Properties

Label 896.2.z.b.479.14
Level $896$
Weight $2$
Character 896.479
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 479.14
Character \(\chi\) \(=\) 896.479
Dual form 896.2.z.b.159.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.08091 - 0.825526i) q^{3} +(-0.501060 + 1.86998i) q^{5} +(2.17953 + 1.49988i) q^{7} +(6.21241 - 3.58674i) q^{9} +(-3.52366 + 0.944161i) q^{11} +(0.372046 - 0.372046i) q^{13} +6.17487i q^{15} +(2.39966 + 1.38545i) q^{17} +(-0.431397 + 1.61000i) q^{19} +(7.95312 + 2.82174i) q^{21} +(-1.27273 - 2.20444i) q^{23} +(1.08436 + 0.626056i) q^{25} +(9.41278 - 9.41278i) q^{27} +(-2.14013 - 2.14013i) q^{29} +(2.74674 - 4.75749i) q^{31} +(-10.0766 + 5.81774i) q^{33} +(-3.89683 + 3.32415i) q^{35} +(-4.53493 - 1.21513i) q^{37} +(0.839106 - 1.45337i) q^{39} -3.95954 q^{41} +(4.29972 + 4.29972i) q^{43} +(3.59434 + 13.4143i) q^{45} +(-1.85655 - 3.21563i) q^{47} +(2.50070 + 6.53808i) q^{49} +(8.53685 + 2.28744i) q^{51} +(1.74138 + 6.49892i) q^{53} -7.06225i q^{55} +5.31638i q^{57} +(-2.20140 - 8.21574i) q^{59} +(-0.378874 - 0.101519i) q^{61} +(18.9198 + 1.50050i) q^{63} +(0.509302 + 0.882137i) q^{65} +(-3.72389 - 13.8977i) q^{67} +(-5.74099 - 5.74099i) q^{69} -8.98576 q^{71} +(-0.766294 + 1.32726i) q^{73} +(3.85764 + 1.03365i) q^{75} +(-9.09605 - 3.22725i) q^{77} +(-3.47070 + 2.00381i) q^{79} +(10.4692 - 18.1331i) q^{81} +(-3.67570 - 3.67570i) q^{83} +(-3.79313 + 3.79313i) q^{85} +(-8.36028 - 4.82681i) q^{87} +(-3.35201 - 5.80586i) q^{89} +(1.36891 - 0.252860i) q^{91} +(4.53501 - 16.9249i) q^{93} +(-2.79451 - 1.61341i) q^{95} +4.52980i q^{97} +(-18.5040 + 18.5040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} + 6 q^{5} - 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} + 10 q^{21} - 12 q^{23} + 24 q^{29} - 12 q^{33} + 2 q^{35} - 6 q^{37} - 4 q^{39} - 12 q^{45} - 8 q^{49} + 34 q^{51} - 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.08091 0.825526i 1.77876 0.476618i 0.788405 0.615156i \(-0.210907\pi\)
0.990357 + 0.138539i \(0.0442405\pi\)
\(4\) 0 0
\(5\) −0.501060 + 1.86998i −0.224081 + 0.836281i 0.758690 + 0.651452i \(0.225840\pi\)
−0.982771 + 0.184829i \(0.940827\pi\)
\(6\) 0 0
\(7\) 2.17953 + 1.49988i 0.823785 + 0.566903i
\(8\) 0 0
\(9\) 6.21241 3.58674i 2.07080 1.19558i
\(10\) 0 0
\(11\) −3.52366 + 0.944161i −1.06242 + 0.284675i −0.747376 0.664401i \(-0.768687\pi\)
−0.315046 + 0.949076i \(0.602020\pi\)
\(12\) 0 0
\(13\) 0.372046 0.372046i 0.103187 0.103187i −0.653628 0.756816i \(-0.726754\pi\)
0.756816 + 0.653628i \(0.226754\pi\)
\(14\) 0 0
\(15\) 6.17487i 1.59435i
\(16\) 0 0
\(17\) 2.39966 + 1.38545i 0.582003 + 0.336020i 0.761929 0.647660i \(-0.224252\pi\)
−0.179926 + 0.983680i \(0.557586\pi\)
\(18\) 0 0
\(19\) −0.431397 + 1.61000i −0.0989693 + 0.369358i −0.997591 0.0693652i \(-0.977903\pi\)
0.898622 + 0.438724i \(0.144569\pi\)
\(20\) 0 0
\(21\) 7.95312 + 2.82174i 1.73551 + 0.615755i
\(22\) 0 0
\(23\) −1.27273 2.20444i −0.265383 0.459657i 0.702281 0.711900i \(-0.252165\pi\)
−0.967664 + 0.252243i \(0.918832\pi\)
\(24\) 0 0
\(25\) 1.08436 + 0.626056i 0.216872 + 0.125211i
\(26\) 0 0
\(27\) 9.41278 9.41278i 1.81149 1.81149i
\(28\) 0 0
\(29\) −2.14013 2.14013i −0.397413 0.397413i 0.479907 0.877319i \(-0.340670\pi\)
−0.877319 + 0.479907i \(0.840670\pi\)
\(30\) 0 0
\(31\) 2.74674 4.75749i 0.493329 0.854471i −0.506641 0.862157i \(-0.669113\pi\)
0.999970 + 0.00768582i \(0.00244650\pi\)
\(32\) 0 0
\(33\) −10.0766 + 5.81774i −1.75412 + 1.01274i
\(34\) 0 0
\(35\) −3.89683 + 3.32415i −0.658684 + 0.561883i
\(36\) 0 0
\(37\) −4.53493 1.21513i −0.745537 0.199766i −0.134000 0.990981i \(-0.542782\pi\)
−0.611538 + 0.791215i \(0.709449\pi\)
\(38\) 0 0
\(39\) 0.839106 1.45337i 0.134364 0.232726i
\(40\) 0 0
\(41\) −3.95954 −0.618376 −0.309188 0.951001i \(-0.600057\pi\)
−0.309188 + 0.951001i \(0.600057\pi\)
\(42\) 0 0
\(43\) 4.29972 + 4.29972i 0.655701 + 0.655701i 0.954360 0.298659i \(-0.0965394\pi\)
−0.298659 + 0.954360i \(0.596539\pi\)
\(44\) 0 0
\(45\) 3.59434 + 13.4143i 0.535813 + 1.99968i
\(46\) 0 0
\(47\) −1.85655 3.21563i −0.270805 0.469048i 0.698263 0.715841i \(-0.253957\pi\)
−0.969068 + 0.246793i \(0.920623\pi\)
\(48\) 0 0
\(49\) 2.50070 + 6.53808i 0.357242 + 0.934012i
\(50\) 0 0
\(51\) 8.53685 + 2.28744i 1.19540 + 0.320306i
\(52\) 0 0
\(53\) 1.74138 + 6.49892i 0.239197 + 0.892696i 0.976212 + 0.216819i \(0.0695681\pi\)
−0.737015 + 0.675877i \(0.763765\pi\)
\(54\) 0 0
\(55\) 7.06225i 0.952274i
\(56\) 0 0
\(57\) 5.31638i 0.704171i
\(58\) 0 0
\(59\) −2.20140 8.21574i −0.286598 1.06960i −0.947664 0.319270i \(-0.896562\pi\)
0.661066 0.750328i \(-0.270104\pi\)
\(60\) 0 0
\(61\) −0.378874 0.101519i −0.0485098 0.0129982i 0.234483 0.972120i \(-0.424660\pi\)
−0.282992 + 0.959122i \(0.591327\pi\)
\(62\) 0 0
\(63\) 18.9198 + 1.50050i 2.38367 + 0.189045i
\(64\) 0 0
\(65\) 0.509302 + 0.882137i 0.0631711 + 0.109416i
\(66\) 0 0
\(67\) −3.72389 13.8977i −0.454946 1.69788i −0.688248 0.725476i \(-0.741620\pi\)
0.233302 0.972404i \(-0.425047\pi\)
\(68\) 0 0
\(69\) −5.74099 5.74099i −0.691134 0.691134i
\(70\) 0 0
\(71\) −8.98576 −1.06641 −0.533207 0.845985i \(-0.679013\pi\)
−0.533207 + 0.845985i \(0.679013\pi\)
\(72\) 0 0
\(73\) −0.766294 + 1.32726i −0.0896879 + 0.155344i −0.907379 0.420313i \(-0.861920\pi\)
0.817691 + 0.575657i \(0.195254\pi\)
\(74\) 0 0
\(75\) 3.85764 + 1.03365i 0.445442 + 0.119356i
\(76\) 0 0
\(77\) −9.09605 3.22725i −1.03659 0.367779i
\(78\) 0 0
\(79\) −3.47070 + 2.00381i −0.390484 + 0.225446i −0.682370 0.731007i \(-0.739051\pi\)
