277 + 0.191263i −0.656408 0.754406i \(-0.727925\pi\)
0.325131 + 0.945669i \(0.394592\pi\)
\(192\) 0 0
\(193\) −8.43656 + 14.6125i −0.607277 + 1.05183i 0.384411 + 0.923162i \(0.374405\pi\)
−0.991687 + 0.128672i \(0.958929\pi\)
\(194\) 0 0
\(195\) 2.29734 2.29734i 0.164516 0.164516i
\(196\) 0 0
\(197\) 1.81729 + 1.81729i 0.129477 + 0.129477i 0.768875 0.639399i \(-0.220817\pi\)
−0.639399 + 0.768875i \(0.720817\pi\)
\(198\) 0 0
\(199\) 0.631178 + 0.364411i 0.0447430 + 0.0258324i 0.522205 0.852820i \(-0.325110\pi\)
−0.477462 + 0.878653i \(0.658443\pi\)
\(200\) 0 0
\(201\) 22.9459 + 39.7435i 1.61848 + 2.80329i
\(202\) 0 0
\(203\) 7.87443 1.45453i 0.552677 0.102088i
\(204\) 0 0
\(205\) −7.40426 1.98397i −0.517136 0.138566i
\(206\) 0 0
\(207\) −15.8135 9.12991i −1.09911 0.634573i
\(208\) 0 0
\(209\) 6.08038i 0.420589i
\(210\) 0 0
\(211\) −8.24367 8.24367i −0.567518 0.567518i 0.363915 0.931432i \(-0.381440\pi\)
−0.931432 + 0.363915i \(0.881440\pi\)
\(212\) 0 0
\(213\) −7.41798 27.6843i −0.508272 1.89690i
\(214\) 0 0
\(215\) 10.1948 5.88597i 0.695280 0.401420i
\(216\) 0 0
\(217\) −13.1223 + 6.24931i −0.890799 + 0.424230i
\(218\) 0 0
\(219\) −4.72176 1.26519i −0.319067 0.0854937i
\(220\) 0 0
\(221\) −0.377335 1.40824i −0.0253823 0.0947281i
\(222\) 0 0
\(223\) −28.3640 −1.89940 −0.949698 0.313166i \(-0.898610\pi\)
−0.949698 + 0.313166i \(0.898610\pi\)
\(224\) 0 0
\(225\) 8.98200 0.598800
\(226\) 0 0
\(227\) 1.67563 + 6.25352i 0.111215 + 0.415061i 0.998976 0.0452445i \(-0.0144067\pi\)
−0.887761 + 0.460305i \(0.847740\pi\)
\(228\) 0 0
\(229\) −7.68701 2.05973i −0.507972 0.136111i −0.00427468 0.999991i \(-0.501361\pi\)
−0.503697 + 0.863880i \(0.668027\pi\)
\(230\) 0 0
\(231\) 30.6882 + 2.43383i 2.01914 + 0.160134i
\(232\) 0 0
\(233\) −0.159304 + 0.0919739i −0.0104363 + 0.00602541i −0.505209 0.862997i \(-0.668585\pi\)
0.494773 + 0.869022i \(0.335251\pi\)
\(234\) 0 0
\(235\) 1.86048 + 6.94341i 0.121364 + 0.452938i
\(236\) 0 0
\(237\) 9.03870 + 9.03870i 0.587127 + 0.587127i
\(238\) 0 0
\(239\) 19.6670i 1.27215i 0.771626 + 0.636077i \(0.219444\pi\)
−0.771626 + 0.636077i \(0.780556\pi\)
\(240\) 0 0
\(241\) −3.10397 1.79208i −0.199944 0.115438i 0.396685 0.917955i \(-0.370160\pi\)
−0.596630 + 0.802517i \(0.703494\pi\)
\(242\) 0 0
\(243\) −25.9348 6.94921i −1.66372 0.445792i
\(244\) 0 0
\(245\) −1.40028 13.4791i −0.0894608 0.861147i
\(246\) 0 0
\(247\) −0.438493 0.759493i −0.0279007 0.0483254i
\(248\) 0 0
\(249\) 14.3589 + 8.29010i 0.909957 + 0.525364i
\(250\) 0 0
\(251\) 11.1881 + 11.1881i 0.706184 + 0.706184i 0.965731 0.259547i \(-0.0835731\pi\)
−0.259547 + 0.965731i \(0.583573\pi\)
\(252\) 0 0
\(253\) 6.56601 6.56601i 0.412802 0.412802i
\(254\) 0 0
\(255\) −8.55495 + 14.8176i −0.535732 + 0.927914i
\(256\) 0 0
\(257\) 7.97191 4.60259i 0.497274 0.287101i −0.230313 0.973117i \(-0.573975\pi\)
0.727587 + 0.686015i \(0.240642\pi\)
\(258\) 0 0
\(259\) −9.45028 + 8.06145i −0.587212 + 0.500914i
\(260\) 0 0
\(261\) 5.61929 20.9715i 0.347825 1.29810i
\(262\) 0 0
\(263\) −1.54283 + 2.67226i −0.0951349 + 0.164778i −0.909665 0.415343i \(-0.863662\pi\)
0.814530 + 0.580121i \(0.196995\pi\)
\(264\) 0 0
\(265\) 13.0254 0.800143
\(266\) 0 0
\(267\) 15.1201 15.1201i 0.925337 0.925337i
\(268\) 0 0
\(269\) 23.3503 6.25670i 1.42369 0.381478i 0.536902 0.843645i \(-0.319595\pi\)
0.886793 + 0.462167i \(0.152928\pi\)
\(270\) 0 0
\(271\) −5.80261 10.0504i −0.352484 0.610520i 0.634200 0.773169i \(-0.281329\pi\)
−0.986684 + 0.162649i \(0.947996\pi\)
\(272\) 0 0
\(273\) 4.00875 1.90911i 0.242620 0.115545i
\(274\) 0 0
\(275\) −1.18220 + 4.41202i −0.0712891 + 0.266055i
\(276\) 0 0
\(277\) 6.42687 1.72208i 0.386153 0.103469i −0.0605191 0.998167i \(-0.519276\pi\)
0.446672 + 0.894698i \(0.352609\pi\)
\(278\) 0 0
\(279\) 39.4074i 2.35926i
\(280\) 0 0
\(281\) 16.2605i 0.970022i −0.874508 0.485011i \(-0.838816\pi\)
0.874508 0.485011i \(-0.161184\pi\)
\(282\) 0 0
\(283\) 23.1624 6.20636i 1.37686 0.368930i 0.506883 0.862015i \(-0.330798\pi\)
0.869981 + 0.493085i \(0.164131\pi\)
\(284\) 0 0
\(285\) −2.66382 + 9.94152i −0.157791 + 0.588885i
\(286\) 0 0
\(287\) −8.62993 5.93885i −0.509409 0.350559i
\(288\) 0 0
\(289\) −4.66108 8.07323i −0.274181 0.474896i
\(290\) 0 0
\(291\) 13.9559 3.73947i 0.818108 0.219211i
