Properties

Label 448.2.z.a.271.14
Level $448$
Weight $2$
Character 448.271
Analytic conductor $3.577$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(47,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 271.14
Character \(\chi\) \(=\) 448.271
Dual form 448.2.z.a.367.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.08091 + 0.825526i) q^{3} +(0.501060 + 1.86998i) q^{5} +(-2.17953 + 1.49988i) q^{7} +(6.21241 + 3.58674i) q^{9} +(-3.52366 - 0.944161i) q^{11} +(-0.372046 - 0.372046i) q^{13} +6.17487i q^{15} +(2.39966 - 1.38545i) q^{17} +(-0.431397 - 1.61000i) q^{19} +(-7.95312 + 2.82174i) q^{21} +(1.27273 - 2.20444i) q^{23} +(1.08436 - 0.626056i) q^{25} +(9.41278 + 9.41278i) q^{27} +(2.14013 - 2.14013i) q^{29} +(-2.74674 - 4.75749i) q^{31} +(-10.0766 - 5.81774i) q^{33} +(-3.89683 - 3.32415i) q^{35} +(4.53493 - 1.21513i) q^{37} +(-0.839106 - 1.45337i) q^{39} -3.95954 q^{41} +(4.29972 - 4.29972i) q^{43} +(-3.59434 + 13.4143i) q^{45} +(1.85655 - 3.21563i) q^{47} +(2.50070 - 6.53808i) q^{49} +(8.53685 - 2.28744i) q^{51} +(-1.74138 + 6.49892i) q^{53} -7.06225i q^{55} -5.31638i q^{57} +(-2.20140 + 8.21574i) q^{59} +(0.378874 - 0.101519i) q^{61} +(-18.9198 + 1.50050i) q^{63} +(0.509302 - 0.882137i) q^{65} +(-3.72389 + 13.8977i) q^{67} +(5.74099 - 5.74099i) q^{69} +8.98576 q^{71} +(-0.766294 - 1.32726i) q^{73} +(3.85764 - 1.03365i) q^{75} +(9.09605 - 3.22725i) q^{77} +(3.47070 + 2.00381i) q^{79} +(10.4692 + 18.1331i) q^{81} +(-3.67570 + 3.67570i) q^{83} +(3.79313 + 3.79313i) q^{85} +(8.36028 - 4.82681i) q^{87} +(-3.35201 + 5.80586i) q^{89} +(1.36891 + 0.252860i) q^{91} +(-4.53501 - 16.9249i) q^{93} +(2.79451 - 1.61341i) q^{95} -4.52980i q^{97} +(-18.5040 - 18.5040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} - 6 q^{5} + 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} - 10 q^{21} + 12 q^{23} - 24 q^{29} - 12 q^{33} + 2 q^{35} + 6 q^{37} + 4 q^{39} + 12 q^{45} - 8 q^{49} + 34 q^{51} + 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.08091 + 0.825526i 1.77876 + 0.476618i 0.990357 0.138539i \(-0.0442405\pi\)
0.788405 + 0.615156i \(0.210907\pi\)
\(4\) 0 0
\(5\) 0.501060 + 1.86998i 0.224081 + 0.836281i 0.982771 + 0.184829i \(0.0591731\pi\)
−0.758690 + 0.651452i \(0.774160\pi\)
\(6\) 0 0
\(7\) −2.17953 + 1.49988i −0.823785 + 0.566903i
\(8\) 0 0
\(9\) 6.21241 + 3.58674i 2.07080 + 1.19558i
\(10\) 0 0
\(11\) −3.52366 0.944161i −1.06242 0.284675i −0.315046 0.949076i \(-0.602020\pi\)
−0.747376 + 0.664401i \(0.768687\pi\)
\(12\) 0 0
\(13\) −0.372046 0.372046i −0.103187 0.103187i 0.653628 0.756816i \(-0.273246\pi\)
−0.756816 + 0.653628i \(0.773246\pi\)
\(14\) 0 0
\(15\) 6.17487i 1.59435i
\(16\) 0 0
\(17\) 2.39966 1.38545i 0.582003 0.336020i −0.179926 0.983680i \(-0.557586\pi\)
0.761929 + 0.647660i \(0.224252\pi\)
\(18\) 0 0
\(19\) −0.431397 1.61000i −0.0989693 0.369358i 0.898622 0.438724i \(-0.144569\pi\)
−0.997591 + 0.0693652i \(0.977903\pi\)
\(20\) 0 0
\(21\) −7.95312 + 2.82174i −1.73551 + 0.615755i
\(22\) 0 0
\(23\) 1.27273 2.20444i 0.265383 0.459657i −0.702281 0.711900i \(-0.747835\pi\)
0.967664 + 0.252243i \(0.0811683\pi\)
\(24\) 0 0
\(25\) 1.08436 0.626056i 0.216872 0.125211i
\(26\) 0 0
\(27\) 9.41278 + 9.41278i 1.81149 + 1.81149i
\(28\) 0 0
\(29\) 2.14013 2.14013i 0.397413 0.397413i −0.479907 0.877319i \(-0.659330\pi\)
0.877319 + 0.479907i \(0.159330\pi\)
\(30\) 0 0
\(31\) −2.74674 4.75749i −0.493329 0.854471i 0.506641 0.862157i \(-0.330887\pi\)
−0.999970 + 0.00768582i \(0.997554\pi\)
\(32\) 0 0
\(33\) −10.0766 5.81774i −1.75412 1.01274i
\(34\) 0 0
\(35\) −3.89683 3.32415i −0.658684 0.561883i
\(36\) 0 0
\(37\) 4.53493 1.21513i 0.745537 0.199766i 0.134000 0.990981i \(-0.457218\pi\)
0.611538 + 0.791215i \(0.290551\pi\)
\(38\) 0 0
\(39\) −0.839106 1.45337i −0.134364 0.232726i
\(40\) 0 0
\(41\) −3.95954 −0.618376 −0.309188 0.951001i \(-0.600057\pi\)
−0.309188 + 0.951001i \(0.600057\pi\)
\(42\) 0 0
\(43\) 4.29972 4.29972i 0.655701 0.655701i −0.298659 0.954360i \(-0.596539\pi\)
0.954360 + 0.298659i \(0.0965394\pi\)
\(44\) 0 0
\(45\) −3.59434 + 13.4143i −0.535813 + 1.99968i
\(46\) 0 0
\(47\) 1.85655 3.21563i 0.270805 0.469048i −0.698263 0.715841i \(-0.746043\pi\)
0.969068 + 0.246793i \(0.0793767\pi\)
\(48\) 0 0
\(49\) 2.50070 6.53808i 0.357242 0.934012i
\(50\) 0 0
\(51\) 8.53685 2.28744i 1.19540 0.320306i
\(52\) 0 0
\(53\) −1.74138 + 6.49892i −0.239197 + 0.892696i 0.737015 + 0.675877i \(0.236235\pi\)
−0.976212 + 0.216819i \(0.930432\pi\)
\(54\) 0 0
\(55\) 7.06225i 0.952274i
\(56\) 0 0
\(57\) 5.31638i 0.704171i
\(58\) 0 0
\(59\) −2.20140 + 8.21574i −0.286598 + 1.06960i 0.661066 + 0.750328i \(0.270104\pi\)
−0.947664 + 0.319270i \(0.896562\pi\)
\(60\) 0 0
\(61\) 0.378874 0.101519i 0.0485098 0.0129982i −0.234483 0.972120i \(-0.575340\pi\)
0.282992 + 0.959122i \(0.408673\pi\)
\(62\) 0 0
\(63\) −18.9198 + 1.50050i −2.38367 + 0.189045i
\(64\) 0 0
\(65\) 0.509302 0.882137i 0.0631711 0.109416i
\(66\) 0 0
\(67\) −3.72389 + 13.8977i −0.454946 + 1.69788i 0.233302 + 0.972404i \(0.425047\pi\)
−0.688248 + 0.725476i \(0.741620\pi\)
\(68\) 0 0
\(69\) 5.74099 5.74099i 0.691134 0.691134i
\(70\) 0 0
\(71\) 8.98576 1.06641 0.533207 0.845985i \(-0.320987\pi\)
0.533207 + 0.845985i \(0.320987\pi\)
\(72\) 0 0
\(73\) −0.766294 1.32726i −0.0896879 0.155344i 0.817691 0.575657i \(-0.195254\pi\)
−0.907379 + 0.420313i \(0.861920\pi\)
\(74\) 0 0
\(75\) 3.85764 1.03365i 0.445442 0.119356i
\(76\) 0 0
\(77\) 9.09605 3.22725i 1.03659 0.367779i
\(78\) 0 0
\(79\) 3.47070 + 2.00381i 0.390484 + 0.225446i 0.682370 0.731007i \(-0.260949\pi\)