0.291886 + 0.956453i \(0.405717\pi\)
\(80\) 0 0
\(81\) 10.4692 18.1331i 1.16324 2.01479i
\(82\) 0 0
\(83\) −3.67570 3.67570i −0.403460 0.403460i 0.475990 0.879451i \(-0.342090\pi\)
−0.879451 + 0.475990i \(0.842090\pi\)
\(84\) 0 0
\(85\) −3.79313 + 3.79313i −0.411423 + 0.411423i
\(86\) 0 0
\(87\) −8.36028 4.82681i −0.896317 0.517489i
\(88\) 0 0
\(89\) −3.35201 5.80586i −0.355313 0.615420i 0.631859 0.775084i \(-0.282292\pi\)
−0.987171 + 0.159664i \(0.948959\pi\)
\(90\) 0 0
\(91\) 1.36891 0.252860i 0.143501 0.0265069i
\(92\) 0 0
\(93\) 4.53501 16.9249i 0.470259 1.75503i
\(94\) 0 0
\(95\) −2.79451 1.61341i −0.286710 0.165532i
\(96\) 0 0
\(97\) 4.52980i 0.459931i 0.973199 + 0.229966i \(0.0738613\pi\)
−0.973199 + 0.229966i \(0.926139\pi\)
\(98\) 0 0
\(99\) −18.5040 + 18.5040i −1.85972 + 1.85972i
\(100\) 0 0
\(101\) 13.0735 3.50302i 1.30086 0.348564i 0.459084 0.888393i \(-0.348178\pi\)
0.841775 + 0.539829i \(0.181511\pi\)
\(102\) 0 0
\(103\) 10.9548 6.32478i 1.07941 0.623200i 0.148675 0.988886i \(-0.452499\pi\)
0.930738 + 0.365687i \(0.119166\pi\)
\(104\) 0 0
\(105\) −9.26159 + 13.4583i −0.903839 + 1.31340i
\(106\) 0 0
\(107\) −0.934307 + 3.48688i −0.0903229 + 0.337090i −0.996269 0.0863036i \(-0.972494\pi\)
0.905946 + 0.423393i \(0.139161\pi\)
\(108\) 0 0
\(109\) 9.84896 2.63902i 0.943360 0.252772i 0.245817 0.969316i \(-0.420944\pi\)
0.697542 + 0.716544i \(0.254277\pi\)
\(110\) 0 0
\(111\) −14.9748 −1.42135
\(112\) 0 0
\(113\) −18.4361 −1.73432 −0.867160 0.498030i \(-0.834057\pi\)
−0.867160 + 0.498030i \(0.834057\pi\)
\(114\) 0 0
\(115\) 4.75997 1.27543i 0.443869 0.118934i
\(116\) 0 0
\(117\) 0.976873 3.64574i 0.0903119 0.337049i
\(118\) 0 0
\(119\) 3.15213 + 6.61883i 0.288955 + 0.606747i
\(120\) 0 0
\(121\) 1.99844 1.15380i 0.181676 0.104891i
\(122\) 0 0
\(123\) −12.1990 + 3.26871i −1.09994 + 0.294729i
\(124\) 0 0
\(125\) −8.55865 + 8.55865i −0.765509 + 0.765509i
\(126\) 0 0
\(127\) 20.5841i 1.82654i −0.407350 0.913272i \(-0.633547\pi\)
0.407350 0.913272i \(-0.366453\pi\)
\(128\) 0 0
\(129\) 16.7966 + 9.69749i 1.47885 + 0.853817i
\(130\) 0 0
\(131\) 4.12134 15.3810i 0.360083 1.34385i −0.513883 0.857860i \(-0.671793\pi\)
0.873966 0.485987i \(-0.161540\pi\)
\(132\) 0 0
\(133\) −3.35505 + 2.86199i −0.290920 + 0.248166i
\(134\) 0 0
\(135\) 12.8853 + 22.3181i 1.10899 + 1.92083i
\(136\) 0 0
\(137\) −1.13536 0.655503i −0.0970008 0.0560034i 0.450715 0.892668i \(-0.351169\pi\)
−0.547716 + 0.836665i \(0.684502\pi\)
\(138\) 0 0
\(139\) −15.6775 + 15.6775i −1.32975 + 1.32975i −0.424169 + 0.905583i \(0.639434\pi\)
−0.905583 + 0.424169i \(0.860566\pi\)
\(140\) 0 0
\(141\) −8.37444 8.37444i −0.705255 0.705255i
\(142\) 0 0
\(143\) −0.959692 + 1.66224i −0.0802535 + 0.139003i
\(144\) 0 0
\(145\) 5.07434 2.92967i 0.421401 0.243296i
\(146\) 0 0
\(147\) 13.1018 + 18.0788i 1.08062 + 1.49112i
\(148\) 0 0
\(149\) 12.1169 + 3.24672i 0.992656 + 0.265981i 0.718366 0.695666i \(-0.244891\pi\)
0.274290 + 0.961647i \(0.411557\pi\)
\(150\) 0 0
\(151\) 4.56845 7.91278i 0.371775 0.643933i −0.618064 0.786128i \(-0.712083\pi\)
0.989839 + 0.142195i \(0.0454160\pi\)
\(152\) 0 0
\(153\) 19.8769 1.60695
\(154\) 0 0
\(155\) 7.52014 + 7.52014i 0.604032 + 0.604032i
\(156\) 0 0
\(157\) 3.42134 + 12.7686i 0.273053 + 1.01905i 0.957135 + 0.289642i \(0.0935361\pi\)
−0.684083 + 0.729405i \(0.739797\pi\)
\(158\) 0 0
\(159\) 10.7301 + 18.5850i 0.850949 + 1.47389i
\(160\) 0 0
\(161\) 0.532442 6.71358i 0.0419623 0.529104i
\(162\) 0 0
\(163\) −0.383258 0.102694i −0.0300191 0.00804358i 0.243778 0.969831i \(-0.421613\pi\)
−0.273797 + 0.961787i \(0.588280\pi\)
\(164\) 0 0
\(165\) −5.83007 21.7581i −0.453871 1.69387i
\(166\) 0 0
\(167\) 23.6587i 1.83076i 0.402588 + 0.915381i \(0.368111\pi\)
−0.402588 + 0.915381i \(0.631889\pi\)
\(168\) 0 0
\(169\) 12.7232i 0.978705i
\(170\) 0 0
\(171\) 3.09462 + 11.5493i 0.236651 + 0.883195i
\(172\) 0 0
\(173\) −14.8537 3.98004i −1.12931 0.302597i −0.354662 0.934994i \(-0.615404\pi\)
−0.774644 + 0.632398i \(0.782071\pi\)
\(174\) 0 0
\(175\) 1.42439 + 2.99092i 0.107673 + 0.226093i
\(176\) 0 0
\(177\) −13.5646 23.4946i −1.01958 1.76596i
\(178\) 0 0
\(179\) 0.148935 + 0.555832i 0.0111319 + 0.0415448i 0.971268 0.237987i \(-0.0764875\pi\)
−0.960136 + 0.279532i \(0.909821\pi\)
\(180\) 0 0
\(181\) 0.240422 + 0.240422i 0.0178705 + 0.0178705i 0.715986 0.698115i \(-0.245978\pi\)
−0.698115 + 0.715986i \(0.745978\pi\)
\(182\) 0 0
\(183\) −1.25108 −0.0924826
\(184\) 0 0
\(185\) 4.54454 7.87137i 0.334121 0.578715i
\(186\) 0 0
\(187\) −9.76367 2.61617i −0.713990 0.191313i
\(188\) 0 0
\(189\) 34.6335 6.39735i 2.51922 0.465339i
\(190\) 0 0
\(191\) −4.57833 + 2.64330i −0.331277 + 0.191263i −0.656408 0.754406i \(-0.727925\pi\)
0.325131 + 0.945669i \(0.394592\pi\)
\(192\) 0 0
\(193\) −8.43656 + 14.6125i −0.607277 + 1.05183i 0.384411 + 0.923162i \(0.374405\pi\)
−0.991687 + 0.128672i \(0.958929\pi\)
\(194\) 0 0
\(195\) 2.29734 + 2.29734i 0.164516 + 0.164516i
\(196\) 0 0
\(197\) 1.81729 1.81729i 0.129477 0.129477i −0.639399 0.768875i \(-0.720817\pi\)
0.768875 + 0.639399i \(0.220817\pi\)
\(198\) 0 0
\(199\) −0.631178 0.364411i −0.0447430 0.0258324i 0.477462 0.878653i \(-0.341557\pi\)
−0.522205 + 0.852820i \(0.674890\pi\)
\(200\) 0 0
\(201\) −22.9459 39.7435i −1.61848 2.80329i
\(202\) 0 0
\(203\) −1.45453 7.87443i −0.102088 0.552677i
\(204\) 0 0
\(205\) 1.98397 7.40426i 0.138566 0.517136i
\(206\) 0 0
\(207\) −15.8135 9.12991i −1.09911 0.634573i
\(208\) 0 0
\(209\) 6.08038i 0.420589i
\(210\) 0 0
