Properties

Label 891.2.f.d.163.6
Level $891$
Weight $2$
Character 891.163
Analytic conductor $7.115$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(82,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 163.6
Character \(\chi\) \(=\) 891.163
Dual form 891.2.f.d.82.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.858580 - 2.64244i) q^{2} +(-4.62728 - 3.36192i) q^{4} +(-0.818647 - 2.51954i) q^{5} +(0.0646331 + 0.0469587i) q^{7} +(-8.36097 + 6.07460i) q^{8} -7.36059 q^{10} +(0.163962 - 3.31257i) q^{11} +(-1.08956 + 3.35332i) q^{13} +(0.179578 - 0.130471i) q^{14} +(5.33826 + 16.4295i) q^{16} +(-1.52123 - 4.68186i) q^{17} +(1.85373 - 1.34682i) q^{19} +(-4.68236 + 14.4108i) q^{20} +(-8.61249 - 3.27736i) q^{22} -1.44749 q^{23} +(-1.63279 + 1.18629i) q^{25} +(7.92547 + 5.75819i) q^{26} +(-0.141204 - 0.434582i) q^{28} +(6.85282 + 4.97886i) q^{29} +(-1.59261 + 4.90156i) q^{31} +27.3278 q^{32} -13.6776 q^{34} +(0.0654024 - 0.201288i) q^{35} +(-3.25547 - 2.36524i) q^{37} +(-1.96730 - 6.05472i) q^{38} +(22.1499 + 16.0928i) q^{40} +(-3.95702 + 2.87494i) q^{41} -4.53962 q^{43} +(-11.8953 + 14.7770i) q^{44} +(-1.24279 + 3.82491i) q^{46} +(5.78899 - 4.20595i) q^{47} +(-2.16115 - 6.65133i) q^{49} +(1.73282 + 5.33309i) q^{50} +(16.3153 - 11.8538i) q^{52} +(1.00902 - 3.10546i) q^{53} +(-8.48036 + 2.29872i) q^{55} -0.825651 q^{56} +(19.0400 - 13.8334i) q^{58} +(-10.7153 - 7.78513i) q^{59} +(-2.98234 - 9.17870i) q^{61} +(11.5847 + 8.41676i) q^{62} +(12.7866 - 39.3530i) q^{64} +9.34078 q^{65} +0.419065 q^{67} +(-8.70087 + 26.7785i) q^{68} +(-0.475738 - 0.345644i) q^{70} +(1.83547 + 5.64900i) q^{71} +(3.22213 + 2.34101i) q^{73} +(-9.04508 + 6.57164i) q^{74} -13.1056 q^{76} +(0.166151 - 0.206402i) q^{77} +(-1.88291 + 5.79499i) q^{79} +(37.0245 - 26.8999i) q^{80} +(4.19944 + 12.9246i) q^{82} +(-1.10637 - 3.40505i) q^{83} +(-10.5508 + 7.66557i) q^{85} +(-3.89762 + 11.9957i) q^{86} +(18.7517 + 28.6923i) q^{88} +0.516913 q^{89} +(-0.227889 + 0.165571i) q^{91} +(6.69796 + 4.86635i) q^{92} +(-6.14365 - 18.9082i) q^{94} +(-4.91090 - 3.56798i) q^{95} +(0.646394 - 1.98940i) q^{97} -19.4312 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} - 8 q^{4} - 4 q^{5} + 7 q^{7} - 10 q^{8} - 16 q^{10} - 5 q^{11} + 7 q^{13} - 13 q^{14} + 2 q^{16} + 5 q^{17} + 4 q^{19} - 27 q^{20} - 2 q^{22} - 6 q^{23} - 2 q^{25} + 34 q^{26} - 9 q^{28}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.858580 2.64244i 0.607108 1.86849i 0.125513 0.992092i \(-0.459942\pi\)