\(292\) 0 0
\(293\) 15.5002 15.5002i 0.905534 0.905534i −0.0903743 0.995908i \(-0.528806\pi\)
0.995908 + 0.0903743i \(0.0288063\pi\)
\(294\) 0 0
\(295\) −16.4663 −0.958705
\(296\) 0 0
\(297\) 24.2802 42.0546i 1.40888 2.44025i
\(298\) 0 0
\(299\) 0.346637 1.29367i 0.0200465 0.0748147i
\(300\) 0 0
\(301\) 15.8204 2.92228i 0.911875 0.168438i
\(302\) 0 0
\(303\) 37.3863 21.5850i 2.14779 1.24002i
\(304\) 0 0
\(305\) 0.379677 0.657620i 0.0217402 0.0376552i
\(306\) 0 0
\(307\) 8.30421 8.30421i 0.473946 0.473946i −0.429243 0.903189i \(-0.641220\pi\)
0.903189 + 0.429243i \(0.141220\pi\)
\(308\) 0 0
\(309\) 28.5296 + 28.5296i 1.62299 + 1.62299i
\(310\) 0 0
\(311\) −7.66004 4.42252i −0.434361 0.250778i 0.266842 0.963740i \(-0.414020\pi\)
−0.701203 + 0.712962i \(0.747353\pi\)
\(312\) 0 0
\(313\) −12.5112 21.6700i −0.707174 1.22486i −0.965901 0.258911i \(-0.916636\pi\)
0.258727 0.965951i \(-0.416697\pi\)
\(314\) 0 0
\(315\) −34.6279 12.2859i −1.95106 0.692230i
\(316\) 0 0
\(317\) 3.08904 + 0.827705i 0.173498 + 0.0464885i 0.344522 0.938778i \(-0.388041\pi\)
−0.171024 + 0.985267i \(0.554708\pi\)
\(318\) 0 0
\(319\) 9.56172 + 5.52046i 0.535354 + 0.309087i
\(320\) 0 0
\(321\) 11.5141i 0.642652i
\(322\) 0 0
\(323\) 3.26577 + 3.26577i 0.181712 + 0.181712i
\(324\) 0 0
\(325\) 0.170511 + 0.636355i 0.00945823 + 0.0352986i
\(326\) 0 0
\(327\) −28.1652 + 16.2612i −1.55754 + 0.899244i
\(328\) 0 0
\(329\) −0.776679 + 9.79317i −0.0428197 + 0.539915i
\(330\) 0 0
\(331\) 13.2504 + 3.55043i 0.728306 + 0.195149i 0.603875 0.797079i \(-0.293623\pi\)
0.124431 + 0.992228i \(0.460289\pi\)
\(332\) 0 0
\(333\) 8.71671 + 32.5312i 0.477673 + 1.78270i
\(334\) 0 0
\(335\) 27.8544 1.52185
\(336\) 0 0
\(337\) 30.3580 1.65371 0.826854 0.562417i \(-0.190128\pi\)
0.826854 + 0.562417i \(0.190128\pi\)
\(338\) 0 0
\(339\) 15.2195 + 56.7998i 0.826608 + 3.08494i
\(340\) 0 0
\(341\) −19.3571 5.18673i −1.04825 0.280877i
\(342\) 0 0
\(343\) 4.35602 18.0007i 0.235203 0.971946i
\(344\) 0 0
\(345\) −13.6121 + 7.85895i −0.732851 + 0.423112i
\(346\) 0 0
\(347\) 3.49811 + 13.0551i 0.187788 + 0.700836i 0.994016 + 0.109231i \(0.0348389\pi\)
−0.806228 + 0.591605i \(0.798494\pi\)
\(348\) 0 0
\(349\) −12.6593 12.6593i −0.677639 0.677639i 0.281826 0.959465i \(-0.409060\pi\)
−0.959465 + 0.281826i \(0.909060\pi\)
\(350\) 0 0
\(351\) 7.00398i 0.373845i
\(352\) 0 0
\(353\) −26.7828 15.4631i −1.42550 0.823016i −0.428743 0.903426i \(-0.641043\pi\)
−0.996762 + 0.0804108i \(0.974377\pi\)
\(354\) 0 0
\(355\) −16.8032 4.50240i −0.891821 0.238963i
\(356\) 0 0
\(357\) −17.7898 + 15.1754i −0.941538 + 0.803169i
\(358\) 0 0
\(359\) 9.22928 + 15.9856i 0.487103 + 0.843687i 0.999890 0.0148287i \(-0.00472029\pi\)
−0.512787 + 0.858516i \(0.671387\pi\)
\(360\) 0 0
\(361\) −14.0485 8.11090i −0.739395 0.426890i
\(362\) 0 0
\(363\) 5.20452 + 5.20452i 0.273166 + 0.273166i
\(364\) 0 0
\(365\) −2.09799 + 2.09799i −0.109814 + 0.109814i
\(366\) 0 0
\(367\) −8.10460 + 14.0376i −0.423057 + 0.732756i −0.996237 0.0866738i \(-0.972376\pi\)
0.573180 + 0.819429i \(0.305710\pi\)
\(368\) 0 0
\(369\) −24.5983 + 14.2018i −1.28054 + 0.739318i
\(370\) 0 0
\(371\) 16.7765 + 5.95224i 0.870990 + 0.309025i
\(372\) 0 0
\(373\) −9.31929 + 34.7801i −0.482534 + 1.80084i 0.108381 + 0.994109i \(0.465433\pi\)
−0.590915 + 0.806734i \(0.701233\pi\)
\(374\) 0 0
\(375\) 19.3030 33.4338i 0.996803 1.72651i
\(376\) 0 0
\(377\) 1.59246 0.0820157
\(378\) 0 0
\(379\) −18.9916 + 18.9916i −0.975531 + 0.975531i −0.999708 0.0241768i \(-0.992304\pi\)
0.0241768 + 0.999708i \(0.492304\pi\)
\(380\) 0 0
\(381\) −63.4177 + 16.9927i −3.24899 + 0.870564i
\(382\) 0 0
\(383\) −11.8784 20.5740i −0.606957 1.05128i −0.991739 0.128273i \(-0.959057\pi\)
0.384782 0.923007i \(-0.374277\pi\)
\(384\) 0 0
\(385\) 10.5926 15.3924i 0.539847 0.784468i
\(386\) 0 0
\(387\) 11.2897 42.1336i 0.573886 2.14177i
\(388\) 0 0
\(389\) −13.0521 + 3.49731i −0.661770 + 0.177321i −0.574045 0.818824i \(-0.694626\pi\)
−0.0877254 + 0.996145i \(0.527960\pi\)
\(390\) 0 0
\(391\) 7.05320i 0.356696i
\(392\) 0 0
\(393\) 50.7898i 2.56201i
\(394\) 0 0
\(395\) 7.49417 2.00806i 0.377073 0.101036i
\(396\) 0 0
\(397\) 1.19554 4.46180i 0.0600022 0.223931i −0.929413 0.369040i \(-0.879687\pi\)