\(211\) 8.24367 8.24367i 0.567518 0.567518i −0.363915 0.931432i \(-0.618560\pi\)
0.931432 + 0.363915i \(0.118560\pi\)
\(212\) 0 0
\(213\) −27.6843 + 7.41798i −1.89690 + 0.508272i
\(214\) 0 0
\(215\) −10.1948 + 5.88597i −0.695280 + 0.401420i
\(216\) 0 0
\(217\) 13.1223 6.24931i 0.890799 0.424230i
\(218\) 0 0
\(219\) −1.26519 + 4.72176i −0.0854937 + 0.319067i
\(220\) 0 0
\(221\) 1.40824 0.377335i 0.0947281 0.0253823i
\(222\) 0 0
\(223\) −28.3640 −1.89940 −0.949698 0.313166i \(-0.898610\pi\)
−0.949698 + 0.313166i \(0.898610\pi\)
\(224\) 0 0
\(225\) 8.98200 0.598800
\(226\) 0 0
\(227\) −6.25352 + 1.67563i −0.415061 + 0.111215i −0.460305 0.887761i \(-0.652260\pi\)
0.0452445 + 0.998976i \(0.485593\pi\)
\(228\) 0 0
\(229\) −2.05973 + 7.68701i −0.136111 + 0.507972i 0.863880 + 0.503697i \(0.168027\pi\)
−0.999991 + 0.00427468i \(0.998639\pi\)
\(230\) 0 0
\(231\) −30.6882 2.43383i −2.01914 0.160134i
\(232\) 0 0
\(233\) 0.159304 0.0919739i 0.0104363 0.00602541i −0.494773 0.869022i \(-0.664749\pi\)
0.505209 + 0.862997i \(0.331415\pi\)
\(234\) 0 0
\(235\) 6.94341 1.86048i 0.452938 0.121364i
\(236\) 0 0
\(237\) −9.03870 + 9.03870i −0.587127 + 0.587127i
\(238\) 0 0
\(239\) 19.6670i 1.27215i 0.771626 + 0.636077i \(0.219444\pi\)
−0.771626 + 0.636077i \(0.780556\pi\)
\(240\) 0 0
\(241\) −3.10397 1.79208i −0.199944 0.115438i 0.396685 0.917955i \(-0.370160\pi\)
−0.596630 + 0.802517i \(0.703494\pi\)
\(242\) 0 0
\(243\) 6.94921 25.9348i 0.445792 1.66372i
\(244\) 0 0
\(245\) −13.4791 + 1.40028i −0.861147 + 0.0894608i
\(246\) 0 0
\(247\) 0.438493 + 0.759493i 0.0279007 + 0.0483254i
\(248\) 0 0
\(249\) −14.3589 8.29010i −0.909957 0.525364i
\(250\) 0 0
\(251\) 11.1881 11.1881i 0.706184 0.706184i −0.259547 0.965731i \(-0.583573\pi\)
0.965731 + 0.259547i \(0.0835731\pi\)
\(252\) 0 0
\(253\) 6.56601 + 6.56601i 0.412802 + 0.412802i
\(254\) 0 0
\(255\) −8.55495 + 14.8176i −0.535732 + 0.927914i
\(256\) 0 0
\(257\) 7.97191 4.60259i 0.497274 0.287101i −0.230313 0.973117i \(-0.573975\pi\)
0.727587 + 0.686015i \(0.240642\pi\)
\(258\) 0 0
\(259\) −8.06145 9.45028i −0.500914 0.587212i
\(260\) 0 0
\(261\) −20.9715 5.61929i −1.29810 0.347825i
\(262\) 0 0
\(263\) 1.54283 2.67226i 0.0951349 0.164778i −0.814530 0.580121i \(-0.803005\pi\)
0.909665 + 0.415343i \(0.136338\pi\)
\(264\) 0 0
\(265\) −13.0254 −0.800143
\(266\) 0 0
\(267\) −15.1201 15.1201i −0.925337 0.925337i
\(268\) 0 0
\(269\) 6.25670 + 23.3503i 0.381478 + 1.42369i 0.843645 + 0.536902i \(0.180405\pi\)
−0.462167 + 0.886793i \(0.652928\pi\)
\(270\) 0 0
\(271\) −5.80261 10.0504i −0.352484 0.610520i 0.634200 0.773169i \(-0.281329\pi\)
−0.986684 + 0.162649i \(0.947996\pi\)
\(272\) 0 0
\(273\) 4.00875 1.90911i 0.242620 0.115545i
\(274\) 0 0
\(275\) −4.41202 1.18220i −0.266055 0.0712891i
\(276\) 0 0
\(277\) −1.72208 6.42687i −0.103469 0.386153i 0.894698 0.446672i \(-0.147391\pi\)
−0.998167 + 0.0605191i \(0.980724\pi\)
\(278\) 0 0
\(279\) 39.4074i 2.35926i
\(280\) 0 0
\(281\) 16.2605i 0.970022i 0.874508 + 0.485011i \(0.161184\pi\)
−0.874508 + 0.485011i \(0.838816\pi\)
\(282\) 0 0
\(283\) −6.20636 23.1624i −0.368930 1.37686i −0.862015 0.506883i \(-0.830798\pi\)
0.493085 0.869981i \(-0.335869\pi\)
\(284\) 0 0
\(285\) −9.94152 2.66382i −0.588885 0.157791i
\(286\) 0 0
\(287\) −8.62993 5.93885i −0.509409 0.350559i
\(288\) 0 0
\(289\) −4.66108 8.07323i −0.274181 0.474896i
\(290\) 0 0
\(291\) 3.73947 + 13.9559i 0.219211 + 0.818108i
\(292\) 0 0
\(293\) −15.5002 15.5002i −0.905534 0.905534i 0.0903743 0.995908i \(-0.471194\pi\)
−0.995908 + 0.0903743i \(0.971194\pi\)
\(294\) 0 0
\(295\) 16.4663 0.958705
\(296\) 0 0
\(297\) −24.2802 + 42.0546i −1.40888 + 2.44025i
\(298\) 0 0
\(299\) −1.29367 0.346637i −0.0748147 0.0200465i
\(300\) 0 0
\(301\) 2.92228 + 15.8204i 0.168438 + 0.911875i
\(302\) 0 0
\(303\) 37.3863 21.5850i 2.14779 1.24002i
\(304\) 0 0
\(305\) 0.379677 0.657620i 0.0217402 0.0376552i
\(306\) 0 0
\(307\) 8.30421 + 8.30421i 0.473946 + 0.473946i 0.903189 0.429243i \(-0.141220\pi\)
−0.429243 + 0.903189i \(0.641220\pi\)
\(308\) 0 0
\(309\) 28.5296 28.5296i 1.62299 1.62299i
\(310\) 0 0
\(311\) 7.66004 + 4.42252i 0.434361 + 0.250778i 0.701203 0.712962i \(-0.252647\pi\)
−0.266842 + 0.963740i \(0.585980\pi\)
\(312\) 0 0
\(313\) 12.5112 + 21.6700i 0.707174 + 1.22486i 0.965901 + 0.258911i \(0.0833637\pi\)
−0.258727 + 0.965951i \(0.583303\pi\)
\(314\) 0 0
\(315\) −12.2859 + 34.6279i −0.692230 + 1.95106i
\(316\) 0 0
\(317\) −0.827705 + 3.08904i −0.0464885 + 0.173498i −0.985267 0.171024i \(-0.945292\pi\)
0.938778 + 0.344522i \(0.111959\pi\)
\(318\) 0 0
\(319\) 9.56172 + 5.52046i 0.535354 + 0.309087i
\(320\) 0 0
\(321\) 11.5141i 0.642652i
\(322\) 0 0
\(323\) −3.26577 + 3.26577i −0.181712 + 0.181712i
\(324\) 0 0
\(325\) 0.636355 0.170511i 0.0352986 0.00945823i
\(326\) 0 0
\(327\) 28.1652 16.2612i 1.55754 0.899244i
\(328\) 0 0
\(329\) 0.776679 9.79317i 0.0428197 0.539915i
\(330\) 0 0
\(331\) 3.55043 13.2504i 0.195149 0.728306i −0.797079 0.603875i \(-0.793623\pi\)
0.992228 0.124431i \(-0.0397107\pi\)
\(332\) 0 0
\(333\) −32.5312 + 8.71671i −1.78270 + 0.477673i
\(334\) 0 0
\(335\) 27.8544 1.52185
\(336\) 0 0
\(337\) 30.3580 1.65371 0.826854 0.562417i \(-0.190128\pi\)
0.826854 + 0.562417i \(0.190128\pi\)
\(338\) 0 0
\(339\) −56.7998 + 15.2195i −3.08494 + 0.826608i
\(340\) 0 0
\(341\) −5.18673 + 19.3571i −0.280877 + 1.04825i
\(342\) 0 0
\(343\) −4.35602 + 18.0007i −0.235203 + 0.971946i
\(344\) 0 0
\(345\) 13.6121 7.85895i 0.732851 0.423112i
\(346\) 0 0
\(347\) 13.0551 3.49811i 0.700836 0.187788i 0.109231 0.994016i \(-0.465161\pi\)