0.481595 0.876394i \(-0.340058\pi\)
\(3\) 0 0
\(4\) −4.62728 3.36192i −2.31364 1.68096i
\(5\) −0.818647 2.51954i −0.366110 1.12677i −0.949283 0.314423i \(-0.898189\pi\)
0.583173 0.812348i \(-0.301811\pi\)
\(6\) 0 0
\(7\) 0.0646331 + 0.0469587i 0.0244290 + 0.0177487i 0.599933 0.800050i \(-0.295194\pi\)
−0.575504 + 0.817799i \(0.695194\pi\)
\(8\) −8.36097 + 6.07460i −2.95605 + 2.14770i
\(9\) 0 0
\(10\) −7.36059 −2.32762
\(11\) 0.163962 3.31257i 0.0494363 0.998777i
\(12\) 0 0
\(13\) −1.08956 + 3.35332i −0.302190 + 0.930044i 0.678521 + 0.734581i \(0.262621\pi\)
−0.980711 + 0.195463i \(0.937379\pi\)
\(14\) 0.179578 0.130471i 0.0479942 0.0348699i
\(15\) 0 0
\(16\) 5.33826 + 16.4295i 1.33457 + 4.10737i
\(17\) −1.52123 4.68186i −0.368952 1.13552i −0.947469 0.319847i \(-0.896369\pi\)
0.578517 0.815670i \(-0.303631\pi\)
\(18\) 0 0
\(19\) 1.85373 1.34682i 0.425275 0.308981i −0.354482 0.935063i \(-0.615343\pi\)
0.779757 + 0.626082i \(0.215343\pi\)
\(20\) −4.68236 + 14.4108i −1.04701 + 3.22236i
\(21\) 0 0
\(22\) −8.61249 3.27736i −1.83619 0.698736i
\(23\) −1.44749 −0.301823 −0.150911 0.988547i \(-0.548221\pi\)
−0.150911 + 0.988547i \(0.548221\pi\)
\(24\) 0 0
\(25\) −1.63279 + 1.18629i −0.326559 + 0.237259i
\(26\) 7.92547 + 5.75819i 1.55431 + 1.12927i
\(27\) 0 0
\(28\) −0.141204 0.434582i −0.0266851 0.0821283i
\(29\) 6.85282 + 4.97886i 1.27254 + 0.924552i 0.999301 0.0373955i \(-0.0119061\pi\)
0.273236 + 0.961947i \(0.411906\pi\)
\(30\) 0 0
\(31\) −1.59261 + 4.90156i −0.286042 + 0.880346i 0.700043 + 0.714101i \(0.253164\pi\)
−0.986084 + 0.166245i \(0.946836\pi\)
\(32\) 27.3278 4.83091
\(33\) 0 0
\(34\) −13.6776 −2.34569
\(35\) 0.0654024 0.201288i 0.0110550 0.0340239i
\(36\) 0 0
\(37\) −3.25547 2.36524i −0.535197 0.388843i 0.287101 0.957900i \(-0.407308\pi\)
−0.822298 + 0.569057i \(0.807308\pi\)
\(38\) −1.96730 6.05472i −0.319138 0.982206i
\(39\) 0 0
\(40\) 22.1499 + 16.0928i 3.50220 + 2.54450i
\(41\) −3.95702 + 2.87494i −0.617983 + 0.448991i −0.852216 0.523190i \(-0.824742\pi\)
0.234233 + 0.972180i \(0.424742\pi\)
\(42\) 0 0
\(43\) −4.53962 −0.692285 −0.346142 0.938182i \(-0.612509\pi\)
−0.346142 + 0.938182i \(0.612509\pi\)
\(44\) −11.8953 + 14.7770i −1.79328 + 2.22771i
\(45\) 0 0
\(46\) −1.24279 + 3.82491i −0.183239 + 0.563952i