0.989416 + 0.145109i \(0.0463532\pi\)
\(398\) 0 0
\(399\) −7.97395 + 11.5872i −0.399197 + 0.580086i
\(400\) 0 0
\(401\) 11.1566 + 19.3238i 0.557135 + 0.964986i 0.997734 + 0.0672821i \(0.0214327\pi\)
−0.440599 + 0.897704i \(0.645234\pi\)
\(402\) 0 0
\(403\) −2.79192 + 0.748093i −0.139076 + 0.0372652i
\(404\) 0 0
\(405\) −28.6629 + 28.6629i −1.42427 + 1.42427i
\(406\) 0 0
\(407\) −17.1268 −0.848944
\(408\) 0 0
\(409\) −2.83340 + 4.90759i −0.140102 + 0.242665i −0.927535 0.373736i \(-0.878077\pi\)
0.787433 + 0.616401i \(0.211410\pi\)
\(410\) 0 0
\(411\) 1.08227 4.03909i 0.0533845 0.199234i
\(412\) 0 0
\(413\) −21.2083 7.52464i −1.04359 0.370263i
\(414\) 0 0
\(415\) 8.71523 5.03174i 0.427814 0.246998i
\(416\) 0 0
\(417\) −35.3588 + 61.2433i −1.73153 + 2.99910i
\(418\) 0 0
\(419\) 2.67538 2.67538i 0.130701 0.130701i −0.638730 0.769431i \(-0.720540\pi\)
0.769431 + 0.638730i \(0.220540\pi\)
\(420\) 0 0
\(421\) −17.2159 17.2159i −0.839052 0.839052i 0.149682 0.988734i \(-0.452175\pi\)
−0.988734 + 0.149682i \(0.952175\pi\)
\(422\) 0 0
\(423\) 23.0673 + 13.3179i 1.12157 + 0.647538i
\(424\) 0 0
\(425\) −1.73473 3.00465i −0.0841470 0.145747i
\(426\) 0 0
\(427\) 0.789530 0.673500i 0.0382081 0.0325930i
\(428\) 0 0
\(429\) 5.91344 + 1.58450i 0.285504 + 0.0765005i
\(430\) 0 0
\(431\) 27.7876 + 16.0432i 1.33848 + 0.772774i 0.986582 0.163264i \(-0.0522021\pi\)
0.351901 + 0.936037i \(0.385535\pi\)
\(432\) 0 0
\(433\) 15.7783i 0.758258i −0.925344 0.379129i \(-0.876224\pi\)
0.925344 0.379129i \(-0.123776\pi\)
\(434\) 0 0
\(435\) −13.2150 13.2150i −0.633613 0.633613i
\(436\) 0 0
\(437\) 1.09811 + 4.09819i 0.0525295 + 0.196043i
\(438\) 0 0
\(439\) −1.89128 + 1.09193i −0.0902658 + 0.0521150i −0.544453 0.838791i \(-0.683263\pi\)
0.454188 + 0.890906i \(0.349930\pi\)
\(440\) 0 0
\(441\) −38.9857 31.6479i −1.85646 1.50704i
\(442\) 0 0
\(443\) −19.9847 5.35487i −0.949500 0.254418i −0.249350 0.968413i \(-0.580217\pi\)
−0.700150 + 0.713996i \(0.746884\pi\)
\(444\) 0 0
\(445\) −3.35912 12.5364i −0.159237 0.594282i
\(446\) 0 0
\(447\) 40.0113 1.89247
\(448\) 0 0
\(449\) 31.8400 1.50262 0.751311 0.659949i \(-0.229422\pi\)
0.751311 + 0.659949i \(0.229422\pi\)
\(450\) 0 0
\(451\) −3.73844 13.9521i −0.176036 0.656977i
\(452\) 0 0
\(453\) 28.1499 + 7.54275i 1.32260 + 0.354389i
\(454\) 0 0
\(455\) 0.213064 2.68654i 0.00998861 0.125947i
\(456\) 0 0
\(457\) −8.74709 + 5.05014i −0.409172 + 0.236235i −0.690434 0.723396i \(-0.742580\pi\)
0.281262 + 0.959631i \(0.409247\pi\)
\(458\) 0 0
\(459\) 9.54659 + 35.6284i 0.445597 + 1.66299i
\(460\) 0 0
\(461\) 14.0523 + 14.0523i 0.654479 + 0.654479i 0.954068 0.299589i \(-0.0968497\pi\)
−0.299589 + 0.954068i \(0.596850\pi\)
\(462\) 0 0
\(463\) 9.31917i 0.433099i −0.976272 0.216549i \(-0.930520\pi\)
0.976272 0.216549i \(-0.0694802\pi\)
\(464\) 0 0
\(465\) 29.3769 + 16.9608i 1.36232 + 0.786537i
\(466\) 0 0
\(467\) 13.2103 + 3.53968i 0.611298 + 0.163797i 0.551169 0.834394i \(-0.314182\pi\)
0.0601291 + 0.998191i \(0.480849\pi\)
\(468\) 0 0
\(469\) 35.8760 + 12.7287i 1.65660 + 0.587756i
\(470\) 0 0
\(471\) −21.0817 36.5145i −0.971391 1.68250i
\(472\) 0 0
\(473\) 19.2104 + 11.0911i 0.883293 + 0.509969i
\(474\) 0 0
\(475\) −1.47574 1.47574i −0.0677116 0.0677116i
\(476\) 0 0
\(477\) 34.1281 34.1281i 1.56262 1.56262i
\(478\) 0 0
\(479\) −13.2090 + 22.8786i −0.603534 + 1.04535i 0.388748 + 0.921344i \(0.372908\pi\)
−0.992281 + 0.124007i \(0.960426\pi\)
\(480\) 0 0
\(481\) −2.13929 + 1.23512i −0.0975431 + 0.0563165i
\(482\) 0 0
\(483\) −21.1235 + 3.90183i −0.961151 + 0.177540i
\(484\) 0 0
\(485\) 2.26970 8.47063i 0.103062 0.384631i
\(486\) 0 0
\(487\) −16.0930 + 27.8738i −0.729242 + 1.26308i 0.227962 + 0.973670i \(0.426794\pi\)
−0.957204 + 0.289414i \(0.906540\pi\)
\(488\) 0 0
\(489\) 1.26556 0.0572305
\(490\) 0 0
\(491\) −2.25713 + 2.25713i −0.101863 + 0.101863i −0.756202 0.654339i \(-0.772947\pi\)
0.654339 + 0.756202i \(0.272947\pi\)
\(492\) 0 0
\(493\) −8.10063 + 2.17056i −0.364834 + 0.0977570i
\(494\) 0 0
\(495\) −25.3304 43.8736i −1.13852 1.97197i
\(496\) 0 0
\(497\) −19.5847 13.4776i −0.878495 0.604553i
\(498\) 0 0
\(499\) 5.90659 22.0437i 0.264415 0.986811i −0.698192 0.715910i \(-0.746012\pi\)
0.962607 0.270900i \(-0.0873214\pi\)
\(500\) 0 0