0.591605 + 0.806228i \(0.298494\pi\)
\(348\) 0 0
\(349\) 12.6593 12.6593i 0.677639 0.677639i −0.281826 0.959465i \(-0.590940\pi\)
0.959465 + 0.281826i \(0.0909402\pi\)
\(350\) 0 0
\(351\) 7.00398i 0.373845i
\(352\) 0 0
\(353\) −26.7828 15.4631i −1.42550 0.823016i −0.428743 0.903426i \(-0.641043\pi\)
−0.996762 + 0.0804108i \(0.974377\pi\)
\(354\) 0 0
\(355\) 4.50240 16.8032i 0.238963 0.891821i
\(356\) 0 0
\(357\) 15.1754 + 17.7898i 0.803169 + 0.941538i
\(358\) 0 0
\(359\) −9.22928 15.9856i −0.487103 0.843687i 0.512787 0.858516i \(-0.328613\pi\)
−0.999890 + 0.0148287i \(0.995280\pi\)
\(360\) 0 0
\(361\) 14.0485 + 8.11090i 0.739395 + 0.426890i
\(362\) 0 0
\(363\) 5.20452 5.20452i 0.273166 0.273166i
\(364\) 0 0
\(365\) −2.09799 2.09799i −0.109814 0.109814i
\(366\) 0 0
\(367\) −8.10460 + 14.0376i −0.423057 + 0.732756i −0.996237 0.0866738i \(-0.972376\pi\)
0.573180 + 0.819429i \(0.305710\pi\)
\(368\) 0 0
\(369\) −24.5983 + 14.2018i −1.28054 + 0.739318i
\(370\) 0 0
\(371\) −5.95224 + 16.7765i −0.309025 + 0.870990i
\(372\) 0 0
\(373\) 34.7801 + 9.31929i 1.80084 + 0.482534i 0.994109 0.108381i \(-0.0345666\pi\)
0.806734 + 0.590915i \(0.201233\pi\)
\(374\) 0 0
\(375\) −19.3030 + 33.4338i −0.996803 + 1.72651i
\(376\) 0 0
\(377\) −1.59246 −0.0820157
\(378\) 0 0
\(379\) 18.9916 + 18.9916i 0.975531 + 0.975531i 0.999708 0.0241768i \(-0.00769645\pi\)
−0.0241768 + 0.999708i \(0.507696\pi\)
\(380\) 0 0
\(381\) −16.9927 63.4177i −0.870564 3.24899i
\(382\) 0 0
\(383\) −11.8784 20.5740i −0.606957 1.05128i −0.991739 0.128273i \(-0.959057\pi\)
0.384782 0.923007i \(-0.374277\pi\)
\(384\) 0 0
\(385\) 10.5926 15.3924i 0.539847 0.784468i
\(386\) 0 0
\(387\) 42.1336 + 11.2897i 2.14177 + 0.573886i
\(388\) 0 0
\(389\) 3.49731 + 13.0521i 0.177321 + 0.661770i 0.996145 + 0.0877254i \(0.0279598\pi\)
−0.818824 + 0.574045i \(0.805374\pi\)
\(390\) 0 0
\(391\) 7.05320i 0.356696i
\(392\) 0 0
\(393\) 50.7898i 2.56201i
\(394\) 0 0
\(395\) −2.00806 7.49417i −0.101036 0.377073i
\(396\) 0 0
\(397\) 4.46180 + 1.19554i 0.223931 + 0.0600022i 0.369040 0.929413i \(-0.379687\pi\)
−0.145109 + 0.989416i \(0.546353\pi\)
\(398\) 0 0
\(399\) −7.97395 + 11.5872i −0.399197 + 0.580086i
\(400\) 0 0
\(401\) 11.1566 + 19.3238i 0.557135 + 0.964986i 0.997734 + 0.0672821i \(0.0214327\pi\)
−0.440599 + 0.897704i \(0.645234\pi\)
\(402\) 0 0
\(403\) −0.748093 2.79192i −0.0372652 0.139076i
\(404\) 0 0
\(405\) 28.6629 + 28.6629i 1.42427 + 1.42427i
\(406\) 0 0
\(407\) 17.1268 0.848944
\(408\) 0 0
\(409\) 2.83340 4.90759i 0.140102 0.242665i −0.787433 0.616401i \(-0.788590\pi\)
0.927535 + 0.373736i \(0.121923\pi\)
\(410\) 0 0
\(411\) −4.03909 1.08227i −0.199234 0.0533845i
\(412\) 0 0
\(413\) 7.52464 21.2083i 0.370263 1.04359i
\(414\) 0 0
\(415\) 8.71523 5.03174i 0.427814 0.246998i
\(416\) 0 0
\(417\) −35.3588 + 61.2433i −1.73153 + 2.99910i
\(418\) 0 0
\(419\) 2.67538 + 2.67538i 0.130701 + 0.130701i 0.769431 0.638730i \(-0.220540\pi\)
−0.638730 + 0.769431i \(0.720540\pi\)
\(420\) 0 0
\(421\) −17.2159 + 17.2159i −0.839052 + 0.839052i −0.988734 0.149682i \(-0.952175\pi\)
0.149682 + 0.988734i \(0.452175\pi\)
\(422\) 0 0
\(423\) −23.0673 13.3179i −1.12157 0.647538i
\(424\) 0 0
\(425\) 1.73473 + 3.00465i 0.0841470 + 0.145747i
\(426\) 0 0
\(427\) −0.673500 0.789530i −0.0325930 0.0382081i
\(428\) 0 0
\(429\) −1.58450 + 5.91344i −0.0765005 + 0.285504i
\(430\) 0 0
\(431\) 27.7876 + 16.0432i 1.33848 + 0.772774i 0.986582 0.163264i \(-0.0522021\pi\)
0.351901 + 0.936037i \(0.385535\pi\)
\(432\) 0 0
\(433\) 15.7783i 0.758258i −0.925344 0.379129i \(-0.876224\pi\)
0.925344 0.379129i \(-0.123776\pi\)
\(434\) 0 0
\(435\) 13.2150 13.2150i 0.633613 0.633613i
\(436\) 0 0
\(437\) 4.09819 1.09811i 0.196043 0.0525295i
\(438\) 0 0
\(439\) 1.89128 1.09193i 0.0902658 0.0521150i −0.454188 0.890906i \(-0.650070\pi\)
0.544453 + 0.838791i \(0.316737\pi\)
\(440\) 0 0
\(441\) 38.9857 + 31.6479i 1.85646 + 1.50704i
\(442\) 0 0
\(443\) −5.35487 + 19.9847i −0.254418 + 0.949500i 0.713996 + 0.700150i \(0.246884\pi\)
−0.968413 + 0.249350i \(0.919783\pi\)
\(444\) 0 0
\(445\) 12.5364 3.35912i 0.594282 0.159237i
\(446\) 0 0
\(447\) 40.0113 1.89247
\(448\) 0 0
\(449\) 31.8400 1.50262 0.751311 0.659949i \(-0.229422\pi\)
0.751311 + 0.659949i \(0.229422\pi\)
\(450\) 0 0
\(451\) 13.9521 3.73844i 0.656977 0.176036i
\(452\) 0 0
\(453\) 7.54275 28.1499i 0.354389 1.32260i
\(454\) 0 0
\(455\) −0.213064 + 2.68654i −0.00998861 + 0.125947i
\(456\) 0 0
\(457\) 8.74709 5.05014i 0.409172 0.236235i −0.281262 0.959631i \(-0.590753\pi\)
0.690434 + 0.723396i \(0.257420\pi\)
\(458\) 0 0
\(459\) 35.6284 9.54659i 1.66299 0.445597i
\(460\) 0 0
\(461\) −14.0523 + 14.0523i −0.654479 + 0.654479i −0.954068 0.299589i \(-0.903150\pi\)
0.299589 + 0.954068i \(0.403150\pi\)
\(462\) 0 0
\(463\) 9.31917i 0.433099i −0.976272 0.216549i \(-0.930520\pi\)
0.976272 0.216549i \(-0.0694802\pi\)
\(464\) 0 0
\(465\) 29.3769 + 16.9608i 1.36232 + 0.786537i
\(466\) 0 0
\(467\) −3.53968 + 13.2103i −0.163797 + 0.611298i 0.834394 + 0.551169i \(0.185818\pi\)
−0.998191 + 0.0601291i \(0.980849\pi\)
\(468\) 0 0
\(469\) 12.7287 35.8760i 0.587756 1.65660i
\(470\) 0 0
\(471\) 21.0817 + 36.5145i 0.971391 + 1.68250i
\(472\) 0 0
\(473\) −19.2104 11.0911i −0.883293 0.509969i
\(474\) 0 0
\(475\) −1.47574 + 1.47574i −0.0677116 + 0.0677116i
\(476\) 0 0
\(477\) 34.1281 + 34.1281i 1.56262 + 1.56262i
\(478\) 0 0
\(479\) −13.2090 + 22.8786i −0.603534 + 1.04535i 0.388748 + 0.921344i \(0.372908\pi\)
−0.992281 + 0.124007i \(0.960426\pi\)