\(47\) 5.78899 4.20595i 0.844411 0.613501i −0.0791880 0.996860i \(-0.525233\pi\)
0.923599 + 0.383359i \(0.125233\pi\)
\(48\) 0 0
\(49\) −2.16115 6.65133i −0.308735 0.950189i
\(50\) 1.73282 + 5.33309i 0.245058 + 0.754212i
\(51\) 0 0
\(52\) 16.3153 11.8538i 2.26253 1.64382i
\(53\) 1.00902 3.10546i 0.138600 0.426567i −0.857533 0.514430i \(-0.828004\pi\)
0.996133 + 0.0878625i \(0.0280036\pi\)
\(54\) 0 0
\(55\) −8.48036 + 2.29872i −1.14349 + 0.309959i
\(56\) −0.825651 −0.110332
\(57\) 0 0
\(58\) 19.0400 13.8334i 2.50008 1.81641i
\(59\) −10.7153 7.78513i −1.39502 1.01354i −0.995294 0.0969011i \(-0.969107\pi\)
−0.399721 0.916637i \(-0.630893\pi\)
\(60\) 0 0
\(61\) −2.98234 9.17870i −0.381850 1.17521i −0.938740 0.344626i \(-0.888006\pi\)
0.556890 0.830586i \(-0.311994\pi\)
\(62\) 11.5847 + 8.41676i 1.47126 + 1.06893i
\(63\) 0 0
\(64\) 12.7866 39.3530i 1.59832 4.91912i
\(65\) 9.34078 1.15858
\(66\) 0 0
\(67\) 0.419065 0.0511970 0.0255985 0.999672i \(-0.491851\pi\)
0.0255985 + 0.999672i \(0.491851\pi\)
\(68\) −8.70087 + 26.7785i −1.05514 + 3.24737i
\(69\) 0 0
\(70\) −0.475738 0.345644i −0.0568615 0.0413123i
\(71\) 1.83547 + 5.64900i 0.217830 + 0.670413i 0.998941 + 0.0460199i \(0.0146538\pi\)
−0.781110 + 0.624393i \(0.785346\pi\)
\(72\) 0 0
\(73\) 3.22213 + 2.34101i 0.377122 + 0.273995i 0.760158 0.649738i \(-0.225122\pi\)
−0.383036 + 0.923733i \(0.625122\pi\)
\(74\) −9.04508 + 6.57164i −1.05147 + 0.763937i
\(75\) 0 0
\(76\) −13.1056 −1.50332
\(77\) 0.166151 0.206402i 0.0189347 0.0235217i
\(78\) 0 0
\(79\) −1.88291 + 5.79499i −0.211843 + 0.651987i 0.787519 + 0.616290i \(0.211365\pi\)
−0.999363 + 0.0356969i \(0.988635\pi\)
\(80\) 37.0245 26.8999i 4.13947 3.00750i
\(81\) 0 0
\(82\) 4.19944 + 12.9246i 0.463751 + 1.42728i
\(83\) −1.10637 3.40505i −0.121440 0.373752i 0.871796 0.489869i \(-0.162955\pi\)
−0.993236 + 0.116117i \(0.962955\pi\)
\(84\) 0 0
\(85\) −10.5508 + 7.66557i −1.14439 + 0.831448i
\(86\) −3.89762 + 11.9957i −0.420292 + 1.29352i
\(87\) 0 0
\(88\) 18.7517 + 28.6923i 1.99893 + 3.05861i
\(89\) 0.516913 0.0547927 0.0273963 0.999625i \(-0.491278\pi\)
0.0273963 + 0.999625i \(0.491278\pi\)
\(90\) 0 0
\(91\) −0.227889 + 0.165571i −0.0238893 + 0.0173566i
\(92\) 6.69796 + 4.86635i 0.698310 + 0.507352i
\(93\) 0 0
\(94\) −6.14365 18.9082i −0.633669 1.95023i
\(95\) −4.91090 3.56798i −0.503848 0.366067i
\(96\) 0 0