\(501\) −72.8901 + 19.5309i −3.25649 + 0.872574i
\(502\) 0 0
\(503\) 23.1194i 1.03084i −0.856937 0.515422i \(-0.827635\pi\)
0.856937 0.515422i \(-0.172365\pi\)
\(504\) 0 0
\(505\) 26.2023i 1.16599i
\(506\) 0 0
\(507\) −39.1989 + 10.5033i −1.74088 + 0.466468i
\(508\) 0 0
\(509\) −2.84236 + 10.6078i −0.125986 + 0.470185i −0.999873 0.0159440i \(-0.994925\pi\)
0.873887 + 0.486129i \(0.161591\pi\)
\(510\) 0 0
\(511\) −3.66089 + 1.74345i −0.161948 + 0.0771257i
\(512\) 0 0
\(513\) 11.0939 + 19.2152i 0.489807 + 0.848371i
\(514\) 0 0
\(515\) 23.6544 6.33819i 1.04234 0.279294i
\(516\) 0 0
\(517\) −9.57791 + 9.57791i −0.421236 + 0.421236i
\(518\) 0 0
\(519\) 49.0485 2.15299
\(520\) 0 0
\(521\) −4.42108 + 7.65754i −0.193691 + 0.335483i −0.946471 0.322790i \(-0.895379\pi\)
0.752780 + 0.658273i \(0.228713\pi\)
\(522\) 0 0
\(523\) −4.92948 + 18.3971i −0.215551 + 0.804448i 0.770420 + 0.637536i \(0.220046\pi\)
−0.985972 + 0.166912i \(0.946620\pi\)
\(524\) 0 0
\(525\) 8.03889 6.85749i 0.350846 0.299285i
\(526\) 0 0
\(527\) 13.1825 7.61092i 0.574239 0.331537i
\(528\) 0 0
\(529\) 8.26031 14.3073i 0.359144 0.622055i
\(530\) 0 0
\(531\) −43.1437 + 43.1437i −1.87228 + 1.87228i
\(532\) 0 0
\(533\) −1.47313 1.47313i −0.0638085 0.0638085i
\(534\) 0 0
\(535\) 6.05226 + 3.49427i 0.261662 + 0.151071i
\(536\) 0 0
\(537\) −0.917707 1.58952i −0.0396020 0.0685927i
\(538\) 0 0
\(539\) 20.6769 14.9846i 0.890617 0.645432i
\(540\) 0 0
\(541\) 2.32628 + 0.623324i 0.100014 + 0.0267988i 0.308479 0.951231i \(-0.400180\pi\)
−0.208465 + 0.978030i \(0.566847\pi\)
\(542\) 0 0
\(543\) 0.939194 + 0.542244i 0.0403047 + 0.0232699i
\(544\) 0 0
\(545\) 19.7397i 0.845555i
\(546\) 0 0
\(547\) −11.9972 11.9972i −0.512962 0.512962i 0.402471 0.915433i \(-0.368151\pi\)
−0.915433 + 0.402471i \(0.868151\pi\)
\(548\) 0 0
\(549\) −0.728244 2.71784i −0.0310807 0.115995i
\(550\) 0 0
\(551\) −4.36885 + 2.52236i −0.186119 + 0.107456i
\(552\) 0 0
\(553\) 10.5700 + 0.838286i 0.449481 + 0.0356475i
\(554\) 0 0
\(555\) 28.0026 + 7.50327i 1.18864 + 0.318496i
\(556\) 0 0
\(557\) −5.28493 19.7236i −0.223930 0.835716i −0.982831 0.184510i \(-0.940930\pi\)
0.758901 0.651206i \(-0.225737\pi\)
\(558\) 0 0
\(559\) 3.19939 0.135320
\(560\) 0 0
\(561\) −32.2407 −1.36120
\(562\) 0 0
\(563\) 4.13466 + 15.4308i 0.174255 + 0.650330i 0.996677 + 0.0814517i \(0.0259556\pi\)
−0.822422 + 0.568878i \(0.807378\pi\)
\(564\) 0 0
\(565\) 34.4751 + 9.23757i 1.45038 + 0.388628i
\(566\) 0 0
\(567\) −50.0155 + 23.8192i −2.10045 + 1.00031i
\(568\) 0 0
\(569\) −17.3910 + 10.0407i −0.729068 + 0.420928i −0.818081 0.575103i \(-0.804962\pi\)
0.0890129 + 0.996030i \(0.471629\pi\)
\(570\) 0 0
\(571\) 4.66153 + 17.3971i 0.195079 + 0.728045i 0.992246 + 0.124286i \(0.0396641\pi\)
−0.797167 + 0.603758i \(0.793669\pi\)
\(572\) 0 0
\(573\) 11.9233 + 11.9233i 0.498103 + 0.498103i
\(574\) 0 0
\(575\) 3.18721i 0.132916i
\(576\) 0 0
\(577\) −16.2314 9.37123i −0.675724 0.390129i 0.122518 0.992466i \(-0.460903\pi\)
−0.798242 + 0.602337i \(0.794236\pi\)
\(578\) 0 0
\(579\) 51.9845 + 13.9292i 2.16040 + 0.578878i
\(580\) 0 0
\(581\) 13.5244 2.49817i 0.561087 0.103642i
\(582\) 0 0
\(583\) 12.2721 + 21.2558i 0.508257 + 0.880327i
\(584\) 0 0
\(585\) −6.32799 3.65347i −0.261630 0.151052i
\(586\) 0 0
\(587\) −16.4500 16.4500i −0.678963 0.678963i 0.280802 0.959766i \(-0.409399\pi\)
−0.959766 + 0.280802i \(0.909399\pi\)
\(588\) 0 0
\(589\) 6.47461 6.47461i 0.266782 0.266782i
\(590\) 0 0
\(591\) 4.09868 7.09912i 0.168597 0.292019i
\(592\) 0 0
\(593\) 1.34548 0.776813i 0.0552522 0.0318999i −0.472119 0.881535i \(-0.656511\pi\)
0.527372 + 0.849635i \(0.323178\pi\)
\(594\) 0 0
\(595\) 2.57798 + 13.9565i 0.105687 + 0.572160i
\(596\) 0 0
\(597\) 0.601662 2.24543i 0.0246244 0.0918994i
\(598\) 0 0
\(599\) −0.821999 + 1.42374i −0.0335860 + 0.0581726i −0.882330 0.470632i \(-0.844026\pi\)
0.848744 + 0.528804i \(0.177359\pi\)
\(600\) 0 0
\(601\) 35.9484 1.46637 0.733183 0.680031i \(-0.238034\pi\)
0.733183 + 0.680031i \(0.238034\pi\)
\(602\) 0 0
\(603\) 72.9819 72.9819i 2.97205 2.97205i
\(604\) 0 0
\(605\) 4.31517 1.15625i 0.175437 0.0470081i
\(606\) 0 0
\(607\) 12.3075 + 21.3172i 0.499545 + 0.865237i 1.00000 0.000525205i \(-0.000167178\pi\)
−0.500455 + 0.865763i \(0.666834\pi\)
\(608\) 0 0