\(480\) 0 0
\(481\) −2.13929 + 1.23512i −0.0975431 + 0.0563165i
\(482\) 0 0
\(483\) −3.90183 21.1235i −0.177540 0.961151i
\(484\) 0 0
\(485\) −8.47063 2.26970i −0.384631 0.103062i
\(486\) 0 0
\(487\) 16.0930 27.8738i 0.729242 1.26308i −0.227962 0.973670i \(-0.573206\pi\)
0.957204 0.289414i \(-0.0934604\pi\)
\(488\) 0 0
\(489\) −1.26556 −0.0572305
\(490\) 0 0
\(491\) 2.25713 + 2.25713i 0.101863 + 0.101863i 0.756202 0.654339i \(-0.227053\pi\)
−0.654339 + 0.756202i \(0.727053\pi\)
\(492\) 0 0
\(493\) −2.17056 8.10063i −0.0977570 0.364834i
\(494\) 0 0
\(495\) −25.3304 43.8736i −1.13852 1.97197i
\(496\) 0 0
\(497\) −19.5847 13.4776i −0.878495 0.604553i
\(498\) 0 0
\(499\) 22.0437 + 5.90659i 0.986811 + 0.264415i 0.715910 0.698192i \(-0.246012\pi\)
0.270900 + 0.962607i \(0.412679\pi\)
\(500\) 0 0
\(501\) 19.5309 + 72.8901i 0.872574 + 3.25649i
\(502\) 0 0
\(503\) 23.1194i 1.03084i 0.856937 + 0.515422i \(0.172365\pi\)
−0.856937 + 0.515422i \(0.827635\pi\)
\(504\) 0 0
\(505\) 26.2023i 1.16599i
\(506\) 0 0
\(507\) 10.5033 + 39.1989i 0.466468 + 1.74088i
\(508\) 0 0
\(509\) −10.6078 2.84236i −0.470185 0.125986i 0.0159440 0.999873i \(-0.494925\pi\)
−0.486129 + 0.873887i \(0.661591\pi\)
\(510\) 0 0
\(511\) −3.66089 + 1.74345i −0.161948 + 0.0771257i
\(512\) 0 0
\(513\) 11.0939 + 19.2152i 0.489807 + 0.848371i
\(514\) 0 0
\(515\) 6.33819 + 23.6544i 0.279294 + 1.04234i
\(516\) 0 0
\(517\) 9.57791 + 9.57791i 0.421236 + 0.421236i
\(518\) 0 0
\(519\) −49.0485 −2.15299
\(520\) 0 0
\(521\) 4.42108 7.65754i 0.193691 0.335483i −0.752780 0.658273i \(-0.771287\pi\)
0.946471 + 0.322790i \(0.104621\pi\)
\(522\) 0 0
\(523\) 18.3971 + 4.92948i 0.804448 + 0.215551i 0.637536 0.770420i \(-0.279954\pi\)
0.166912 + 0.985972i \(0.446620\pi\)
\(524\) 0 0
\(525\) 6.85749 + 8.03889i 0.299285 + 0.350846i
\(526\) 0 0
\(527\) 13.1825 7.61092i 0.574239 0.331537i
\(528\) 0 0
\(529\) 8.26031 14.3073i 0.359144 0.622055i
\(530\) 0 0
\(531\) −43.1437 43.1437i −1.87228 1.87228i
\(532\) 0 0
\(533\) −1.47313 + 1.47313i −0.0638085 + 0.0638085i
\(534\) 0 0
\(535\) −6.05226 3.49427i −0.261662 0.151071i
\(536\) 0 0
\(537\) 0.917707 + 1.58952i 0.0396020 + 0.0685927i
\(538\) 0 0
\(539\) −14.9846 20.6769i −0.645432 0.890617i
\(540\) 0 0
\(541\) −0.623324 + 2.32628i −0.0267988 + 0.100014i −0.978030 0.208465i \(-0.933153\pi\)
0.951231 + 0.308479i \(0.0998200\pi\)
\(542\) 0 0
\(543\) 0.939194 + 0.542244i 0.0403047 + 0.0232699i
\(544\) 0 0
\(545\) 19.7397i 0.845555i
\(546\) 0 0
\(547\) 11.9972 11.9972i 0.512962 0.512962i −0.402471 0.915433i \(-0.631849\pi\)
0.915433 + 0.402471i \(0.131849\pi\)
\(548\) 0 0
\(549\) −2.71784 + 0.728244i −0.115995 + 0.0310807i
\(550\) 0 0
\(551\) 4.36885 2.52236i 0.186119 0.107456i
\(552\) 0 0
\(553\) −10.5700 0.838286i −0.449481 0.0356475i
\(554\) 0 0
\(555\) 7.50327 28.0026i 0.318496 1.18864i
\(556\) 0 0
\(557\) 19.7236 5.28493i 0.835716 0.223930i 0.184510 0.982831i \(-0.440930\pi\)
0.651206 + 0.758901i \(0.274263\pi\)
\(558\) 0 0
\(559\) 3.19939 0.135320
\(560\) 0 0
\(561\) −32.2407 −1.36120
\(562\) 0 0
\(563\) −15.4308 + 4.13466i −0.650330 + 0.174255i −0.568878 0.822422i \(-0.692622\pi\)
−0.0814517 + 0.996677i \(0.525956\pi\)
\(564\) 0 0
\(565\) 9.23757 34.4751i 0.388628 1.45038i
\(566\) 0 0
\(567\) 50.0155 23.8192i 2.10045 1.00031i
\(568\) 0 0
\(569\) 17.3910 10.0407i 0.729068 0.420928i −0.0890129 0.996030i \(-0.528371\pi\)
0.818081 + 0.575103i \(0.195038\pi\)
\(570\) 0 0
\(571\) 17.3971 4.66153i 0.728045 0.195079i 0.124286 0.992246i \(-0.460336\pi\)
0.603758 + 0.797167i \(0.293669\pi\)
\(572\) 0 0
\(573\) −11.9233 + 11.9233i −0.498103 + 0.498103i
\(574\) 0 0
\(575\) 3.18721i 0.132916i
\(576\) 0 0
\(577\) −16.2314 9.37123i −0.675724 0.390129i 0.122518 0.992466i \(-0.460903\pi\)
−0.798242 + 0.602337i \(0.794236\pi\)
\(578\) 0 0
\(579\) −13.9292 + 51.9845i −0.578878 + 2.16040i
\(580\) 0 0
\(581\) −2.49817 13.5244i −0.103642 0.561087i
\(582\) 0 0
\(583\) −12.2721 21.2558i −0.508257 0.880327i
\(584\) 0 0
\(585\) 6.32799 + 3.65347i 0.261630 + 0.151052i
\(586\) 0 0
\(587\) −16.4500 + 16.4500i −0.678963 + 0.678963i −0.959766 0.280802i \(-0.909399\pi\)
0.280802 + 0.959766i \(0.409399\pi\)
\(588\) 0 0
\(589\) 6.47461 + 6.47461i 0.266782 + 0.266782i
\(590\) 0 0
\(591\) 4.09868 7.09912i 0.168597 0.292019i
\(592\) 0 0
\(593\) 1.34548 0.776813i 0.0552522 0.0318999i −0.472119 0.881535i \(-0.656511\pi\)
0.527372 + 0.849635i \(0.323178\pi\)
\(594\) 0 0
\(595\) −13.9565 + 2.57798i −0.572160 + 0.105687i
\(596\) 0 0
\(597\) −2.24543 0.601662i −0.0918994 0.0246244i
\(598\) 0 0
\(599\) 0.821999 1.42374i 0.0335860 0.0581726i −0.848744 0.528804i \(-0.822641\pi\)
0.882330 + 0.470632i \(0.155974\pi\)
\(600\) 0 0
\(601\) −35.9484 −1.46637 −0.733183 0.680031i \(-0.761966\pi\)
−0.733183 + 0.680031i \(0.761966\pi\)
\(602\) 0 0
\(603\) −72.9819 72.9819i −2.97205 2.97205i
\(604\) 0 0
\(605\) 1.15625 + 4.31517i 0.0470081 + 0.175437i
\(606\) 0 0
\(607\) 12.3075 + 21.3172i 0.499545 + 0.865237i 1.00000 0.000525205i \(-0.000167178\pi\)
−0.500455 + 0.865763i \(0.666834\pi\)
\(608\) 0 0
\(609\) −10.9818 23.0596i −0.445006 0.934424i
\(610\) 0 0
\(611\) −1.88709 0.505643i −0.0763433 0.0204561i
\(612\) 0 0
\(613\) −7.49076 27.9559i −0.302549 1.12913i −0.935035 0.354556i \(-0.884632\pi\)
0.632485 0.774572i \(-0.282035\pi\)
\(614\) 0 0
\(615\) 24.4497i 0.985905i
\(616\) 0 0
\(617\) 10.2299i 0.411839i 0.978569 + 0.205920i \(0.0660186\pi\)
−0.978569 + 0.205920i \(0.933981\pi\)
\(618\) 0 0
\(619\) −2.37448 8.86168i −0.0954384 0.356181i 0.901647 0.432472i \(-0.142359\pi\)