−0.291886 + 0.956453i \(0.594283\pi\)
\(80\) 0 0
\(81\) 10.4692 + 18.1331i 1.16324 + 2.01479i
\(82\) 0 0
\(83\) −3.67570 + 3.67570i −0.403460 + 0.403460i −0.879451 0.475990i \(-0.842090\pi\)
0.475990 + 0.879451i \(0.342090\pi\)
\(84\) 0 0
\(85\) 3.79313 + 3.79313i 0.411423 + 0.411423i
\(86\) 0 0
\(87\) 8.36028 4.82681i 0.896317 0.517489i
\(88\) 0 0
\(89\) −3.35201 + 5.80586i −0.355313 + 0.615420i −0.987171 0.159664i \(-0.948959\pi\)
0.631859 + 0.775084i \(0.282292\pi\)
\(90\) 0 0
\(91\) 1.36891 + 0.252860i 0.143501 + 0.0265069i
\(92\) 0 0
\(93\) −4.53501 16.9249i −0.470259 1.75503i
\(94\) 0 0
\(95\) 2.79451 1.61341i 0.286710 0.165532i
\(96\) 0 0
\(97\) 4.52980i 0.459931i −0.973199 0.229966i \(-0.926139\pi\)
0.973199 0.229966i \(-0.0738613\pi\)
\(98\) 0 0
\(99\) −18.5040 18.5040i −1.85972 1.85972i
\(100\) 0 0
\(101\) −13.0735 3.50302i −1.30086 0.348564i −0.459084 0.888393i \(-0.651822\pi\)
−0.841775 + 0.539829i \(0.818489\pi\)
\(102\) 0 0
\(103\) −10.9548 6.32478i −1.07941 0.623200i −0.148675 0.988886i \(-0.547501\pi\)
−0.930738 + 0.365687i \(0.880834\pi\)
\(104\) 0 0
\(105\) −9.26159 13.4583i −0.903839 1.31340i
\(106\) 0 0
\(107\) −0.934307 3.48688i −0.0903229 0.337090i 0.905946 0.423393i \(-0.139161\pi\)
−0.996269 + 0.0863036i \(0.972494\pi\)
\(108\) 0 0
\(109\) −9.84896 2.63902i −0.943360 0.252772i −0.245817 0.969316i \(-0.579056\pi\)
−0.697542 + 0.716544i \(0.745723\pi\)
\(110\) 0 0
\(111\) 14.9748 1.42135
\(112\) 0 0
\(113\) −18.4361 −1.73432 −0.867160 0.498030i \(-0.834057\pi\)
−0.867160 + 0.498030i \(0.834057\pi\)
\(114\) 0 0
\(115\) 4.75997 + 1.27543i 0.443869 + 0.118934i
\(116\) 0 0
\(117\) −0.976873 3.64574i −0.0903119 0.337049i
\(118\) 0 0
\(119\) −3.15213 + 6.61883i −0.288955 + 0.606747i
\(120\) 0 0
\(121\) 1.99844 + 1.15380i 0.181676 + 0.104891i
\(122\) 0 0
\(123\) −12.1990 3.26871i −1.09994 0.294729i
\(124\) 0 0
\(125\) 8.55865 + 8.55865i 0.765509 + 0.765509i
\(126\) 0 0
\(127\) 20.5841i 1.82654i −0.407350 0.913272i \(-0.633547\pi\)
0.407350 0.913272i \(-0.366453\pi\)
\(128\) 0 0
\(129\) 16.7966 9.69749i 1.47885 0.853817i
\(130\) 0 0
\(131\) 4.12134 + 15.3810i 0.360083 + 1.34385i 0.873966 + 0.485987i \(0.161540\pi\)
−0.513883 + 0.857860i \(0.671793\pi\)
\(132\) 0 0
\(133\) 3.35505 + 2.86199i 0.290920 + 0.248166i
\(134\) 0 0
\(135\) −12.8853 + 22.3181i −1.10899 + 1.92083i
\(136\) 0 0
\(137\) −1.13536 + 0.655503i −0.0970008 + 0.0560034i −0.547716 0.836665i \(-0.684502\pi\)
0.450715 + 0.892668i \(0.351169\pi\)
\(138\) 0 0
\(139\) −15.6775 15.6775i −1.32975 1.32975i −0.905583 0.424169i \(-0.860566\pi\)
−0.424169 0.905583i \(-0.639434\pi\)
\(140\) 0 0
\(141\) 8.37444 8.37444i 0.705255 0.705255i
\(142\) 0 0
\(143\) 0.959692 + 1.66224i 0.0802535 + 0.139003i
\(144\) 0 0
\(145\) 5.07434 + 2.92967i 0.421401 + 0.243296i
\(146\) 0 0
\(147\) 13.1018 18.0788i 1.08062 1.49112i
\(148\) 0 0
\(149\) −12.1169 + 3.24672i −0.992656 + 0.265981i −0.718366 0.695666i \(-0.755109\pi\)
−0.274290 + 0.961647i \(0.588443\pi\)
\(150\) 0 0
\(151\) −4.56845 7.91278i −0.371775 0.643933i 0.618064 0.786128i \(-0.287917\pi\)
−0.989839 + 0.142195i \(0.954584\pi\)
\(152\) 0 0
\(153\) 19.8769 1.60695
\(154\) 0 0
\(155\) 7.52014 7.52014i 0.604032 0.604032i
\(156\) 0 0
\(157\) −3.42134 + 12.7686i −0.273053 + 1.01905i 0.684083 + 0.729405i \(0.260203\pi\)
−0.957135 + 0.289642i \(0.906464\pi\)
\(158\) 0 0
\(159\) −10.7301 + 18.5850i −0.850949 + 1.47389i
\(160\) 0 0
\(161\) 0.532442 + 6.71358i 0.0419623 + 0.529104i
\(162\) 0 0
\(163\) −0.383258 + 0.102694i −0.0300191 + 0.00804358i −0.273797 0.961787i \(-0.588280\pi\)
0.243778 + 0.969831i \(0.421613\pi\)
\(164\) 0 0
\(165\) 5.83007 21.7581i 0.453871 1.69387i
\(166\) 0 0
\(167\) 23.6587i 1.83076i 0.402588 + 0.915381i \(0.368111\pi\)
−0.402588 + 0.915381i \(0.631889\pi\)
\(168\) 0 0
\(169\) 12.7232i 0.978705i
\(170\) 0 0
\(171\) 3.09462 11.5493i 0.236651 0.883195i
\(172\) 0 0
\(173\) 14.8537 3.98004i 1.12931 0.302597i 0.354662 0.934994i \(-0.384596\pi\)
0.774644 + 0.632398i \(0.217929\pi\)
\(174\) 0 0
\(175\) −1.42439 + 2.99092i −0.107673 + 0.226093i
\(176\) 0 0
\(177\) −13.5646 + 23.4946i −1.01958 + 1.76596i
\(178\) 0 0
\(179\) 0.148935 0.555832i 0.0111319 0.0415448i −0.960136 0.279532i \(-0.909821\pi\)
0.971268 + 0.237987i \(0.0764875\pi\)
\(180\) 0 0
\(181\) −0.240422 + 0.240422i −0.0178705 + 0.0178705i −0.715986 0.698115i \(-0.754022\pi\)
0.698115 + 0.715986i \(0.254022\pi\)
\(182\) 0 0
\(183\) 1.25108 0.0924826
\(184\) 0 0
\(185\) 4.54454 + 7.87137i 0.334121 + 0.578715i
\(186\) 0 0
\(187\) −9.76367 + 2.61617i −0.713990 + 0.191313i
\(188\) 0 0
\(189\) −34.6335 6.39735i −2.51922 0.465339i
\(190\) 0 0
\(191\) 4.57833 + 2.64330i 0.331277 + 0.191263i 0.656408 0.754406i \(-0.272075\pi\)
−0.325131 + 0.945669i \(0.605408\pi\)
\(192\) 0 0
\(193\) −8.43656 14.6125i −0.607277 1.05183i −0.991687 0.128672i \(-0.958929\pi\)
0.384411 0.923162i \(-0.374405\pi\)
\(194\) 0 0
\(195\) 2.29734 2.29734i 0.164516 0.164516i
\(196\) 0 0
\(197\) −1.81729 1.81729i −0.129477 0.129477i 0.639399 0.768875i \(-0.279183\pi\)
−0.768875 + 0.639399i \(0.779183\pi\)
\(198\) 0 0
\(199\) 0.631178 0.364411i 0.0447430 0.0258324i −0.477462 0.878653i \(-0.658443\pi\)
0.522205 + 0.852820i \(0.325110\pi\)
\(200\) 0 0
\(201\) −22.9459 + 39.7435i −1.61848 + 2.80329i
\(202\) 0 0
\(203\) −1.45453 + 7.87443i −0.102088 + 0.552677i
\(204\) 0 0
\(205\) −1.98397 7.40426i −0.138566 0.517136i
\(206\) 0 0
\(207\) 15.8135 9.12991i 1.09911 0.634573i
\(208\) 0 0
\(209\) 6.08038i 0.420589i
\(210\) 0 0