\(609\) −10.9818 23.0596i −0.445006 0.934424i
\(610\) 0 0
\(611\) −0.505643 + 1.88709i −0.0204561 + 0.0763433i
\(612\) 0 0
\(613\) 27.9559 7.49076i 1.12913 0.302549i 0.354556 0.935035i \(-0.384632\pi\)
0.774572 + 0.632485i \(0.217965\pi\)
\(614\) 0 0
\(615\) 24.4497i 0.985905i
\(616\) 0 0
\(617\) 10.2299i 0.411839i −0.978569 0.205920i \(-0.933981\pi\)
0.978569 0.205920i \(-0.0660186\pi\)
\(618\) 0 0
\(619\) 8.86168 2.37448i 0.356181 0.0954384i −0.0762915 0.997086i \(-0.524308\pi\)
0.432472 + 0.901647i \(0.357641\pi\)
\(620\) 0 0
\(621\) −8.76992 + 32.7298i −0.351925 + 1.31340i
\(622\) 0 0
\(623\) 1.40230 17.6817i 0.0561820 0.708401i
\(624\) 0 0
\(625\) −8.58582 14.8711i −0.343433 0.594843i
\(626\) 0 0
\(627\) −18.7331 + 5.01952i −0.748128 + 0.200460i
\(628\) 0 0
\(629\) 9.19880 9.19880i 0.366780 0.366780i
\(630\) 0 0
\(631\) 2.48179 0.0987983 0.0493992 0.998779i \(-0.484269\pi\)
0.0493992 + 0.998779i \(0.484269\pi\)
\(632\) 0 0
\(633\) −18.5926 + 32.2033i −0.738990 + 1.27997i
\(634\) 0 0
\(635\) −10.3139 + 38.4919i −0.409293 + 1.52750i
\(636\) 0 0
\(637\) 1.50209 3.36284i 0.0595152 0.133241i
\(638\) 0 0
\(639\) −55.8232 + 32.2296i −2.20833 + 1.27498i
\(640\) 0 0
\(641\) 7.96198 13.7906i 0.314479 0.544694i −0.664847 0.746979i \(-0.731503\pi\)
0.979327 + 0.202285i \(0.0648367\pi\)
\(642\) 0 0
\(643\) 7.66392 7.66392i 0.302236 0.302236i −0.539652 0.841888i \(-0.681444\pi\)
0.841888 + 0.539652i \(0.181444\pi\)
\(644\) 0 0
\(645\) −26.5502 26.5502i −1.04541 1.04541i
\(646\) 0 0
\(647\) 7.28511 + 4.20606i 0.286407 + 0.165357i 0.636320 0.771425i \(-0.280456\pi\)
−0.349913 + 0.936782i \(0.613789\pi\)
\(648\) 0 0
\(649\) −15.5140 26.8710i −0.608976 1.05478i
\(650\) 0 0
\(651\) 30.0863 + 35.2696i 1.17918 + 1.38232i
\(652\) 0 0
\(653\) −47.4173 12.7054i −1.85558 0.497201i −0.855783 0.517335i \(-0.826924\pi\)
−0.999797 + 0.0201333i \(0.993591\pi\)
\(654\) 0 0
\(655\) 26.6972 + 15.4136i 1.04315 + 0.602261i
\(656\) 0 0
\(657\) 10.9940i 0.428916i
\(658\) 0 0
\(659\) −4.57653 4.57653i −0.178276 0.178276i 0.612328 0.790604i \(-0.290233\pi\)
−0.790604 + 0.612328i \(0.790233\pi\)
\(660\) 0 0
\(661\) −9.70671 36.2259i −0.377547 1.40903i −0.849587 0.527448i \(-0.823149\pi\)
0.472040 0.881577i \(-0.343518\pi\)
\(662\) 0 0
\(663\) −4.02714 + 2.32507i −0.156401 + 0.0902983i
\(664\) 0 0
\(665\) 3.67078 + 7.70791i 0.142347 + 0.298900i
\(666\) 0 0
\(667\) −7.44160 1.99397i −0.288140 0.0772068i
\(668\) 0 0
\(669\) 23.4153 + 87.3870i 0.905286 + 3.37858i
\(670\) 0 0
\(671\) 1.43087 0.0552382
\(672\) 0 0
\(673\) 1.25969 0.0485576 0.0242788 0.999705i \(-0.492271\pi\)
0.0242788 + 0.999705i \(0.492271\pi\)
\(674\) 0 0
\(675\) −4.31392 16.0998i −0.166043 0.619681i
\(676\) 0 0
\(677\) 10.2182 + 2.73796i 0.392717 + 0.105228i 0.449774 0.893143i \(-0.351505\pi\)
−0.0570560 + 0.998371i \(0.518171\pi\)
\(678\) 0 0
\(679\) 6.79417 9.87282i 0.260736 0.378884i
\(680\) 0 0
\(681\) 17.8832 10.3249i 0.685287 0.395651i
\(682\) 0 0
\(683\) −8.66885 32.3526i −0.331705 1.23794i −0.907398 0.420272i \(-0.861935\pi\)
0.575693 0.817666i \(-0.304732\pi\)
\(684\) 0 0
\(685\) −1.79466 1.79466i −0.0685706 0.0685706i
\(686\) 0 0
\(687\) 25.3833i 0.968434i
\(688\) 0 0
\(689\) 3.06577 + 1.77003i 0.116797 + 0.0674326i
\(690\) 0 0
\(691\) −14.3264 3.83874i −0.545001 0.146033i −0.0241943 0.999707i \(-0.507702\pi\)
−0.520807 + 0.853675i \(0.674369\pi\)
\(692\) 0 0
\(693\) −12.5761 68.0837i −0.477728 2.58629i
\(694\) 0 0
\(695\) 21.4613 + 37.1721i 0.814074 + 1.41002i
\(696\) 0 0
\(697\) 9.50156 + 5.48573i 0.359897 + 0.207787i
\(698\) 0 0
\(699\) 0.414872 + 0.414872i 0.0156919 + 0.0156919i
\(700\) 0 0
\(701\) 14.0698 14.0698i 0.531408 0.531408i −0.389583 0.920991i \(-0.627381\pi\)
0.920991 + 0.389583i \(0.127381\pi\)
\(702\) 0 0
\(703\) 3.91271 6.77701i 0.147571 0.255600i
\(704\) 0 0
\(705\) 19.8561 11.4639i 0.747825 0.431757i
\(706\) 0 0
\(707\) 11.9737 33.7481i 0.450319 1.26923i
\(708\) 0 0
\(709\) −3.36966 + 12.5757i −0.126550 + 0.472291i −0.999890 0.0148195i \(-0.995283\pi\)
0.873340 + 0.487111i \(0.161949\pi\)
\(710\) 0 0
\(711\) 14.3743 24.8970i 0.539078 0.933710i
\(712\) 0 0
\(713\) 13.9835 0.523684
\(714\) 0 0
\(715\) 2.62748 2.62748i 0.0982623 0.0982623i
\(716\) 0 0
\(717\) 60.5923 16.2356i 2.26286 0.606331i