−0.997086 + 0.0762915i \(0.975692\pi\)
\(620\) 0 0
\(621\) −32.7298 8.76992i −1.31340 0.351925i
\(622\) 0 0
\(623\) 1.40230 17.6817i 0.0561820 0.708401i
\(624\) 0 0
\(625\) −8.58582 14.8711i −0.343433 0.594843i
\(626\) 0 0
\(627\) −5.01952 18.7331i −0.200460 0.748128i
\(628\) 0 0
\(629\) −9.19880 9.19880i −0.366780 0.366780i
\(630\) 0 0
\(631\) −2.48179 −0.0987983 −0.0493992 0.998779i \(-0.515731\pi\)
−0.0493992 + 0.998779i \(0.515731\pi\)
\(632\) 0 0
\(633\) 18.5926 32.2033i 0.738990 1.27997i
\(634\) 0 0
\(635\) 38.4919 + 10.3139i 1.52750 + 0.409293i
\(636\) 0 0
\(637\) 3.36284 + 1.50209i 0.133241 + 0.0595152i
\(638\) 0 0
\(639\) −55.8232 + 32.2296i −2.20833 + 1.27498i
\(640\) 0 0
\(641\) 7.96198 13.7906i 0.314479 0.544694i −0.664847 0.746979i \(-0.731503\pi\)
0.979327 + 0.202285i \(0.0648367\pi\)
\(642\) 0 0
\(643\) 7.66392 + 7.66392i 0.302236 + 0.302236i 0.841888 0.539652i \(-0.181444\pi\)
−0.539652 + 0.841888i \(0.681444\pi\)
\(644\) 0 0
\(645\) −26.5502 + 26.5502i −1.04541 + 1.04541i
\(646\) 0 0
\(647\) −7.28511 4.20606i −0.286407 0.165357i 0.349913 0.936782i \(-0.386211\pi\)
−0.636320 + 0.771425i \(0.719544\pi\)
\(648\) 0 0
\(649\) 15.5140 + 26.8710i 0.608976 + 1.05478i
\(650\) 0 0
\(651\) 35.2696 30.0863i 1.38232 1.17918i
\(652\) 0 0
\(653\) 12.7054 47.4173i 0.497201 1.85558i −0.0201333 0.999797i \(-0.506409\pi\)
0.517335 0.855783i \(-0.326924\pi\)
\(654\) 0 0
\(655\) 26.6972 + 15.4136i 1.04315 + 0.602261i
\(656\) 0 0
\(657\) 10.9940i 0.428916i
\(658\) 0 0
\(659\) 4.57653 4.57653i 0.178276 0.178276i −0.612328 0.790604i \(-0.709767\pi\)
0.790604 + 0.612328i \(0.209767\pi\)
\(660\) 0 0
\(661\) −36.2259 + 9.70671i −1.40903 + 0.377547i −0.881577 0.472040i \(-0.843518\pi\)
−0.527448 + 0.849587i \(0.676851\pi\)
\(662\) 0 0
\(663\) 4.02714 2.32507i 0.156401 0.0902983i
\(664\) 0 0
\(665\) −3.67078 7.70791i −0.142347 0.298900i
\(666\) 0 0
\(667\) −1.99397 + 7.44160i −0.0772068 + 0.288140i
\(668\) 0 0
\(669\) −87.3870 + 23.4153i −3.37858 + 0.905286i
\(670\) 0 0
\(671\) 1.43087 0.0552382
\(672\) 0 0
\(673\) 1.25969 0.0485576 0.0242788 0.999705i \(-0.492271\pi\)
0.0242788 + 0.999705i \(0.492271\pi\)
\(674\) 0 0
\(675\) 16.0998 4.31392i 0.619681 0.166043i
\(676\) 0 0
\(677\) 2.73796 10.2182i 0.105228 0.392717i −0.893143 0.449774i \(-0.851505\pi\)
0.998371 + 0.0570560i \(0.0181714\pi\)
\(678\) 0 0
\(679\) −6.79417 + 9.87282i −0.260736 + 0.378884i
\(680\) 0 0
\(681\) −17.8832 + 10.3249i −0.685287 + 0.395651i
\(682\) 0 0
\(683\) −32.3526 + 8.66885i −1.23794 + 0.331705i −0.817666 0.575693i \(-0.804732\pi\)
−0.420272 + 0.907398i \(0.638065\pi\)
\(684\) 0 0
\(685\) 1.79466 1.79466i 0.0685706 0.0685706i
\(686\) 0 0
\(687\) 25.3833i 0.968434i
\(688\) 0 0
\(689\) 3.06577 + 1.77003i 0.116797 + 0.0674326i
\(690\) 0 0
\(691\) 3.83874 14.3264i 0.146033 0.545001i −0.853675 0.520807i \(-0.825631\pi\)
0.999707 0.0241943i \(-0.00770204\pi\)
\(692\) 0 0
\(693\) −68.0837 + 12.5761i −2.58629 + 0.477728i
\(694\) 0 0
\(695\) −21.4613 37.1721i −0.814074 1.41002i
\(696\) 0 0
\(697\) −9.50156 5.48573i −0.359897 0.207787i
\(698\) 0 0
\(699\) 0.414872 0.414872i 0.0156919 0.0156919i
\(700\) 0 0
\(701\) 14.0698 + 14.0698i 0.531408 + 0.531408i 0.920991 0.389583i \(-0.127381\pi\)
−0.389583 + 0.920991i \(0.627381\pi\)
\(702\) 0 0
\(703\) 3.91271 6.77701i 0.147571 0.255600i
\(704\) 0 0
\(705\) 19.8561 11.4639i 0.747825 0.431757i
\(706\) 0 0
\(707\) 33.7481 + 11.9737i 1.26923 + 0.450319i
\(708\) 0 0
\(709\) 12.5757 + 3.36966i 0.472291 + 0.126550i 0.487111 0.873340i \(-0.338051\pi\)
−0.0148195 + 0.999890i \(0.504717\pi\)
\(710\) 0 0
\(711\) −14.3743 + 24.8970i −0.539078 + 0.933710i
\(712\) 0 0
\(713\) −13.9835 −0.523684
\(714\) 0 0
\(715\) −2.62748 2.62748i −0.0982623 0.0982623i
\(716\) 0 0
\(717\) 16.2356 + 60.5923i 0.606331 + 2.26286i
\(718\) 0 0
\(719\) 10.1472 + 17.5754i 0.378425 + 0.655452i 0.990833 0.135090i \(-0.0431324\pi\)
−0.612408 + 0.790542i \(0.709799\pi\)
\(720\) 0 0
\(721\) 33.3629 + 2.64595i 1.24250 + 0.0985403i
\(722\) 0 0
\(723\) −11.0425 2.95882i −0.410673 0.110040i
\(724\) 0 0
\(725\) −0.980834 3.66052i −0.0364272 0.135948i
\(726\) 0 0
\(727\) 38.4308i 1.42532i 0.701510 + 0.712660i \(0.252510\pi\)
−0.701510 + 0.712660i \(0.747490\pi\)
\(728\) 0 0
\(729\) 22.8244i 0.845348i
\(730\) 0 0
\(731\) 4.36084 + 16.2749i 0.161292 + 0.601948i
\(732\) 0 0
\(733\) 48.4699 + 12.9875i 1.79028 + 0.479703i 0.992393 0.123110i \(-0.0392870\pi\)
0.797882 + 0.602813i \(0.205954\pi\)
\(734\) 0 0
\(735\) −40.3718 + 15.4415i −1.48914 + 0.569567i
\(736\) 0 0
\(737\) 26.2434 + 45.4549i 0.966689 + 1.67435i
\(738\) 0 0
\(739\) −1.90941 7.12602i −0.0702388 0.262135i 0.921873 0.387493i \(-0.126659\pi\)
−0.992112 + 0.125358i \(0.959992\pi\)
\(740\) 0 0
\(741\) 1.97794 + 1.97794i 0.0726614 + 0.0726614i
\(742\) 0 0
\(743\) 13.2937 0.487698 0.243849 0.969813i \(-0.421590\pi\)
0.243849 + 0.969813i \(0.421590\pi\)
\(744\) 0 0
\(745\) −12.1426 + 21.0316i −0.444870 + 0.770537i
\(746\) 0 0
\(747\) −36.0187 9.65119i −1.31786 0.353119i
\(748\) 0 0
\(749\) −7.26627 + 6.19841i −0.265504 + 0.226485i
\(750\) 0 0
\(751\) 10.6206 6.13182i 0.387552 0.223753i −0.293547 0.955945i \(-0.594836\pi\)
0.681099 + 0.732191i \(0.261502\pi\)
\(752\) 0 0
\(753\) 25.2333 43.7054i 0.919553 1.59271i
\(754\) 0 0
\(755\) 12.5077 + 12.5077i 0.455201 + 0.455201i
\(756\) 0 0
\(757\) −27.2609 + 27.2609i −0.990813 + 0.990813i −0.999958 0.00914525i \(-0.997089\pi\)
0.00914525 + 0.999958i \(0.497089\pi\)
\(758\) 0 0