\(211\) 8.24367 + 8.24367i 0.567518 + 0.567518i 0.931432 0.363915i \(-0.118560\pi\)
−0.363915 + 0.931432i \(0.618560\pi\)
\(212\) 0 0
\(213\) 27.6843 + 7.41798i 1.89690 + 0.508272i
\(214\) 0 0
\(215\) 10.1948 + 5.88597i 0.695280 + 0.401420i
\(216\) 0 0
\(217\) 13.1223 + 6.24931i 0.890799 + 0.424230i
\(218\) 0 0
\(219\) −1.26519 4.72176i −0.0854937 0.319067i
\(220\) 0 0
\(221\) −1.40824 0.377335i −0.0947281 0.0253823i
\(222\) 0 0
\(223\) 28.3640 1.89940 0.949698 0.313166i \(-0.101390\pi\)
0.949698 + 0.313166i \(0.101390\pi\)
\(224\) 0 0
\(225\) 8.98200 0.598800
\(226\) 0 0
\(227\) −6.25352 1.67563i −0.415061 0.111215i 0.0452445 0.998976i \(-0.485593\pi\)
−0.460305 + 0.887761i \(0.652260\pi\)
\(228\) 0 0
\(229\) 2.05973 + 7.68701i 0.136111 + 0.507972i 0.999991 + 0.00427468i \(0.00136068\pi\)
−0.863880 + 0.503697i \(0.831973\pi\)
\(230\) 0 0
\(231\) 30.6882 2.43383i 2.01914 0.160134i
\(232\) 0 0
\(233\) 0.159304 + 0.0919739i 0.0104363 + 0.00602541i 0.505209 0.862997i \(-0.331415\pi\)
−0.494773 + 0.869022i \(0.664749\pi\)
\(234\) 0 0
\(235\) 6.94341 + 1.86048i 0.452938 + 0.121364i
\(236\) 0 0
\(237\) 9.03870 + 9.03870i 0.587127 + 0.587127i
\(238\) 0 0
\(239\) 19.6670i 1.27215i 0.771626 + 0.636077i \(0.219444\pi\)
−0.771626 + 0.636077i \(0.780556\pi\)
\(240\) 0 0
\(241\) −3.10397 + 1.79208i −0.199944 + 0.115438i −0.596630 0.802517i \(-0.703494\pi\)
0.396685 + 0.917955i \(0.370160\pi\)
\(242\) 0 0
\(243\) 6.94921 + 25.9348i 0.445792 + 1.66372i
\(244\) 0 0
\(245\) 13.4791 + 1.40028i 0.861147 + 0.0894608i
\(246\) 0 0
\(247\) −0.438493 + 0.759493i −0.0279007 + 0.0483254i
\(248\) 0 0
\(249\) −14.3589 + 8.29010i −0.909957 + 0.525364i
\(250\) 0 0
\(251\) 11.1881 + 11.1881i 0.706184 + 0.706184i 0.965731 0.259547i \(-0.0835731\pi\)
−0.259547 + 0.965731i \(0.583573\pi\)
\(252\) 0 0
\(253\) −6.56601 + 6.56601i −0.412802 + 0.412802i
\(254\) 0 0
\(255\) 8.55495 + 14.8176i 0.535732 + 0.927914i
\(256\) 0 0
\(257\) 7.97191 + 4.60259i 0.497274 + 0.287101i 0.727587 0.686015i \(-0.240642\pi\)
−0.230313 + 0.973117i \(0.573975\pi\)
\(258\) 0 0
\(259\) −8.06145 + 9.45028i −0.500914 + 0.587212i
\(260\) 0 0
\(261\) 20.9715 5.61929i 1.29810 0.347825i
\(262\) 0 0
\(263\) −1.54283 2.67226i −0.0951349 0.164778i 0.814530 0.580121i \(-0.196995\pi\)
−0.909665 + 0.415343i \(0.863662\pi\)
\(264\) 0 0
\(265\) −13.0254 −0.800143
\(266\) 0 0
\(267\) −15.1201 + 15.1201i −0.925337 + 0.925337i
\(268\) 0 0
\(269\) −6.25670 + 23.3503i −0.381478 + 1.42369i 0.462167 + 0.886793i \(0.347072\pi\)
−0.843645 + 0.536902i \(0.819595\pi\)
\(270\) 0 0
\(271\) 5.80261 10.0504i 0.352484 0.610520i −0.634200 0.773169i \(-0.718671\pi\)
0.986684 + 0.162649i \(0.0520039\pi\)
\(272\) 0 0
\(273\) 4.00875 + 1.90911i 0.242620 + 0.115545i
\(274\) 0 0
\(275\) −4.41202 + 1.18220i −0.266055 + 0.0712891i
\(276\) 0 0
\(277\) 1.72208 6.42687i 0.103469 0.386153i −0.894698 0.446672i \(-0.852609\pi\)
0.998167 + 0.0605191i \(0.0192756\pi\)
\(278\) 0 0
\(279\) 39.4074i 2.35926i
\(280\) 0 0
\(281\) 16.2605i 0.970022i −0.874508 0.485011i \(-0.838816\pi\)
0.874508 0.485011i \(-0.161184\pi\)
\(282\) 0 0
\(283\) −6.20636 + 23.1624i −0.368930 + 1.37686i 0.493085 + 0.869981i \(0.335869\pi\)
−0.862015 + 0.506883i \(0.830798\pi\)
\(284\) 0 0
\(285\) 9.94152 2.66382i 0.588885 0.157791i
\(286\) 0 0
\(287\) 8.62993 5.93885i 0.509409 0.350559i
\(288\) 0 0
\(289\) −4.66108 + 8.07323i −0.274181 + 0.474896i
\(290\) 0 0
\(291\) 3.73947 13.9559i 0.219211 0.818108i
\(292\) 0 0
\(293\) 15.5002 15.5002i 0.905534 0.905534i −0.0903743 0.995908i \(-0.528806\pi\)
0.995908 + 0.0903743i \(0.0288063\pi\)
\(294\) 0 0
\(295\) −16.4663 −0.958705
\(296\) 0 0
\(297\) −24.2802 42.0546i −1.40888 2.44025i
\(298\) 0 0
\(299\) −1.29367 + 0.346637i −0.0748147 + 0.0200465i
\(300\) 0 0
\(301\) −2.92228 + 15.8204i −0.168438 + 0.911875i
\(302\) 0 0
\(303\) −37.3863 21.5850i −2.14779 1.24002i
\(304\) 0 0
\(305\) 0.379677 + 0.657620i 0.0217402 + 0.0376552i
\(306\) 0 0
\(307\) 8.30421 8.30421i 0.473946 0.473946i −0.429243 0.903189i \(-0.641220\pi\)
0.903189 + 0.429243i \(0.141220\pi\)
\(308\) 0 0
\(309\) −28.5296 28.5296i −1.62299 1.62299i
\(310\) 0 0
\(311\) −7.66004 + 4.42252i −0.434361 + 0.250778i −0.701203 0.712962i \(-0.747353\pi\)
0.266842 + 0.963740i \(0.414020\pi\)
\(312\) 0 0
\(313\) 12.5112 21.6700i 0.707174 1.22486i −0.258727 0.965951i \(-0.583303\pi\)
0.965901 0.258911i \(-0.0833637\pi\)
\(314\) 0 0
\(315\) −12.2859 34.6279i −0.692230 1.95106i
\(316\) 0 0
\(317\) 0.827705 + 3.08904i 0.0464885 + 0.173498i 0.985267 0.171024i \(-0.0547077\pi\)
−0.938778 + 0.344522i \(0.888041\pi\)
\(318\) 0 0
\(319\) −9.56172 + 5.52046i −0.535354 + 0.309087i
\(320\) 0 0
\(321\) 11.5141i 0.642652i
\(322\) 0 0
\(323\) −3.26577 3.26577i −0.181712 0.181712i
\(324\) 0 0
\(325\) −0.636355 0.170511i −0.0352986 0.00945823i
\(326\) 0 0
\(327\) −28.1652 16.2612i −1.55754 0.899244i
\(328\) 0 0
\(329\) 0.776679 + 9.79317i 0.0428197 + 0.539915i
\(330\) 0 0
\(331\) 3.55043 + 13.2504i 0.195149 + 0.728306i 0.992228 + 0.124431i \(0.0397107\pi\)
−0.797079 + 0.603875i \(0.793623\pi\)
\(332\) 0 0
\(333\) 32.5312 + 8.71671i 1.78270 + 0.477673i
\(334\) 0 0
\(335\) −27.8544 −1.52185
\(336\) 0 0
\(337\) 30.3580 1.65371 0.826854 0.562417i \(-0.190128\pi\)
0.826854 + 0.562417i \(0.190128\pi\)
\(338\) 0 0
\(339\) −56.7998 15.2195i −3.08494 0.826608i
\(340\) 0 0
\(341\) 5.18673 + 19.3571i 0.280877 + 1.04825i
\(342\) 0 0
\(343\) 4.35602 + 18.0007i 0.235203 + 0.971946i
\(344\) 0 0
\(345\) 13.6121 + 7.85895i 0.732851 + 0.423112i
\(346\) 0 0