\(97\) 0.646394 1.98940i 0.0656314 0.201993i −0.912863 0.408266i \(-0.866134\pi\)
0.978494 + 0.206273i \(0.0661336\pi\)
\(98\) −19.4312 −1.96285
\(99\) 0 0
\(100\) 11.5436 1.15436
\(101\) −2.09768 + 6.45598i −0.208727 + 0.642394i 0.790813 + 0.612058i \(0.209658\pi\)
−0.999540 + 0.0303367i \(0.990342\pi\)
\(102\) 0 0
\(103\) 4.94578 + 3.59332i 0.487322 + 0.354060i 0.804153 0.594422i \(-0.202619\pi\)
−0.316832 + 0.948482i \(0.602619\pi\)
\(104\) −11.2603 34.6557i −1.10416 3.39827i
\(105\) 0 0
\(106\) −7.33965 5.33257i −0.712890 0.517945i
\(107\) 10.0160 7.27708i 0.968288 0.703502i 0.0132270 0.999913i \(-0.495790\pi\)
0.955061 + 0.296410i \(0.0957896\pi\)
\(108\) 0 0
\(109\) −3.19748 −0.306263 −0.153132 0.988206i \(-0.548936\pi\)
−0.153132 + 0.988206i \(0.548936\pi\)
\(110\) −1.20685 + 24.3825i −0.115069 + 2.32478i
\(111\) 0 0
\(112\) −0.426479 + 1.31257i −0.0402984 + 0.124026i
\(113\) −11.3001 + 8.21004i −1.06303 + 0.772336i −0.974646 0.223751i \(-0.928170\pi\)
−0.0883824 + 0.996087i \(0.528170\pi\)
\(114\) 0 0
\(115\) 1.18498 + 3.64701i 0.110500 + 0.340085i
\(116\) −14.9714 46.0772i −1.39006 4.27816i
\(117\) 0 0
\(118\) −29.7717 + 21.6304i −2.74071 + 1.99124i
\(119\) 0.121532 0.374038i 0.0111408 0.0342880i
\(120\) 0 0
\(121\) −10.9462 1.08627i −0.995112 0.0987516i
\(122\) −26.8147 −2.42769
\(123\) 0 0
\(124\) 23.8481 17.3267i 2.14162 1.55598i
\(125\) −6.39063 4.64307i −0.571596 0.415289i
\(126\) 0 0
\(127\) −3.22466 9.92448i −0.286142 0.880655i −0.986054 0.166426i \(-0.946777\pi\)
0.699912 0.714229i \(-0.253223\pi\)
\(128\) −48.7922 35.4496i −4.31266 3.13333i
\(129\) 0 0
\(130\) 8.01981 24.6824i 0.703384 2.16479i
\(131\) 7.93307 0.693116 0.346558 0.938029i \(-0.387350\pi\)
0.346558 + 0.938029i \(0.387350\pi\)
\(132\) 0 0
\(133\) 0.183057 0.0158731
\(134\) 0.359801 1.10735i 0.0310821 0.0956608i
\(135\) 0 0
\(136\) 41.1594 + 29.9040i 3.52939 + 2.56425i
\(137\) −6.77332 20.8461i −0.578684 1.78100i −0.623279 0.782000i \(-0.714200\pi\)
0.0445953 0.999005i \(-0.485800\pi\)
\(138\) 0 0
\(139\) −4.39737 3.19488i −0.372980 0.270986i 0.385466 0.922722i \(-0.374041\pi\)
−0.758446 + 0.651736i \(0.774041\pi\)
\(140\) −0.979349 + 0.711539i −0.0827701 + 0.0601360i
\(141\) 0 0
\(142\) 16.5030 1.38490
\(143\) 10.9295 + 4.15906i 0.913968 + 0.347798i
\(144\) 0 0
\(145\) 6.93439 21.3419i 0.575870 1.77234i
\(146\) 8.95244 6.50433i 0.740909 0.538302i