\(718\) 0 0
\(719\) 10.1472 + 17.5754i 0.378425 + 0.655452i 0.990833 0.135090i \(-0.0431324\pi\)
−0.612408 + 0.790542i \(0.709799\pi\)
\(720\) 0 0
\(721\) 33.3629 + 2.64595i 1.24250 + 0.0985403i
\(722\) 0 0
\(723\) −2.95882 + 11.0425i −0.110040 + 0.410673i
\(724\) 0 0
\(725\) 3.66052 0.980834i 0.135948 0.0364272i
\(726\) 0 0
\(727\) 38.4308i 1.42532i −0.701510 0.712660i \(-0.747490\pi\)
0.701510 0.712660i \(-0.252510\pi\)
\(728\) 0 0
\(729\) 22.8244i 0.845348i
\(730\) 0 0
\(731\) −16.2749 + 4.36084i −0.601948 + 0.161292i
\(732\) 0 0
\(733\) 12.9875 48.4699i 0.479703 1.79028i −0.123110 0.992393i \(-0.539287\pi\)
0.602813 0.797882i \(-0.294046\pi\)
\(734\) 0 0
\(735\) −40.3718 + 15.4415i −1.48914 + 0.569567i
\(736\) 0 0
\(737\) 26.2434 + 45.4549i 0.966689 + 1.67435i
\(738\) 0 0
\(739\) −7.12602 + 1.90941i −0.262135 + 0.0702388i −0.387493 0.921873i \(-0.626659\pi\)
0.125358 + 0.992112i \(0.459992\pi\)
\(740\) 0 0
\(741\) −1.97794 + 1.97794i −0.0726614 + 0.0726614i
\(742\) 0 0
\(743\) −13.2937 −0.487698 −0.243849 0.969813i \(-0.578410\pi\)
−0.243849 + 0.969813i \(0.578410\pi\)
\(744\) 0 0
\(745\) 12.1426 21.0316i 0.444870 0.770537i
\(746\) 0 0
\(747\) 9.65119 36.0187i 0.353119 1.31786i
\(748\) 0 0
\(749\) 6.19841 + 7.26627i 0.226485 + 0.265504i
\(750\) 0 0
\(751\) 10.6206 6.13182i 0.387552 0.223753i −0.293547 0.955945i \(-0.594836\pi\)
0.681099 + 0.732191i \(0.261502\pi\)
\(752\) 0 0
\(753\) 25.2333 43.7054i 0.919553 1.59271i
\(754\) 0 0
\(755\) 12.5077 12.5077i 0.455201 0.455201i
\(756\) 0 0
\(757\) −27.2609 27.2609i −0.990813 0.990813i 0.00914525 0.999958i \(-0.497089\pi\)
−0.999958 + 0.00914525i \(0.997089\pi\)
\(758\) 0 0
\(759\) −25.6497 14.8089i −0.931025 0.537527i
\(760\) 0 0
\(761\) 10.1480 + 17.5769i 0.367867 + 0.637164i 0.989232 0.146358i \(-0.0467550\pi\)
−0.621365 + 0.783521i \(0.713422\pi\)
\(762\) 0 0
\(763\) −9.02048 + 25.4243i −0.326563 + 0.920423i
\(764\) 0 0
\(765\) 37.1695 + 9.95952i 1.34386 + 0.360087i
\(766\) 0 0
\(767\) −3.87566 2.23761i −0.139942 0.0807955i
\(768\) 0 0
\(769\) 19.6449i 0.708412i 0.935167 + 0.354206i \(0.115249\pi\)
−0.935167 + 0.354206i \(0.884751\pi\)
\(770\) 0 0
\(771\) −20.7612 20.7612i −0.747695 0.747695i
\(772\) 0 0
\(773\) 12.6902 + 47.3606i 0.456436 + 1.70344i 0.683832 + 0.729639i \(0.260312\pi\)
−0.227397 + 0.973802i \(0.573021\pi\)
\(774\) 0 0
\(775\) −5.95692 + 3.43923i −0.213979 + 0.123541i
\(776\) 0 0
\(777\) 32.6380 + 22.4605i 1.17088 + 0.805765i
\(778\) 0 0
\(779\) 6.37485 + 1.70813i 0.228403 + 0.0612003i
\(780\) 0 0
\(781\) −8.48400 31.6627i −0.303581 1.13298i
\(782\) 0 0
\(783\) −40.2892 −1.43982
\(784\) 0 0
\(785\) −25.5913 −0.913394
\(786\) 0 0
\(787\) −0.740742 2.76449i −0.0264046 0.0985433i 0.951466 0.307754i \(-0.0995773\pi\)
−0.977871 + 0.209210i \(0.932911\pi\)
\(788\) 0 0
\(789\) 9.50662 + 2.54729i 0.338445 + 0.0906860i
\(790\) 0 0
\(791\) 40.1820 + 27.6520i 1.42871 + 0.983191i
\(792\) 0 0
\(793\) 0.178728 0.103189i 0.00634683 0.00366434i
\(794\) 0 0
\(795\) −10.7528 40.1300i −0.381363 1.42326i
\(796\) 0 0
\(797\) −39.0301 39.0301i −1.38252 1.38252i −0.840129 0.542386i \(-0.817521\pi\)
−0.542386 0.840129i \(-0.682479\pi\)
\(798\) 0 0
\(799\) 10.2886i 0.363984i
\(800\) 0 0
\(801\) −41.6482 24.0456i −1.47157 0.849609i
\(802\) 0 0
\(803\) −5.40031 1.44701i −0.190573 0.0510639i
\(804\) 0 0
\(805\) −4.35956 + 12.2875i −0.153654 + 0.433077i
\(806\) 0 0
\(807\) −38.5526 66.7751i −1.35712 2.35059i
\(808\) 0 0
\(809\) −36.0749 20.8279i −1.26833 0.732269i −0.293656 0.955911i \(-0.594872\pi\)
−0.974671 + 0.223642i \(0.928205\pi\)
\(810\) 0 0
\(811\) −6.24833 6.24833i −0.219409 0.219409i 0.588841 0.808249i \(-0.299585\pi\)
−0.808249 + 0.588841i \(0.799585\pi\)
\(812\) 0 0
\(813\) −26.1742 + 26.1742i −0.917969 + 0.917969i
\(814\) 0 0
\(815\) 0.384070 0.665229i 0.0134534 0.0233019i
\(816\) 0 0
\(817\) −8.77741 + 5.06764i −0.307083 + 0.177294i
\(818\) 0 0
\(819\) −6.48080 7.59731i −0.226457 0.265471i
\(820\) 0 0
\(821\) 11.0196 41.1258i 0.384588 1.43530i −0.454228 0.890886i \(-0.650085\pi\)
0.838816 0.544416i \(-0.183249\pi\)
\(822\) 0 0
\(823\) −0.688665 + 1.19280i −0.0240054 + 0.0415785i −0.877779 0.479067i \(-0.840975\pi\)
0.853773 + 0.520645i \(0.174309\pi\)
\(824\) 0 0
\(825\) 14.5689 0.507225