\(347\) 13.0551 + 3.49811i 0.700836 + 0.187788i 0.591605 0.806228i \(-0.298494\pi\)
0.109231 + 0.994016i \(0.465161\pi\)
\(348\) 0 0
\(349\) −12.6593 12.6593i −0.677639 0.677639i 0.281826 0.959465i \(-0.409060\pi\)
−0.959465 + 0.281826i \(0.909060\pi\)
\(350\) 0 0
\(351\) 7.00398i 0.373845i
\(352\) 0 0
\(353\) −26.7828 + 15.4631i −1.42550 + 0.823016i −0.996762 0.0804108i \(-0.974377\pi\)
−0.428743 + 0.903426i \(0.641043\pi\)
\(354\) 0 0
\(355\) 4.50240 + 16.8032i 0.238963 + 0.891821i
\(356\) 0 0
\(357\) −15.1754 + 17.7898i −0.803169 + 0.941538i
\(358\) 0 0
\(359\) 9.22928 15.9856i 0.487103 0.843687i −0.512787 0.858516i \(-0.671387\pi\)
0.999890 + 0.0148287i \(0.00472029\pi\)
\(360\) 0 0
\(361\) 14.0485 8.11090i 0.739395 0.426890i
\(362\) 0 0
\(363\) 5.20452 + 5.20452i 0.273166 + 0.273166i
\(364\) 0 0
\(365\) 2.09799 2.09799i 0.109814 0.109814i
\(366\) 0 0
\(367\) 8.10460 + 14.0376i 0.423057 + 0.732756i 0.996237 0.0866738i \(-0.0276238\pi\)
−0.573180 + 0.819429i \(0.694290\pi\)
\(368\) 0 0
\(369\) −24.5983 14.2018i −1.28054 0.739318i
\(370\) 0 0
\(371\) −5.95224 16.7765i −0.309025 0.870990i
\(372\) 0 0
\(373\) −34.7801 + 9.31929i −1.80084 + 0.482534i −0.994109 0.108381i \(-0.965433\pi\)
−0.806734 + 0.590915i \(0.798767\pi\)
\(374\) 0 0
\(375\) 19.3030 + 33.4338i 0.996803 + 1.72651i
\(376\) 0 0
\(377\) −1.59246 −0.0820157
\(378\) 0 0
\(379\) 18.9916 18.9916i 0.975531 0.975531i −0.0241768 0.999708i \(-0.507696\pi\)
0.999708 + 0.0241768i \(0.00769645\pi\)
\(380\) 0 0
\(381\) 16.9927 63.4177i 0.870564 3.24899i
\(382\) 0 0
\(383\) 11.8784 20.5740i 0.606957 1.05128i −0.384782 0.923007i \(-0.625723\pi\)
0.991739 0.128273i \(-0.0409433\pi\)
\(384\) 0 0
\(385\) 10.5926 + 15.3924i 0.539847 + 0.784468i
\(386\) 0 0
\(387\) 42.1336 11.2897i 2.14177 0.573886i
\(388\) 0 0
\(389\) −3.49731 + 13.0521i −0.177321 + 0.661770i 0.818824 + 0.574045i \(0.194626\pi\)
−0.996145 + 0.0877254i \(0.972040\pi\)
\(390\) 0 0
\(391\) 7.05320i 0.356696i
\(392\) 0 0
\(393\) 50.7898i 2.56201i
\(394\) 0 0
\(395\) −2.00806 + 7.49417i −0.101036 + 0.377073i
\(396\) 0 0
\(397\) −4.46180 + 1.19554i −0.223931 + 0.0600022i −0.369040 0.929413i \(-0.620313\pi\)
0.145109 + 0.989416i \(0.453647\pi\)
\(398\) 0 0
\(399\) 7.97395 + 11.5872i 0.399197 + 0.580086i
\(400\) 0 0
\(401\) 11.1566 19.3238i 0.557135 0.964986i −0.440599 0.897704i \(-0.645234\pi\)
0.997734 0.0672821i \(-0.0214327\pi\)
\(402\) 0 0
\(403\) −0.748093 + 2.79192i −0.0372652 + 0.139076i
\(404\) 0 0
\(405\) −28.6629 + 28.6629i −1.42427 + 1.42427i
\(406\) 0 0
\(407\) −17.1268 −0.848944
\(408\) 0 0
\(409\) 2.83340 + 4.90759i 0.140102 + 0.242665i 0.927535 0.373736i \(-0.121923\pi\)
−0.787433 + 0.616401i \(0.788590\pi\)
\(410\) 0 0
\(411\) −4.03909 + 1.08227i −0.199234 + 0.0533845i
\(412\) 0 0
\(413\) −7.52464 21.2083i −0.370263 1.04359i
\(414\) 0 0
\(415\) −8.71523 5.03174i −0.427814 0.246998i
\(416\) 0 0
\(417\) −35.3588 61.2433i −1.73153 2.99910i
\(418\) 0 0
\(419\) 2.67538 2.67538i 0.130701 0.130701i −0.638730 0.769431i \(-0.720540\pi\)
0.769431 + 0.638730i \(0.220540\pi\)
\(420\) 0 0
\(421\) 17.2159 + 17.2159i 0.839052 + 0.839052i 0.988734 0.149682i \(-0.0478251\pi\)
−0.149682 + 0.988734i \(0.547825\pi\)
\(422\) 0 0
\(423\) 23.0673 13.3179i 1.12157 0.647538i
\(424\) 0 0
\(425\) 1.73473 3.00465i 0.0841470 0.145747i
\(426\) 0 0
\(427\) −0.673500 + 0.789530i −0.0325930 + 0.0382081i
\(428\) 0 0
\(429\) 1.58450 + 5.91344i 0.0765005 + 0.285504i
\(430\) 0 0
\(431\) −27.7876 + 16.0432i −1.33848 + 0.772774i −0.986582 0.163264i \(-0.947798\pi\)
−0.351901 + 0.936037i \(0.614465\pi\)
\(432\) 0 0
\(433\) 15.7783i 0.758258i 0.925344 + 0.379129i \(0.123776\pi\)
−0.925344 + 0.379129i \(0.876224\pi\)
\(434\) 0 0
\(435\) 13.2150 + 13.2150i 0.633613 + 0.633613i
\(436\) 0 0
\(437\) −4.09819 1.09811i −0.196043 0.0525295i
\(438\) 0 0
\(439\) −1.89128 1.09193i −0.0902658 0.0521150i 0.454188 0.890906i \(-0.349930\pi\)
−0.544453 + 0.838791i \(0.683263\pi\)
\(440\) 0 0
\(441\) 38.9857 31.6479i 1.85646 1.50704i
\(442\) 0 0
\(443\) −5.35487 19.9847i −0.254418 0.949500i −0.968413 0.249350i \(-0.919783\pi\)
0.713996 0.700150i \(-0.246884\pi\)
\(444\) 0 0
\(445\) −12.5364 3.35912i −0.594282 0.159237i
\(446\) 0 0
\(447\) −40.0113 −1.89247
\(448\) 0 0
\(449\) 31.8400 1.50262 0.751311 0.659949i \(-0.229422\pi\)
0.751311 + 0.659949i \(0.229422\pi\)
\(450\) 0 0
\(451\) 13.9521 + 3.73844i 0.656977 + 0.176036i
\(452\) 0 0
\(453\) −7.54275 28.1499i −0.354389 1.32260i
\(454\) 0 0
\(455\) 0.213064 + 2.68654i 0.00998861 + 0.125947i
\(456\) 0 0
\(457\) 8.74709 + 5.05014i 0.409172 + 0.236235i 0.690434 0.723396i \(-0.257420\pi\)
−0.281262 + 0.959631i \(0.590753\pi\)
\(458\) 0 0
\(459\) 35.6284 + 9.54659i 1.66299 + 0.445597i
\(460\) 0 0
\(461\) 14.0523 + 14.0523i 0.654479 + 0.654479i 0.954068 0.299589i \(-0.0968497\pi\)
−0.299589 + 0.954068i \(0.596850\pi\)
\(462\) 0 0
\(463\) 9.31917i 0.433099i −0.976272 0.216549i \(-0.930520\pi\)
0.976272 0.216549i \(-0.0694802\pi\)
\(464\) 0 0
\(465\) 29.3769 16.9608i 1.36232 0.786537i
\(466\) 0 0
\(467\) −3.53968 13.2103i −0.163797 0.611298i −0.998191 0.0601291i \(-0.980849\pi\)
0.834394 0.551169i \(-0.185818\pi\)
\(468\) 0 0
\(469\) −12.7287 35.8760i −0.587756 1.65660i
\(470\) 0 0
\(471\) −21.0817 + 36.5145i −0.971391 + 1.68250i
\(472\) 0 0
\(473\) −19.2104 + 11.0911i −0.883293 + 0.509969i
\(474\) 0 0
\(475\) −1.47574 1.47574i −0.0677116 0.0677116i
\(476\) 0 0
\(477\) −34.1281 + 34.1281i −1.56262 + 1.56262i
\(478\) 0 0
\(479\) 13.2090 + 22.8786i 0.603534 + 1.04535i 0.992281 + 0.124007i \(0.0395745\pi\)