\(759\) 25.6497 + 14.8089i 0.931025 + 0.537527i
\(760\) 0 0
\(761\) −10.1480 17.5769i −0.367867 0.637164i 0.621365 0.783521i \(-0.286578\pi\)
−0.989232 + 0.146358i \(0.953245\pi\)
\(762\) 0 0
\(763\) 25.4243 + 9.02048i 0.920423 + 0.326563i
\(764\) 0 0
\(765\) −9.95952 + 37.1695i −0.360087 + 1.34386i
\(766\) 0 0
\(767\) −3.87566 2.23761i −0.139942 0.0807955i
\(768\) 0 0
\(769\) 19.6449i 0.708412i 0.935167 + 0.354206i \(0.115249\pi\)
−0.935167 + 0.354206i \(0.884751\pi\)
\(770\) 0 0
\(771\) 20.7612 20.7612i 0.747695 0.747695i
\(772\) 0 0
\(773\) 47.3606 12.6902i 1.70344 0.456436i 0.729639 0.683832i \(-0.239688\pi\)
0.973802 + 0.227397i \(0.0730214\pi\)
\(774\) 0 0
\(775\) 5.95692 3.43923i 0.213979 0.123541i
\(776\) 0 0
\(777\) −32.6380 22.4605i −1.17088 0.805765i
\(778\) 0 0
\(779\) 1.70813 6.37485i 0.0612003 0.228403i
\(780\) 0 0
\(781\) 31.6627 8.48400i 1.13298 0.303581i
\(782\) 0 0
\(783\) −40.2892 −1.43982
\(784\) 0 0
\(785\) −25.5913 −0.913394
\(786\) 0 0
\(787\) 2.76449 0.740742i 0.0985433 0.0264046i −0.209210 0.977871i \(-0.567089\pi\)
0.307754 + 0.951466i \(0.400423\pi\)
\(788\) 0 0
\(789\) 2.54729 9.50662i 0.0906860 0.338445i
\(790\) 0 0
\(791\) −40.1820 27.6520i −1.42871 0.983191i
\(792\) 0 0
\(793\) −0.178728 + 0.103189i −0.00634683 + 0.00366434i
\(794\) 0 0
\(795\) −40.1300 + 10.7528i −1.42326 + 0.381363i
\(796\) 0 0
\(797\) 39.0301 39.0301i 1.38252 1.38252i 0.542386 0.840129i \(-0.317521\pi\)
0.840129 0.542386i \(-0.182479\pi\)
\(798\) 0 0
\(799\) 10.2886i 0.363984i
\(800\) 0 0
\(801\) −41.6482 24.0456i −1.47157 0.849609i
\(802\) 0 0
\(803\) 1.44701 5.40031i 0.0510639 0.190573i
\(804\) 0 0
\(805\) 12.2875 + 4.35956i 0.433077 + 0.153654i
\(806\) 0 0
\(807\) 38.5526 + 66.7751i 1.35712 + 2.35059i
\(808\) 0 0
\(809\) 36.0749 + 20.8279i 1.26833 + 0.732269i 0.974671 0.223642i \(-0.0717946\pi\)
0.293656 + 0.955911i \(0.405128\pi\)
\(810\) 0 0
\(811\) −6.24833 + 6.24833i −0.219409 + 0.219409i −0.808249 0.588841i \(-0.799585\pi\)
0.588841 + 0.808249i \(0.299585\pi\)
\(812\) 0 0
\(813\) −26.1742 26.1742i −0.917969 0.917969i
\(814\) 0 0
\(815\) 0.384070 0.665229i 0.0134534 0.0233019i
\(816\) 0 0
\(817\) −8.77741 + 5.06764i −0.307083 + 0.177294i
\(818\) 0 0
\(819\) 7.59731 6.48080i 0.265471 0.226457i
\(820\) 0 0
\(821\) −41.1258 11.0196i −1.43530 0.384588i −0.544416 0.838816i \(-0.683249\pi\)
−0.890886 + 0.454228i \(0.849915\pi\)
\(822\) 0 0
\(823\) 0.688665 1.19280i 0.0240054 0.0415785i −0.853773 0.520645i \(-0.825691\pi\)
0.877779 + 0.479067i \(0.159025\pi\)
\(824\) 0 0
\(825\) −14.5689 −0.507225
\(826\) 0 0
\(827\) 14.2870 + 14.2870i 0.496807 + 0.496807i 0.910443 0.413636i \(-0.135741\pi\)
−0.413636 + 0.910443i \(0.635741\pi\)
\(828\) 0 0
\(829\) −5.38274 20.0887i −0.186950 0.697708i −0.994205 0.107504i \(-0.965714\pi\)
0.807254 0.590204i \(-0.200953\pi\)
\(830\) 0 0
\(831\) −10.6111 18.3790i −0.368095 0.637560i
\(832\) 0 0
\(833\) −3.05733 + 19.1538i −0.105930 + 0.663639i
\(834\) 0 0
\(835\) −44.2412 11.8544i −1.53103 0.410239i
\(836\) 0 0
\(837\) −18.9268 70.6357i −0.654205 2.44153i
\(838\) 0 0
\(839\) 12.7357i 0.439684i −0.975535 0.219842i \(-0.929446\pi\)
0.975535 0.219842i \(-0.0705542\pi\)
\(840\) 0 0
\(841\) 19.8397i 0.684126i
\(842\) 0 0
\(843\) 13.4235 + 50.0972i 0.462330 + 1.72544i
\(844\) 0 0
\(845\) −23.7921 6.37506i −0.818472 0.219309i
\(846\) 0 0
\(847\) 6.08623 + 0.482688i 0.209125 + 0.0165854i
\(848\) 0 0
\(849\) −38.2424 66.2378i −1.31248 2.27328i
\(850\) 0 0
\(851\) 3.09307 + 11.5435i 0.106029 + 0.395706i
\(852\) 0 0
\(853\) 17.4577 + 17.4577i 0.597741 + 0.597741i 0.939711 0.341970i \(-0.111094\pi\)
−0.341970 + 0.939711i \(0.611094\pi\)
\(854\) 0 0
\(855\) −23.1475 −0.791628
\(856\) 0 0
\(857\) 1.56865 2.71698i 0.0535840 0.0928102i −0.837989 0.545687i \(-0.816269\pi\)
0.891573 + 0.452877i \(0.149602\pi\)
\(858\) 0 0
\(859\) 1.72578 + 0.462421i 0.0588828 + 0.0157776i 0.288140 0.957588i \(-0.406963\pi\)
−0.229257 + 0.973366i \(0.573630\pi\)
\(860\) 0 0
\(861\) −31.4907 11.1728i −1.07320 0.380768i
\(862\) 0 0
\(863\) 4.43745 2.56196i 0.151052 0.0872101i −0.422569 0.906331i \(-0.638872\pi\)
0.573621 + 0.819121i \(0.305538\pi\)
\(864\) 0 0
\(865\) 14.8852 25.7819i 0.506112 0.876611i
\(866\) 0 0
\(867\) −21.0250 21.0250i −0.714047 0.714047i
\(868\) 0 0
\(869\) 10.3376 10.3376i 0.350680 0.350680i
\(870\) 0 0
\(871\) −6.55607 3.78515i −0.222144 0.128255i
\(872\) 0 0
\(873\) 16.2472 + 28.1410i 0.549884 + 0.952427i
\(874\) 0 0
\(875\) −31.4908 + 5.81684i −1.06458 + 0.196645i
\(876\) 0 0
\(877\) 1.07593 4.01542i 0.0363316 0.135591i −0.945378 0.325976i \(-0.894307\pi\)
0.981709 + 0.190385i \(0.0609737\pi\)
\(878\) 0 0
\(879\) −60.5506 34.9589i −2.04232 1.17914i
\(880\) 0 0
\(881\) 27.5375i 0.927761i −0.885898 0.463880i \(-0.846457\pi\)
0.885898 0.463880i \(-0.153543\pi\)
\(882\) 0 0
\(883\) −32.4922 + 32.4922i −1.09345 + 1.09345i −0.0982911 + 0.995158i \(0.531338\pi\)
−0.995158 + 0.0982911i \(0.968662\pi\)
\(884\) 0 0
\(885\) 50.7311 13.5934i 1.70531 0.456936i
\(886\) 0 0
\(887\) −32.4376 + 18.7278i −1.08915 + 0.628820i −0.933349 0.358969i \(-0.883128\pi\)
−0.155798 + 0.987789i \(0.549795\pi\)
\(888\) 0 0
\(889\) 30.8738 44.8637i 1.03547 1.50468i
\(890\) 0 0
\(891\) −19.7692 + 73.7795i −0.662292 + 2.47171i
\(892\) 0 0
\(893\) 5.97807 1.60182i 0.200048 0.0536028i
\(894\) 0 0
\(895\) −1.11402 −0.0372376
\(896\) 0 0
\(897\) −4.27183 −0.142632
\(898\) 0 0
\(899\) −16.0601 + 4.30328i −0.535633 + 0.143522i
\(900\) 0 0
\(901\) −4.82518 + 18.0078i −0.160750 + 0.599927i
\(902\) 0 0