\(826\) 0 0
\(827\) −14.2870 + 14.2870i −0.496807 + 0.496807i −0.910443 0.413636i \(-0.864259\pi\)
0.413636 + 0.910443i \(0.364259\pi\)
\(828\) 0 0
\(829\) −20.0887 + 5.38274i −0.697708 + 0.186950i −0.590204 0.807254i \(-0.700953\pi\)
−0.107504 + 0.994205i \(0.534286\pi\)
\(830\) 0 0
\(831\) −10.6111 18.3790i −0.368095 0.637560i
\(832\) 0 0
\(833\) −3.05733 + 19.1538i −0.105930 + 0.663639i
\(834\) 0 0
\(835\) −11.8544 + 44.2412i −0.410239 + 1.53103i
\(836\) 0 0
\(837\) 70.6357 18.9268i 2.44153 0.654205i
\(838\) 0 0
\(839\) 12.7357i 0.439684i 0.975535 + 0.219842i \(0.0705542\pi\)
−0.975535 + 0.219842i \(0.929446\pi\)
\(840\) 0 0
\(841\) 19.8397i 0.684126i
\(842\) 0 0
\(843\) −50.0972 + 13.4235i −1.72544 + 0.462330i
\(844\) 0 0
\(845\) −6.37506 + 23.7921i −0.219309 + 0.818472i
\(846\) 0 0
\(847\) 6.08623 + 0.482688i 0.209125 + 0.0165854i
\(848\) 0 0
\(849\) −38.2424 66.2378i −1.31248 2.27328i
\(850\) 0 0
\(851\) 11.5435 3.09307i 0.395706 0.106029i
\(852\) 0 0
\(853\) −17.4577 + 17.4577i −0.597741 + 0.597741i −0.939711 0.341970i \(-0.888906\pi\)
0.341970 + 0.939711i \(0.388906\pi\)
\(854\) 0 0
\(855\) 23.1475 0.791628
\(856\) 0 0
\(857\) −1.56865 + 2.71698i −0.0535840 + 0.0928102i −0.891573 0.452877i \(-0.850398\pi\)
0.837989 + 0.545687i \(0.183731\pi\)
\(858\) 0 0
\(859\) −0.462421 + 1.72578i −0.0157776 + 0.0588828i −0.973366 0.229257i \(-0.926370\pi\)
0.957588 + 0.288140i \(0.0930369\pi\)
\(860\) 0 0
\(861\) −11.1728 + 31.4907i −0.380768 + 1.07320i
\(862\) 0 0
\(863\) 4.43745 2.56196i 0.151052 0.0872101i −0.422569 0.906331i \(-0.638872\pi\)
0.573621 + 0.819121i \(0.305538\pi\)
\(864\) 0 0
\(865\) 14.8852 25.7819i 0.506112 0.876611i
\(866\) 0 0
\(867\) −21.0250 + 21.0250i −0.714047 + 0.714047i
\(868\) 0 0
\(869\) 10.3376 + 10.3376i 0.350680 + 0.350680i
\(870\) 0 0
\(871\) 6.55607 + 3.78515i 0.222144 + 0.128255i
\(872\) 0 0
\(873\) −16.2472 28.1410i −0.549884 0.952427i
\(874\) 0 0
\(875\) −5.81684 31.4908i −0.196645 1.06458i
\(876\) 0 0
\(877\) −4.01542 1.07593i −0.135591 0.0363316i 0.190385 0.981709i \(-0.439026\pi\)
−0.325976 + 0.945378i \(0.605693\pi\)
\(878\) 0 0
\(879\) −60.5506 34.9589i −2.04232 1.17914i
\(880\) 0 0
\(881\) 27.5375i 0.927761i −0.885898 0.463880i \(-0.846457\pi\)
0.885898 0.463880i \(-0.153543\pi\)
\(882\) 0 0
\(883\) 32.4922 + 32.4922i 1.09345 + 1.09345i 0.995158 + 0.0982911i \(0.0313376\pi\)
0.0982911 + 0.995158i \(0.468662\pi\)
\(884\) 0 0
\(885\) 13.5934 + 50.7311i 0.456936 + 1.70531i
\(886\) 0 0
\(887\) 32.4376 18.7278i 1.08915 0.628820i 0.155798 0.987789i \(-0.450205\pi\)
0.933349 + 0.358969i \(0.116872\pi\)
\(888\) 0 0
\(889\) −30.8738 + 44.8637i −1.03547 + 1.50468i
\(890\) 0 0
\(891\) −73.7795 19.7692i −2.47171 0.662292i
\(892\) 0 0
\(893\) −1.60182 5.97807i −0.0536028 0.200048i
\(894\) 0 0
\(895\) −1.11402 −0.0372376
\(896\) 0 0
\(897\) −4.27183 −0.142632
\(898\) 0 0
\(899\) 4.30328 + 16.0601i 0.143522 + 0.535633i
\(900\) 0 0
\(901\) −18.0078 4.82518i −0.599927 0.160750i
\(902\) 0 0
\(903\) −22.0635 46.3289i −0.734226 1.54173i
\(904\) 0 0
\(905\) 0.570051 0.329119i 0.0189491 0.0109403i
\(906\) 0 0
\(907\) −8.94245 33.3737i −0.296929 1.10815i −0.939673 0.342074i \(-0.888871\pi\)
0.642744 0.766081i \(-0.277796\pi\)
\(908\) 0 0
\(909\) −68.6533 68.6533i −2.27709 2.27709i
\(910\) 0 0
\(911\) 22.9373i 0.759946i 0.924998 + 0.379973i \(0.124067\pi\)
−0.924998 + 0.379973i \(0.875933\pi\)
\(912\) 0 0
\(913\) 16.4224 + 9.48145i 0.543501 + 0.313790i
\(914\) 0 0
\(915\) −2.33950 0.626867i −0.0773414 0.0207236i
\(916\) 0 0
\(917\) 27.3419 + 32.0523i 0.902909 + 1.05846i
\(918\) 0 0
\(919\) −13.8963 24.0691i −0.458396 0.793966i 0.540480 0.841357i \(-0.318243\pi\)
−0.998876 + 0.0473912i \(0.984909\pi\)
\(920\) 0 0
\(921\) −32.4398 18.7291i −1.06893 0.617146i
\(922\) 0 0
\(923\) −3.34312 3.34312i −0.110040 0.110040i
\(924\) 0 0
\(925\) −4.15676 + 4.15676i −0.136673 + 0.136673i
\(926\) 0 0
\(927\) 45.3707 78.5844i 1.49017 2.58105i
\(928\) 0 0
\(929\) 13.2279 7.63716i 0.433995 0.250567i −0.267052 0.963682i \(-0.586050\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(930\) 0 0
\(931\) 1.20560 + 11.6051i 0.0395120 + 0.380341i
\(932\) 0 0
\(933\) −7.30182 + 27.2508i −0.239051 + 0.892150i
\(934\) 0 0