−0.388748 + 0.921344i \(0.627092\pi\)
\(480\) 0 0
\(481\) −2.13929 1.23512i −0.0975431 0.0563165i
\(482\) 0 0
\(483\) −3.90183 + 21.1235i −0.177540 + 0.961151i
\(484\) 0 0
\(485\) 8.47063 2.26970i 0.384631 0.103062i
\(486\) 0 0
\(487\) −16.0930 27.8738i −0.729242 1.26308i −0.957204 0.289414i \(-0.906540\pi\)
0.227962 0.973670i \(-0.426794\pi\)
\(488\) 0 0
\(489\) −1.26556 −0.0572305
\(490\) 0 0
\(491\) 2.25713 2.25713i 0.101863 0.101863i −0.654339 0.756202i \(-0.727053\pi\)
0.756202 + 0.654339i \(0.227053\pi\)
\(492\) 0 0
\(493\) 2.17056 8.10063i 0.0977570 0.364834i
\(494\) 0 0
\(495\) 25.3304 43.8736i 1.13852 1.97197i
\(496\) 0 0
\(497\) −19.5847 + 13.4776i −0.878495 + 0.604553i
\(498\) 0 0
\(499\) 22.0437 5.90659i 0.986811 0.264415i 0.270900 0.962607i \(-0.412679\pi\)
0.715910 + 0.698192i \(0.246012\pi\)
\(500\) 0 0
\(501\) −19.5309 + 72.8901i −0.872574 + 3.25649i
\(502\) 0 0
\(503\) 23.1194i 1.03084i 0.856937 + 0.515422i \(0.172365\pi\)
−0.856937 + 0.515422i \(0.827635\pi\)
\(504\) 0 0
\(505\) 26.2023i 1.16599i
\(506\) 0 0
\(507\) 10.5033 39.1989i 0.466468 1.74088i
\(508\) 0 0
\(509\) 10.6078 2.84236i 0.470185 0.125986i −0.0159440 0.999873i \(-0.505075\pi\)
0.486129 + 0.873887i \(0.338409\pi\)
\(510\) 0 0
\(511\) 3.66089 + 1.74345i 0.161948 + 0.0771257i
\(512\) 0 0
\(513\) 11.0939 19.2152i 0.489807 0.848371i
\(514\) 0 0
\(515\) 6.33819 23.6544i 0.279294 1.04234i
\(516\) 0 0
\(517\) −9.57791 + 9.57791i −0.421236 + 0.421236i
\(518\) 0 0
\(519\) 49.0485 2.15299
\(520\) 0 0
\(521\) 4.42108 + 7.65754i 0.193691 + 0.335483i 0.946471 0.322790i \(-0.104621\pi\)
−0.752780 + 0.658273i \(0.771287\pi\)
\(522\) 0 0
\(523\) 18.3971 4.92948i 0.804448 0.215551i 0.166912 0.985972i \(-0.446620\pi\)
0.637536 + 0.770420i \(0.279954\pi\)
\(524\) 0 0
\(525\) −6.85749 + 8.03889i −0.299285 + 0.350846i
\(526\) 0 0
\(527\) −13.1825 7.61092i −0.574239 0.331537i
\(528\) 0 0
\(529\) 8.26031 + 14.3073i 0.359144 + 0.622055i
\(530\) 0 0
\(531\) −43.1437 + 43.1437i −1.87228 + 1.87228i
\(532\) 0 0
\(533\) 1.47313 + 1.47313i 0.0638085 + 0.0638085i
\(534\) 0 0
\(535\) 6.05226 3.49427i 0.261662 0.151071i
\(536\) 0 0
\(537\) 0.917707 1.58952i 0.0396020 0.0685927i
\(538\) 0 0
\(539\) −14.9846 + 20.6769i −0.645432 + 0.890617i
\(540\) 0 0
\(541\) 0.623324 + 2.32628i 0.0267988 + 0.100014i 0.978030 0.208465i \(-0.0668467\pi\)
−0.951231 + 0.308479i \(0.900180\pi\)
\(542\) 0 0
\(543\) −0.939194 + 0.542244i −0.0403047 + 0.0232699i
\(544\) 0 0
\(545\) 19.7397i 0.845555i
\(546\) 0 0
\(547\) 11.9972 + 11.9972i 0.512962 + 0.512962i 0.915433 0.402471i \(-0.131849\pi\)
−0.402471 + 0.915433i \(0.631849\pi\)
\(548\) 0 0
\(549\) 2.71784 + 0.728244i 0.115995 + 0.0310807i
\(550\) 0 0
\(551\) −4.36885 2.52236i −0.186119 0.107456i
\(552\) 0 0
\(553\) −10.5700 + 0.838286i −0.449481 + 0.0356475i
\(554\) 0 0
\(555\) 7.50327 + 28.0026i 0.318496 + 1.18864i
\(556\) 0 0
\(557\) −19.7236 5.28493i −0.835716 0.223930i −0.184510 0.982831i \(-0.559070\pi\)
−0.651206 + 0.758901i \(0.725737\pi\)
\(558\) 0 0
\(559\) −3.19939 −0.135320
\(560\) 0 0
\(561\) −32.2407 −1.36120
\(562\) 0 0
\(563\) −15.4308 4.13466i −0.650330 0.174255i −0.0814517 0.996677i \(-0.525956\pi\)
−0.568878 + 0.822422i \(0.692622\pi\)
\(564\) 0 0
\(565\) −9.23757 34.4751i −0.388628 1.45038i
\(566\) 0 0
\(567\) −50.0155 23.8192i −2.10045 1.00031i
\(568\) 0 0
\(569\) 17.3910 + 10.0407i 0.729068 + 0.420928i 0.818081 0.575103i \(-0.195038\pi\)
−0.0890129 + 0.996030i \(0.528371\pi\)
\(570\) 0 0
\(571\) 17.3971 + 4.66153i 0.728045 + 0.195079i 0.603758 0.797167i \(-0.293669\pi\)
0.124286 + 0.992246i \(0.460336\pi\)
\(572\) 0 0
\(573\) 11.9233 + 11.9233i 0.498103 + 0.498103i
\(574\) 0 0
\(575\) 3.18721i 0.132916i
\(576\) 0 0
\(577\) −16.2314 + 9.37123i −0.675724 + 0.390129i −0.798242 0.602337i \(-0.794236\pi\)
0.122518 + 0.992466i \(0.460903\pi\)
\(578\) 0 0
\(579\) −13.9292 51.9845i −0.578878 2.16040i
\(580\) 0 0
\(581\) 2.49817 13.5244i 0.103642 0.561087i
\(582\) 0 0
\(583\) 12.2721 21.2558i 0.508257 0.880327i
\(584\) 0 0
\(585\) 6.32799 3.65347i 0.261630 0.151052i
\(586\) 0 0
\(587\) −16.4500 16.4500i −0.678963 0.678963i 0.280802 0.959766i \(-0.409399\pi\)
−0.959766 + 0.280802i \(0.909399\pi\)
\(588\) 0 0
\(589\) −6.47461 + 6.47461i −0.266782 + 0.266782i
\(590\) 0 0
\(591\) −4.09868 7.09912i −0.168597 0.292019i
\(592\) 0 0
\(593\) 1.34548 + 0.776813i 0.0552522 + 0.0318999i 0.527372 0.849635i \(-0.323178\pi\)
−0.472119 + 0.881535i \(0.656511\pi\)
\(594\) 0 0
\(595\) −13.9565 2.57798i −0.572160 0.105687i
\(596\) 0 0
\(597\) 2.24543 0.601662i 0.0918994 0.0246244i
\(598\) 0 0
\(599\) −0.821999 1.42374i −0.0335860 0.0581726i 0.848744 0.528804i \(-0.177359\pi\)
−0.882330 + 0.470632i \(0.844026\pi\)
\(600\) 0 0
\(601\) −35.9484 −1.46637 −0.733183 0.680031i \(-0.761966\pi\)
−0.733183 + 0.680031i \(0.761966\pi\)
\(602\) 0 0
\(603\) −72.9819 + 72.9819i −2.97205 + 2.97205i
\(604\) 0 0
\(605\) −1.15625 + 4.31517i −0.0470081 + 0.175437i
\(606\) 0 0
\(607\) −12.3075 + 21.3172i −0.499545 + 0.865237i −1.00000 0.000525205i \(-0.999833\pi\)
0.500455 + 0.865763i \(0.333166\pi\)
\(608\) 0 0
\(609\) −10.9818 + 23.0596i −0.445006 + 0.934424i
\(610\) 0 0
\(611\) −1.88709 + 0.505643i −0.0763433 + 0.0204561i
\(612\) 0 0
\(613\) 7.49076 27.9559i 0.302549 1.12913i −0.632485 0.774572i \(-0.717965\pi\)
0.935035 0.354556i \(-0.115368\pi\)
\(614\) 0 0
\(615\) 24.4497i 0.985905i
\(616\) 0 0
\(617\) 10.2299i 0.411839i −0.978569 0.205920i \(-0.933981\pi\)
0.978569 0.205920i \(-0.0660186\pi\)
\(618\) 0 0