\(903\) 22.0635 + 46.3289i 0.734226 + 1.54173i
\(904\) 0 0
\(905\) −0.570051 + 0.329119i −0.0189491 + 0.0109403i
\(906\) 0 0
\(907\) −33.3737 + 8.94245i −1.10815 + 0.296929i −0.766081 0.642744i \(-0.777796\pi\)
−0.342074 + 0.939673i \(0.611129\pi\)
\(908\) 0 0
\(909\) 68.6533 68.6533i 2.27709 2.27709i
\(910\) 0 0
\(911\) 22.9373i 0.759946i 0.924998 + 0.379973i \(0.124067\pi\)
−0.924998 + 0.379973i \(0.875933\pi\)
\(912\) 0 0
\(913\) 16.4224 + 9.48145i 0.543501 + 0.313790i
\(914\) 0 0
\(915\) 0.626867 2.33950i 0.0207236 0.0773414i
\(916\) 0 0
\(917\) 32.0523 27.3419i 1.05846 0.902909i
\(918\) 0 0
\(919\) 13.8963 + 24.0691i 0.458396 + 0.793966i 0.998876 0.0473912i \(-0.0150907\pi\)
−0.540480 + 0.841357i \(0.681757\pi\)
\(920\) 0 0
\(921\) 32.4398 + 18.7291i 1.06893 + 0.617146i
\(922\) 0 0
\(923\) −3.34312 + 3.34312i −0.110040 + 0.110040i
\(924\) 0 0
\(925\) −4.15676 4.15676i −0.136673 0.136673i
\(926\) 0 0
\(927\) 45.3707 78.5844i 1.49017 2.58105i
\(928\) 0 0
\(929\) 13.2279 7.63716i 0.433995 0.250567i −0.267052 0.963682i \(-0.586050\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(930\) 0 0
\(931\) −11.6051 + 1.20560i −0.380341 + 0.0395120i
\(932\) 0 0
\(933\) 27.2508 + 7.30182i 0.892150 + 0.239051i
\(934\) 0 0
\(935\) 9.78436 16.9470i 0.319983 0.554227i
\(936\) 0 0
\(937\) 18.1308 0.592307 0.296154 0.955140i \(-0.404296\pi\)
0.296154 + 0.955140i \(0.404296\pi\)
\(938\) 0 0
\(939\) 56.4350 + 56.4350i 1.84169 + 1.84169i
\(940\) 0 0
\(941\) −2.24372 8.37369i −0.0731433 0.272974i 0.919663 0.392709i \(-0.128462\pi\)
−0.992806 + 0.119735i \(0.961796\pi\)
\(942\) 0 0
\(943\) 5.03943 + 8.72855i 0.164106 + 0.284241i
\(944\) 0 0
\(945\) −5.39053 + 67.9694i −0.175354 + 2.21105i
\(946\) 0 0
\(947\) 14.8856 + 3.98857i 0.483716 + 0.129611i 0.492432 0.870351i \(-0.336108\pi\)
−0.00871655 + 0.999962i \(0.502775\pi\)
\(948\) 0 0
\(949\) 0.208705 + 0.778899i 0.00677486 + 0.0252841i
\(950\) 0 0
\(951\) 10.2003i 0.330768i
\(952\) 0 0
\(953\) 14.4644i 0.468547i 0.972171 + 0.234273i \(0.0752711\pi\)
−0.972171 + 0.234273i \(0.924729\pi\)
\(954\) 0 0
\(955\) −2.64890 9.88585i −0.0857165 0.319899i
\(956\) 0 0
\(957\) 34.0161 + 9.11458i 1.09958 + 0.294632i
\(958\) 0 0
\(959\) −1.49138 3.13160i −0.0481592 0.101125i
\(960\) 0 0
\(961\) 0.410836 + 0.711589i 0.0132528 + 0.0229545i
\(962\) 0 0
\(963\) 6.70223 + 25.0131i 0.215976 + 0.806035i
\(964\) 0 0
\(965\) −23.0980 23.0980i −0.743549 0.743549i
\(966\) 0 0
\(967\) 53.4246 1.71802 0.859010 0.511958i \(-0.171080\pi\)
0.859010 + 0.511958i \(0.171080\pi\)
\(968\) 0 0
\(969\) −7.36555 + 12.7575i −0.236616 + 0.409830i
\(970\) 0 0
\(971\) −20.7547 5.56119i −0.666048 0.178467i −0.0900743 0.995935i \(-0.528710\pi\)
−0.575974 + 0.817468i \(0.695377\pi\)
\(972\) 0 0
\(973\) −57.6842 + 10.6552i −1.84927 + 0.341589i
\(974\) 0 0
\(975\) 1.81979 1.05066i 0.0582799 0.0336479i
\(976\) 0 0
\(977\) −18.0960 + 31.3432i −0.578942 + 1.00276i 0.416659 + 0.909063i \(0.363201\pi\)
−0.995601 + 0.0936944i \(0.970132\pi\)
\(978\) 0 0
\(979\) 17.2930 + 17.2930i 0.552687 + 0.552687i
\(980\) 0 0
\(981\) 51.7204 51.7204i 1.65130 1.65130i
\(982\) 0 0
\(983\) 31.0312 + 17.9159i 0.989742 + 0.571428i 0.905197 0.424992i \(-0.139723\pi\)
0.0845448 + 0.996420i \(0.473056\pi\)
\(984\) 0 0
\(985\) 2.48773 + 4.30887i 0.0792655 + 0.137292i
\(986\) 0 0
\(987\) −5.69165 30.8130i −0.181167 0.980789i
\(988\) 0 0
\(989\) 4.00606 14.9508i 0.127385 0.475409i
\(990\) 0 0
\(991\) −41.7865 24.1254i −1.32739 0.766370i −0.342496 0.939519i \(-0.611272\pi\)
−0.984896 + 0.173149i \(0.944606\pi\)
\(992\) 0 0
\(993\) 43.7541i 1.38850i
\(994\) 0 0
\(995\) 0.997699 0.997699i 0.0316292 0.0316292i
\(996\) 0 0
\(997\) −26.1554 + 7.00832i −0.828351 + 0.221956i −0.647994 0.761645i \(-0.724392\pi\)
−0.180357 + 0.983601i \(0.557725\pi\)
\(998\) 0 0
\(999\) −54.1240 + 31.2485i −1.71241 + 0.988659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.b.479.14 56
4.3 odd 2 896.2.z.a.479.1 56
7.5 odd 6 inner 896.2.z.b.607.14 56
8.3 odd 2 448.2.z.a.367.14 56
8.5 even 2 112.2.v.a.3.2 56
16.3 odd 4 112.2.v.a.59.8 yes 56
16.5 even 4 896.2.z.a.31.1 56
16.11 odd 4 inner 896.2.z.b.31.14 56
16.13 even 4 448.2.z.a.143.14 56
28.19 even 6 896.2.z.a.607.1 56
56.5 odd 6 112.2.v.a.19.8 yes 56
56.13 odd 2 784.2.w.f.227.2 56
56.19 even 6 448.2.z.a.47.14 56
56.37 even 6 784.2.w.f.19.8 56
56.45 odd 6 784.2.j.a.195.23 56
56.53 even 6 784.2.j.a.195.24 56
112.3 even 12 784.2.j.a.587.24 56
112.5 odd 12 896.2.z.a.159.1 56
112.19 even 12 112.2.v.a.75.2 yes 56
112.51 odd 12 784.2.w.f.411.2 56
112.61 odd 12 448.2.z.a.271.14 56
112.67 odd 12 784.2.j.a.587.23 56
112.75 even 12 inner 896.2.z.b.159.14 56
112.83 even 4 784.2.w.f.619.8 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.2 56 8.5 even 2
112.2.v.a.19.8 yes 56 56.5 odd 6
112.2.v.a.59.8 yes 56 16.3 odd 4
112.2.v.a.75.2 yes 56 112.19 even 12
448.2.z.a.47.14 56 56.19 even 6
448.2.z.a.143.14 56 16.13 even 4
448.2.z.a.271.14 56 112.61 odd 12
448.2.z.a.367.14 56 8.3 odd 2
784.2.j.a.195.23 56 56.45 odd 6
784.2.j.a.195.24 56 56.53 even 6
784.2.j.a.587.23 56 112.67 odd 12
784.2.j.a.587.24 56 112.3 even 12
784.2.w.f.19.8 56 56.37 even 6
784.2.w.f.227.2 56 56.13 odd 2
784.2.w.f.411.2 56 112.51 odd 12
784.2.w.f.619.8 56 112.83 even 4
896.2.z.a.31.1 56 16.5 even 4
896.2.z.a.159.1 56 112.5 odd 12
896.2.z.a.479.1 56 4.3 odd 2
896.2.z.a.607.1 56 28.19 even 6
896.2.z.b.31.14 56 16.11 odd 4 inner
896.2.z.b.159.14 56 112.75 even 12 inner
896.2.z.b.479.14 56 1.1 even 1 trivial
896.2.z.b.607.14 56 7.5 odd 6 inner