\(935\) −9.78436 + 16.9470i −0.319983 + 0.554227i
\(936\) 0 0
\(937\) −18.1308 −0.592307 −0.296154 0.955140i \(-0.595704\pi\)
−0.296154 + 0.955140i \(0.595704\pi\)
\(938\) 0 0
\(939\) −56.4350 + 56.4350i −1.84169 + 1.84169i
\(940\) 0 0
\(941\) −8.37369 + 2.24372i −0.272974 + 0.0731433i −0.392709 0.919663i \(-0.628462\pi\)
0.119735 + 0.992806i \(0.461796\pi\)
\(942\) 0 0
\(943\) 5.03943 + 8.72855i 0.164106 + 0.284241i
\(944\) 0 0
\(945\) −5.39053 + 67.9694i −0.175354 + 2.21105i
\(946\) 0 0
\(947\) 3.98857 14.8856i 0.129611 0.483716i −0.870351 0.492432i \(-0.836108\pi\)
0.999962 + 0.00871655i \(0.00277460\pi\)
\(948\) 0 0
\(949\) −0.778899 + 0.208705i −0.0252841 + 0.00677486i
\(950\) 0 0
\(951\) 10.2003i 0.330768i
\(952\) 0 0
\(953\) 14.4644i 0.468547i −0.972171 0.234273i \(-0.924729\pi\)
0.972171 0.234273i \(-0.0752711\pi\)
\(954\) 0 0
\(955\) 9.88585 2.64890i 0.319899 0.0857165i
\(956\) 0 0
\(957\) 9.11458 34.0161i 0.294632 1.09958i
\(958\) 0 0
\(959\) −1.49138 3.13160i −0.0481592 0.101125i
\(960\) 0 0
\(961\) 0.410836 + 0.711589i 0.0132528 + 0.0229545i
\(962\) 0 0
\(963\) 25.0131 6.70223i 0.806035 0.215976i
\(964\) 0 0
\(965\) 23.0980 23.0980i 0.743549 0.743549i
\(966\) 0 0
\(967\) −53.4246 −1.71802 −0.859010 0.511958i \(-0.828920\pi\)
−0.859010 + 0.511958i \(0.828920\pi\)
\(968\) 0 0
\(969\) 7.36555 12.7575i 0.236616 0.409830i
\(970\) 0 0
\(971\) 5.56119 20.7547i 0.178467 0.666048i −0.817468 0.575974i \(-0.804623\pi\)
0.995935 0.0900743i \(-0.0287105\pi\)
\(972\) 0 0
\(973\) 10.6552 + 57.6842i 0.341589 + 1.84927i
\(974\) 0 0
\(975\) 1.81979 1.05066i 0.0582799 0.0336479i
\(976\) 0 0
\(977\) −18.0960 + 31.3432i −0.578942 + 1.00276i 0.416659 + 0.909063i \(0.363201\pi\)
−0.995601 + 0.0936944i \(0.970132\pi\)
\(978\) 0 0
\(979\) 17.2930 17.2930i 0.552687 0.552687i
\(980\) 0 0
\(981\) 51.7204 + 51.7204i 1.65130 + 1.65130i
\(982\) 0 0
\(983\) −31.0312 17.9159i −0.989742 0.571428i −0.0845448 0.996420i \(-0.526944\pi\)
−0.905197 + 0.424992i \(0.860277\pi\)
\(984\) 0 0
\(985\) −2.48773 4.30887i −0.0792655 0.137292i
\(986\) 0 0
\(987\) 30.8130 5.69165i 0.980789 0.181167i
\(988\) 0 0
\(989\) −14.9508 4.00606i −0.475409 0.127385i
\(990\) 0 0
\(991\) −41.7865 24.1254i −1.32739 0.766370i −0.342496 0.939519i \(-0.611272\pi\)
−0.984896 + 0.173149i \(0.944606\pi\)
\(992\) 0 0
\(993\) 43.7541i 1.38850i
\(994\) 0 0
\(995\) −0.997699 0.997699i −0.0316292 0.0316292i
\(996\) 0 0
\(997\) −7.00832 26.1554i −0.221956 0.828351i −0.983601 0.180357i \(-0.942275\pi\)
0.761645 0.647994i \(-0.224392\pi\)
\(998\) 0 0
\(999\) 54.1240 31.2485i 1.71241 0.988659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.a.31.1 56
4.3 odd 2 896.2.z.b.31.14 56
7.5 odd 6 inner 896.2.z.a.159.1 56
8.3 odd 2 112.2.v.a.59.8 yes 56
8.5 even 2 448.2.z.a.143.14 56
16.3 odd 4 inner 896.2.z.a.479.1 56
16.5 even 4 112.2.v.a.3.2 56
16.11 odd 4 448.2.z.a.367.14 56
16.13 even 4 896.2.z.b.479.14 56
28.19 even 6 896.2.z.b.159.14 56
56.3 even 6 784.2.j.a.587.24 56
56.5 odd 6 448.2.z.a.271.14 56
56.11 odd 6 784.2.j.a.587.23 56
56.19 even 6 112.2.v.a.75.2 yes 56
56.27 even 2 784.2.w.f.619.8 56
56.51 odd 6 784.2.w.f.411.2 56
112.5 odd 12 112.2.v.a.19.8 yes 56
112.19 even 12 inner 896.2.z.a.607.1 56
112.37 even 12 784.2.w.f.19.8 56
112.53 even 12 784.2.j.a.195.24 56
112.61 odd 12 896.2.z.b.607.14 56
112.69 odd 4 784.2.w.f.227.2 56
112.75 even 12 448.2.z.a.47.14 56
112.101 odd 12 784.2.j.a.195.23 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.2 56 16.5 even 4
112.2.v.a.19.8 yes 56 112.5 odd 12
112.2.v.a.59.8 yes 56 8.3 odd 2
112.2.v.a.75.2 yes 56 56.19 even 6
448.2.z.a.47.14 56 112.75 even 12
448.2.z.a.143.14 56 8.5 even 2
448.2.z.a.271.14 56 56.5 odd 6
448.2.z.a.367.14 56 16.11 odd 4
784.2.j.a.195.23 56 112.101 odd 12
784.2.j.a.195.24 56 112.53 even 12
784.2.j.a.587.23 56 56.11 odd 6
784.2.j.a.587.24 56 56.3 even 6
784.2.w.f.19.8 56 112.37 even 12
784.2.w.f.227.2 56 112.69 odd 4
784.2.w.f.411.2 56 56.51 odd 6
784.2.w.f.619.8 56 56.27 even 2
896.2.z.a.31.1 56 1.1 even 1 trivial
896.2.z.a.159.1 56 7.5 odd 6 inner
896.2.z.a.479.1 56 16.3 odd 4 inner
896.2.z.a.607.1 56 112.19 even 12 inner
896.2.z.b.31.14 56 4.3 odd 2
896.2.z.b.159.14 56 28.19 even 6
896.2.z.b.479.14 56 16.13 even 4
896.2.z.b.607.14 56 112.61 odd 12