\(619\) −2.37448 + 8.86168i −0.0954384 + 0.356181i −0.997086 0.0762915i \(-0.975692\pi\)
0.901647 + 0.432472i \(0.142359\pi\)
\(620\) 0 0
\(621\) 32.7298 8.76992i 1.31340 0.351925i
\(622\) 0 0
\(623\) −1.40230 17.6817i −0.0561820 0.708401i
\(624\) 0 0
\(625\) −8.58582 + 14.8711i −0.343433 + 0.594843i
\(626\) 0 0
\(627\) −5.01952 + 18.7331i −0.200460 + 0.748128i
\(628\) 0 0
\(629\) 9.19880 9.19880i 0.366780 0.366780i
\(630\) 0 0
\(631\) 2.48179 0.0987983 0.0493992 0.998779i \(-0.484269\pi\)
0.0493992 + 0.998779i \(0.484269\pi\)
\(632\) 0 0
\(633\) 18.5926 + 32.2033i 0.738990 + 1.27997i
\(634\) 0 0
\(635\) 38.4919 10.3139i 1.52750 0.409293i
\(636\) 0 0
\(637\) −3.36284 + 1.50209i −0.133241 + 0.0595152i
\(638\) 0 0
\(639\) 55.8232 + 32.2296i 2.20833 + 1.27498i
\(640\) 0 0
\(641\) 7.96198 + 13.7906i 0.314479 + 0.544694i 0.979327 0.202285i \(-0.0648367\pi\)
−0.664847 + 0.746979i \(0.731503\pi\)
\(642\) 0 0
\(643\) 7.66392 7.66392i 0.302236 0.302236i −0.539652 0.841888i \(-0.681444\pi\)
0.841888 + 0.539652i \(0.181444\pi\)
\(644\) 0 0
\(645\) 26.5502 + 26.5502i 1.04541 + 1.04541i
\(646\) 0 0
\(647\) 7.28511 4.20606i 0.286407 0.165357i −0.349913 0.936782i \(-0.613789\pi\)
0.636320 + 0.771425i \(0.280456\pi\)
\(648\) 0 0
\(649\) 15.5140 26.8710i 0.608976 1.05478i
\(650\) 0 0
\(651\) 35.2696 + 30.0863i 1.38232 + 1.17918i
\(652\) 0 0
\(653\) −12.7054 47.4173i −0.497201 1.85558i −0.517335 0.855783i \(-0.673076\pi\)
0.0201333 0.999797i \(-0.493591\pi\)
\(654\) 0 0
\(655\) −26.6972 + 15.4136i −1.04315 + 0.602261i
\(656\) 0 0
\(657\) 10.9940i 0.428916i
\(658\) 0 0
\(659\) 4.57653 + 4.57653i 0.178276 + 0.178276i 0.790604 0.612328i \(-0.209767\pi\)
−0.612328 + 0.790604i \(0.709767\pi\)
\(660\) 0 0
\(661\) 36.2259 + 9.70671i 1.40903 + 0.377547i 0.881577 0.472040i \(-0.156482\pi\)
0.527448 + 0.849587i \(0.323149\pi\)
\(662\) 0 0
\(663\) −4.02714 2.32507i −0.156401 0.0902983i
\(664\) 0 0
\(665\) −3.67078 + 7.70791i −0.142347 + 0.298900i
\(666\) 0 0
\(667\) −1.99397 7.44160i −0.0772068 0.288140i
\(668\) 0 0
\(669\) 87.3870 + 23.4153i 3.37858 + 0.905286i
\(670\) 0 0
\(671\) −1.43087 −0.0552382
\(672\) 0 0
\(673\) 1.25969 0.0485576 0.0242788 0.999705i \(-0.492271\pi\)
0.0242788 + 0.999705i \(0.492271\pi\)
\(674\) 0 0
\(675\) 16.0998 + 4.31392i 0.619681 + 0.166043i
\(676\) 0 0
\(677\) −2.73796 10.2182i −0.105228 0.392717i 0.893143 0.449774i \(-0.148495\pi\)
−0.998371 + 0.0570560i \(0.981829\pi\)
\(678\) 0 0
\(679\) 6.79417 + 9.87282i 0.260736 + 0.378884i
\(680\) 0 0
\(681\) −17.8832 10.3249i −0.685287 0.395651i
\(682\) 0 0
\(683\) −32.3526 8.66885i −1.23794 0.331705i −0.420272 0.907398i \(-0.638065\pi\)
−0.817666 + 0.575693i \(0.804732\pi\)
\(684\) 0 0
\(685\) −1.79466 1.79466i −0.0685706 0.0685706i
\(686\) 0 0
\(687\) 25.3833i 0.968434i
\(688\) 0 0
\(689\) 3.06577 1.77003i 0.116797 0.0674326i
\(690\) 0 0
\(691\) 3.83874 + 14.3264i 0.146033 + 0.545001i 0.999707 + 0.0241943i \(0.00770204\pi\)
−0.853675 + 0.520807i \(0.825631\pi\)
\(692\) 0 0
\(693\) 68.0837 + 12.5761i 2.58629 + 0.477728i
\(694\) 0 0
\(695\) 21.4613 37.1721i 0.814074 1.41002i
\(696\) 0 0
\(697\) −9.50156 + 5.48573i −0.359897 + 0.207787i
\(698\) 0 0
\(699\) 0.414872 + 0.414872i 0.0156919 + 0.0156919i
\(700\) 0 0
\(701\) −14.0698 + 14.0698i −0.531408 + 0.531408i −0.920991 0.389583i \(-0.872619\pi\)
0.389583 + 0.920991i \(0.372619\pi\)
\(702\) 0 0
\(703\) −3.91271 6.77701i −0.147571 0.255600i
\(704\) 0 0
\(705\) 19.8561 + 11.4639i 0.747825 + 0.431757i
\(706\) 0 0
\(707\) 33.7481 11.9737i 1.26923 0.450319i
\(708\) 0 0
\(709\) −12.5757 + 3.36966i −0.472291 + 0.126550i −0.487111 0.873340i \(-0.661949\pi\)
0.0148195 + 0.999890i \(0.495283\pi\)
\(710\) 0 0
\(711\) 14.3743 + 24.8970i 0.539078 + 0.933710i
\(712\) 0 0
\(713\) −13.9835 −0.523684
\(714\) 0 0
\(715\) −2.62748 + 2.62748i −0.0982623 + 0.0982623i
\(716\) 0 0
\(717\) −16.2356 + 60.5923i −0.606331 + 2.26286i
\(718\) 0 0
\(719\) −10.1472 + 17.5754i −0.378425 + 0.655452i −0.990833 0.135090i \(-0.956868\pi\)
0.612408 + 0.790542i \(0.290201\pi\)
\(720\) 0 0
\(721\) 33.3629 2.64595i 1.24250 0.0985403i
\(722\) 0 0
\(723\) −11.0425 + 2.95882i −0.410673 + 0.110040i
\(724\) 0 0
\(725\) 0.980834 3.66052i 0.0364272 0.135948i
\(726\) 0 0
\(727\) 38.4308i 1.42532i 0.701510 + 0.712660i \(0.252510\pi\)
−0.701510 + 0.712660i \(0.747490\pi\)
\(728\) 0 0
\(729\) 22.8244i 0.845348i
\(730\) 0 0
\(731\) 4.36084 16.2749i 0.161292 0.601948i
\(732\) 0 0
\(733\) −48.4699 + 12.9875i −1.79028 + 0.479703i −0.992393 0.123110i \(-0.960713\pi\)
−0.797882 + 0.602813i \(0.794046\pi\)
\(734\) 0 0
\(735\) 40.3718 + 15.4415i 1.48914 + 0.569567i
\(736\) 0 0
\(737\) 26.2434 45.4549i 0.966689 1.67435i
\(738\) 0 0
\(739\) −1.90941 + 7.12602i −0.0702388 + 0.262135i −0.992112 0.125358i \(-0.959992\pi\)
0.921873 + 0.387493i \(0.126659\pi\)
\(740\) 0 0
\(741\) −1.97794 + 1.97794i −0.0726614 + 0.0726614i
\(742\) 0 0
\(743\) −13.2937 −0.487698 −0.243849 0.969813i \(-0.578410\pi\)
−0.243849 + 0.969813i \(0.578410\pi\)
\(744\) 0 0
\(745\) −12.1426 21.0316i −0.444870 0.770537i
\(746\) 0 0
\(747\) −36.0187 + 9.65119i −1.31786 + 0.353119i
\(748\) 0 0
\(749\) 7.26627 + 6.19841i 0.265504 + 0.226485i
\(750\) 0 0
\(751\) −10.6206 6.13182i −0.387552 0.223753i 0.293547 0.955945i \(-0.405164\pi\)
−0.681099 + 0.732191i \(0.738498\pi\)
\(752\) 0 0
\(753\) 25.2333 + 43.7054i 0.919553 + 1.59271i
\(754\) 0 0
\(755\) 12.5077 12.5077i 0.455201 0.455201i
\(756\) 0 0
\(757\) 27.2609 + 27.2609i 0.990813 + 0.990813i 0.999958 0.00914525i \(-0.00291107\pi\)
−0.00914525 + 0.999958i \(0.502911\pi\)
\(758\) 0 0
\(759\) −25.6497 + 14.8089i −0.931025 + 0.537527i
\(760\) 0 0
\(761\) −10.1480 + 17.5769i −0.367867 + 0.637164i −0.989232 0.146358i \(-0.953245\pi\)
0.621365 + 0.783521i \(0.286578\pi\)
\(762\) 0 0
\(763\) 25.4243 9.02048i 0.920423 0.326563i
\(764\) 0 0
\(765\) 9.95952 + 37.1695i 0.360087 + 1.34386i
\(766\) 0 0
\(767\) 3.87566 2.23761i 0.139942 0.0807955i
\(768\) 0 0
\(769\) 19.6449i 0.708412i −0.935167 0.354206i \(-0.884751\pi\)
0.935167 0.354206i \(-0.115249\pi\)
\(770\) 0 0
\(771\) 20.7612 + 20.7612i 0.747695 + 0.747695i
\(772\) 0 0
\(773\) −47.3606 12.6902i −1.70344 0.456436i −0.729639 0.683832i \(-0.760312\pi\)
−0.973802 + 0.227397i \(0.926979\pi\)
\(774\) 0 0
\(775\) −5.95692 3.43923i −0.213979 0.123541i
\(776\) 0 0
\(777\) −32.6380 + 22.4605i −1.17088 + 0.805765i
\(778\) 0 0
\(779\) 1.70813 + 6.37485i 0.0612003 + 0.228403i
\(780\) 0 0
\(781\) −31.6627 8.48400i −1.13298 0.303581i
\(782\) 0 0
\(783\) 40.2892 1.43982
\(784\) 0 0
\(785\) −25.5913 −0.913394
\(786\) 0 0
\(787\) 2.76449 + 0.740742i 0.0985433 + 0.0264046i 0.307754 0.951466i \(-0.400423\pi\)
−0.209210 + 0.977871i \(0.567089\pi\)
\(788\) 0 0
\(789\) −2.54729 9.50662i −0.0906860 0.338445i
\(790\) 0 0
\(791\) 40.1820 27.6520i 1.42871 0.983191i
\(792\) 0 0
\(793\) −0.178728 0.103189i −0.00634683 0.00366434i
\(794\) 0 0
\(795\) −40.1300 10.7528i −1.42326 0.381363i
\(796\) 0 0
\(797\) −39.0301 39.0301i −1.38252 1.38252i −0.840129 0.542386i \(-0.817521\pi\)
−0.542386 0.840129i \(-0.682479\pi\)
\(798\) 0 0
\(799\) 10.2886i 0.363984i
\(800\) 0 0
\(801\) −41.6482 + 24.0456i −1.47157 + 0.849609i
\(802\) 0 0
\(803\) 1.44701 + 5.40031i 0.0510639 + 0.190573i
\(804\) 0 0
\(805\) −12.2875 + 4.35956i −0.433077 + 0.153654i
\(806\) 0 0
\(807\) −38.5526 + 66.7751i −1.35712 + 2.35059i
\(808\) 0 0
\(809\) 36.0749 20.8279i 1.26833 0.732269i 0.293656 0.955911i \(-0.405128\pi\)
0.974671 + 0.223642i \(0.0717946\pi\)
\(810\) 0 0
\(811\) −6.24833 6.24833i −0.219409 0.219409i 0.588841 0.808249i \(-0.299585\pi\)
−0.808249 + 0.588841i \(0.799585\pi\)
\(812\) 0 0
\(813\) 26.1742 26.1742i 0.917969 0.917969i
\(814\) 0 0
\(815\) −0.384070 0.665229i −0.0134534 0.0233019i
\(816\) 0 0
\(817\) −8.77741 5.06764i −0.307083 0.177294i
\(818\) 0 0
\(819\) 7.59731 + 6.48080i 0.265471 + 0.226457i
\(820\) 0 0
\(821\) 41.1258 11.0196i 1.43530 0.384588i 0.544416 0.838816i \(-0.316751\pi\)
0.890886 + 0.454228i \(0.150085\pi\)
\(822\) 0 0
\(823\) −0.688665 1.19280i −0.0240054 0.0415785i 0.853773 0.520645i \(-0.174309\pi\)
−0.877779 + 0.479067i \(0.840975\pi\)
\(824\) 0 0
\(825\) −14.5689 −0.507225
\(826\) 0 0
\(827\) 14.2870 14.2870i 0.496807 0.496807i −0.413636 0.910443i \(-0.635741\pi\)
0.910443 + 0.413636i \(0.135741\pi\)
\(828\) 0 0
\(829\) 5.38274 20.0887i 0.186950 0.697708i −0.807254 0.590204i \(-0.799047\pi\)
0.994205 0.107504i \(-0.0342859\pi\)
\(830\) 0 0
\(831\) 10.6111 18.3790i 0.368095 0.637560i
\(832\) 0 0
\(833\) −3.05733 19.1538i −0.105930 0.663639i
\(834\) 0 0
\(835\) −44.2412 + 11.8544i −1.53103 + 0.410239i
\(836\) 0 0
\(837\) 18.9268 70.6357i 0.654205 2.44153i
\(838\) 0 0
\(839\) 12.7357i 0.439684i −0.975535 0.219842i \(-0.929446\pi\)
0.975535 0.219842i \(-0.0705542\pi\)
\(840\) 0 0
\(841\) 19.8397i 0.684126i
\(842\) 0 0
\(843\) 13.4235 50.0972i 0.462330 1.72544i
\(844\) 0 0
\(845\) 23.7921 6.37506i 0.818472 0.219309i
\(846\) 0 0
\(847\) −6.08623 + 0.482688i −0.209125 + 0.0165854i
\(848\) 0 0
\(849\) −38.2424 + 66.2378i −1.31248 + 2.27328i
\(850\) 0 0
\(851\) 3.09307 11.5435i 0.106029 0.395706i
\(852\) 0 0
\(853\) −17.4577 + 17.4577i −0.597741 + 0.597741i −0.939711 0.341970i \(-0.888906\pi\)
0.341970 + 0.939711i \(0.388906\pi\)
\(854\) 0 0
\(855\) 23.1475 0.791628
\(856\) 0 0
\(857\) 1.56865 + 2.71698i 0.0535840 + 0.0928102i 0.891573 0.452877i \(-0.149602\pi\)
−0.837989 + 0.545687i \(0.816269\pi\)
\(858\) 0 0
\(859\) 1.72578 0.462421i 0.0588828 0.0157776i −0.229257 0.973366i \(-0.573630\pi\)
0.288140 + 0.957588i \(0.406963\pi\)
\(860\) 0 0
\(861\) 31.4907 11.1728i 1.07320 0.380768i
\(862\) 0 0
\(863\) −4.43745 2.56196i −0.151052 0.0872101i 0.422569 0.906331i \(-0.361128\pi\)
−0.573621 + 0.819121i \(0.694462\pi\)
\(864\) 0 0
\(865\) 14.8852 + 25.7819i 0.506112 + 0.876611i
\(866\) 0 0
\(867\) −21.0250 + 21.0250i −0.714047 + 0.714047i
\(868\) 0 0
\(869\) −10.3376 10.3376i −0.350680 0.350680i
\(870\) 0 0
\(871\) 6.55607 3.78515i 0.222144 0.128255i
\(872\) 0 0
\(873\) 16.2472 28.1410i 0.549884 0.952427i
\(874\) 0 0
\(875\) −31.4908 5.81684i −1.06458 0.196645i
\(876\) 0 0
\(877\) −1.07593 4.01542i −0.0363316 0.135591i 0.945378 0.325976i \(-0.105693\pi\)
−0.981709 + 0.190385i \(0.939026\pi\)
\(878\) 0 0
\(879\) 60.5506 34.9589i 2.04232 1.17914i
\(880\) 0 0
\(881\) 27.5375i 0.927761i 0.885898 + 0.463880i \(0.153543\pi\)
−0.885898 + 0.463880i \(0.846457\pi\)
\(882\) 0 0
\(883\) −32.4922 32.4922i −1.09345 1.09345i −0.995158 0.0982911i \(-0.968662\pi\)
−0.0982911 0.995158i \(-0.531338\pi\)
\(884\) 0 0
\(885\) −50.7311 13.5934i −1.70531 0.456936i
\(886\) 0 0
\(887\) 32.4376 + 18.7278i 1.08915 + 0.628820i 0.933349 0.358969i \(-0.116872\pi\)
0.155798 + 0.987789i \(0.450205\pi\)
\(888\) 0 0
\(889\) 30.8738 + 44.8637i 1.03547 + 1.50468i
\(890\) 0 0
\(891\) −19.7692 73.7795i −0.662292 2.47171i
\(892\) 0 0
\(893\) −5.97807 1.60182i −0.200048 0.0536028i
\(894\) 0 0
\(895\) 1.11402 0.0372376
\(896\) 0 0
\(897\) −4.27183 −0.142632
\(898\) 0 0
\(899\) −16.0601 4.30328i −0.535633 0.143522i
\(900\) 0 0
\(901\) 4.82518 + 18.0078i 0.160750 + 0.599927i
\(902\) 0 0
\(903\) −22.0635 + 46.3289i −0.734226 + 1.54173i
\(904\) 0 0
\(905\) −0.570051 0.329119i −0.0189491 0.0109403i
\(906\) 0 0
\(907\) −33.3737 8.94245i −1.10815 0.296929i −0.342074 0.939673i \(-0.611129\pi\)
−0.766081 + 0.642744i \(0.777796\pi\)
\(908\) 0 0
\(909\) −68.6533 68.6533i −2.27709 2.27709i
\(910\) 0 0
\(911\) 22.9373i 0.759946i 0.924998 + 0.379973i \(0.124067\pi\)
−0.924998 + 0.379973i \(0.875933\pi\)
\(912\) 0 0
\(913\) 16.4224 9.48145i 0.543501 0.313790i
\(914\) 0 0
\(915\) 0.626867 + 2.33950i 0.0207236 + 0.0773414i
\(916\) 0 0
\(917\) −32.0523 27.3419i −1.05846 0.902909i
\(918\) 0 0
\(919\) −13.8963 + 24.0691i −0.458396 + 0.793966i −0.998876 0.0473912i \(-0.984909\pi\)
0.540480 + 0.841357i \(0.318243\pi\)
\(920\) 0 0
\(921\) 32.4398 18.7291i 1.06893 0.617146i
\(922\) 0 0
\(923\) −3.34312 3.34312i −0.110040 0.110040i
\(924\) 0 0
\(925\) 4.15676 4.15676i 0.136673 0.136673i
\(926\) 0 0
\(927\) −45.3707 78.5844i −1.49017 2.58105i
\(928\) 0 0
\(929\) 13.2279 + 7.63716i 0.433995 + 0.250567i 0.701047 0.713115i \(-0.252716\pi\)
−0.267052 + 0.963682i \(0.586050\pi\)
\(930\) 0 0
\(931\) −11.6051 1.20560i −0.380341 0.0395120i
\(932\) 0 0
\(933\) −27.2508 + 7.30182i −0.892150 + 0.239051i
\(934\) 0 0
\(935\) −9.78436 16.9470i −0.319983 0.554227i
\(936\) 0 0
\(937\) 18.1308 0.592307 0.296154 0.955140i \(-0.404296\pi\)
0.296154 + 0.955140i \(0.404296\pi\)
\(938\) 0 0
\(939\) 56.4350 56.4350i 1.84169 1.84169i
\(940\) 0 0
\(941\) 2.24372 8.37369i 0.0731433 0.272974i −0.919663 0.392709i \(-0.871538\pi\)
0.992806 + 0.119735i \(0.0382045\pi\)
\(942\) 0 0
\(943\) −5.03943 + 8.72855i −0.164106 + 0.284241i
\(944\) 0 0
\(945\) −5.39053 67.9694i −0.175354 2.21105i
\(946\) 0 0
\(947\) 14.8856 3.98857i 0.483716 0.129611i −0.00871655 0.999962i \(-0.502775\pi\)
0.492432 + 0.870351i \(0.336108\pi\)
\(948\) 0 0
\(949\) −0.208705 + 0.778899i −0.00677486 + 0.0252841i
\(950\) 0 0
\(951\) 10.2003i 0.330768i
\(952\) 0 0
\(953\) 14.4644i 0.468547i −0.972171 0.234273i \(-0.924729\pi\)
0.972171 0.234273i \(-0.0752711\pi\)
\(954\) 0 0
\(955\) −2.64890 + 9.88585i −0.0857165 + 0.319899i
\(956\) 0 0
\(957\) −34.0161 + 9.11458i −1.09958 + 0.294632i
\(958\) 0 0
\(959\) 1.49138 3.13160i 0.0481592 0.101125i
\(960\) 0 0
\(961\) 0.410836 0.711589i 0.0132528 0.0229545i
\(962\) 0 0
\(963\) 6.70223 25.0131i 0.215976 0.806035i
\(964\) 0 0
\(965\) 23.0980 23.0980i 0.743549 0.743549i
\(966\) 0 0
\(967\) −53.4246 −1.71802 −0.859010 0.511958i \(-0.828920\pi\)
−0.859010 + 0.511958i \(0.828920\pi\)
\(968\) 0 0
\(969\) −7.36555 12.7575i −0.236616 0.409830i
\(970\) 0 0
\(971\) −20.7547 + 5.56119i −0.666048 + 0.178467i −0.575974 0.817468i \(-0.695377\pi\)
−0.0900743 + 0.995935i \(0.528710\pi\)
\(972\) 0 0
\(973\) 57.6842 + 10.6552i 1.84927 + 0.341589i
\(974\) 0 0
\(975\) −1.81979 1.05066i −0.0582799 0.0336479i
\(976\) 0 0
\(977\) −18.0960 31.3432i −0.578942 1.00276i −0.995601 0.0936944i \(-0.970132\pi\)
0.416659 0.909063i \(-0.363201\pi\)
\(978\) 0 0
\(979\) 17.2930 17.2930i 0.552687 0.552687i
\(980\) 0 0
\(981\) −51.7204 51.7204i −1.65130 1.65130i
\(982\) 0 0
\(983\) −31.0312 + 17.9159i −0.989742 + 0.571428i −0.905197 0.424992i \(-0.860277\pi\)
−0.0845448 + 0.996420i \(0.526944\pi\)
\(984\) 0 0
\(985\) 2.48773 4.30887i 0.0792655 0.137292i
\(986\) 0 0
\(987\) −5.69165 + 30.8130i −0.181167 + 0.980789i
\(988\) 0 0
\(989\) −4.00606 14.9508i −0.127385 0.475409i
\(990\) 0 0
\(991\) 41.7865 24.1254i 1.32739 0.766370i 0.342496 0.939519i \(-0.388728\pi\)
0.984896 + 0.173149i \(0.0553944\pi\)
\(992\) 0 0
\(993\) 43.7541i 1.38850i
\(994\) 0 0
\(995\) 0.997699 + 0.997699i 0.0316292 + 0.0316292i
\(996\) 0 0
\(997\) 26.1554 + 7.00832i 0.828351 + 0.221956i 0.647994 0.761645i \(-0.275608\pi\)
0.180357 + 0.983601i \(0.442275\pi\)
\(998\) 0 0
\(999\) 54.1240 + 31.2485i 1.71241 + 0.988659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.z.a.271.14 56
4.3 odd 2 112.2.v.a.75.2 yes 56
7.3 odd 6 inner 448.2.z.a.143.14 56
8.3 odd 2 896.2.z.b.159.14 56
8.5 even 2 896.2.z.a.159.1 56
16.3 odd 4 inner 448.2.z.a.47.14 56
16.5 even 4 896.2.z.b.607.14 56
16.11 odd 4 896.2.z.a.607.1 56
16.13 even 4 112.2.v.a.19.8 yes 56
28.3 even 6 112.2.v.a.59.8 yes 56
28.11 odd 6 784.2.w.f.619.8 56
28.19 even 6 784.2.j.a.587.23 56
28.23 odd 6 784.2.j.a.587.24 56
28.27 even 2 784.2.w.f.411.2 56
56.3 even 6 896.2.z.b.31.14 56
56.45 odd 6 896.2.z.a.31.1 56
112.3 even 12 inner 448.2.z.a.367.14 56
112.13 odd 4 784.2.w.f.19.8 56
112.45 odd 12 112.2.v.a.3.2 56
112.59 even 12 896.2.z.a.479.1 56
112.61 odd 12 784.2.j.a.195.24 56
112.93 even 12 784.2.j.a.195.23 56
112.101 odd 12 896.2.z.b.479.14 56
112.109 even 12 784.2.w.f.227.2 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.2 56 112.45 odd 12
112.2.v.a.19.8 yes 56 16.13 even 4
112.2.v.a.59.8 yes 56 28.3 even 6
112.2.v.a.75.2 yes 56 4.3 odd 2
448.2.z.a.47.14 56 16.3 odd 4 inner
448.2.z.a.143.14 56 7.3 odd 6 inner
448.2.z.a.271.14 56 1.1 even 1 trivial
448.2.z.a.367.14 56 112.3 even 12 inner
784.2.j.a.195.23 56 112.93 even 12
784.2.j.a.195.24 56 112.61 odd 12
784.2.j.a.587.23 56 28.19 even 6
784.2.j.a.587.24 56 28.23 odd 6
784.2.w.f.19.8 56 112.13 odd 4
784.2.w.f.227.2 56 112.109 even 12
784.2.w.f.411.2 56 28.27 even 2
784.2.w.f.619.8 56 28.11 odd 6
896.2.z.a.31.1 56 56.45 odd 6
896.2.z.a.159.1 56 8.5 even 2
896.2.z.a.479.1 56 112.59 even 12
896.2.z.a.607.1 56 16.11 odd 4
896.2.z.b.31.14 56 56.3 even 6
896.2.z.b.159.14 56 8.3 odd 2
896.2.z.b.479.14 56 112.101 odd 12
896.2.z.b.607.14 56 16.5 even 4