\(147\) 0 0
\(148\) 7.11226 + 21.8893i 0.584624 + 1.79929i
\(149\) −0.507435 1.56172i −0.0415707 0.127941i 0.928117 0.372288i \(-0.121427\pi\)
−0.969688 + 0.244346i \(0.921427\pi\)
\(150\) 0 0
\(151\) −13.5217 + 9.82407i −1.10038 + 0.799471i −0.981122 0.193392i \(-0.938051\pi\)
−0.119256 + 0.992864i \(0.538051\pi\)
\(152\) −7.31764 + 22.5214i −0.593539 + 1.82672i
\(153\) 0 0
\(154\) −0.402751 0.616257i −0.0324546 0.0496594i
\(155\) 13.6534 1.09667
\(156\) 0 0
\(157\) −0.495106 + 0.359716i −0.0395138 + 0.0287085i −0.607367 0.794421i \(-0.707774\pi\)
0.567853 + 0.823130i \(0.307774\pi\)
\(158\) 13.6963 + 9.95092i 1.08962 + 0.791653i
\(159\) 0 0
\(160\) −22.3718 68.8533i −1.76865 5.44333i
\(161\) −0.0935558 0.0679723i −0.00737323 0.00535697i
\(162\) 0 0
\(163\) 0.430987 1.32644i 0.0337575 0.103895i −0.932758 0.360503i \(-0.882605\pi\)
0.966516 + 0.256608i \(0.0826050\pi\)
\(164\) 27.9756 2.18453
\(165\) 0 0
\(166\) −9.94753 −0.772078
\(167\) 5.66647 17.4396i 0.438485 1.34952i −0.450989 0.892530i \(-0.648928\pi\)
0.889473 0.456987i \(-0.151072\pi\)
\(168\) 0 0
\(169\) 0.459594 + 0.333914i 0.0353534 + 0.0256857i
\(170\) 11.1971 + 34.4612i 0.858781 + 2.64306i
\(171\) 0 0
\(172\) 21.0061 + 15.2618i 1.60170 + 1.16370i
\(173\) −2.67960 + 1.94684i −0.203726 + 0.148016i −0.684971 0.728571i \(-0.740185\pi\)
0.481244 + 0.876586i \(0.340185\pi\)
\(174\) 0 0
\(175\) −0.161239 −0.0121885
\(176\) 55.2991 14.9896i 4.16833 1.12988i
\(177\) 0 0
\(178\) 0.443811 1.36591i 0.0332651 0.102379i
\(179\) −4.08829 + 2.97032i −0.305574 + 0.222012i −0.729995 0.683453i \(-0.760478\pi\)
0.424421 + 0.905465i \(0.360478\pi\)
\(180\) 0 0
\(181\) −6.38384 19.6474i −0.474507 1.46038i −0.846622 0.532195i \(-0.821367\pi\)
0.372115 0.928187i \(-0.378633\pi\)
\(182\) 0.241850 + 0.744339i 0.0179271 + 0.0551741i
\(183\) 0 0
\(184\) 12.1024 8.79294i 0.892204 0.648224i
\(185\) −3.29422 + 10.1386i −0.242196 + 0.745403i
\(186\) 0 0
\(187\) −15.7584 + 4.27153i −1.15237 + 0.312365i
\(188\) −40.9274 −2.98494
\(189\) 0 0
\(190\) −13.6446 + 9.91336i −0.989881 + 0.719191i
\(191\) −3.73258 2.71188i −0.270080 0.196225i 0.444499 0.895779i \(-0.353382\pi\)
−0.714579 + 0.699555i \(0.753382\pi\)
\(192\) 0 0
\(193\) 5.82758 + 17.9355i 0.419479 + 1.29102i 0.908183 + 0.418573i \(0.137470\pi\)
−0.488704 + 0.872449i \(0.662530\pi\)
\(194\) −4.70188 3.41611i −0.337575 0.245263i
\(195\) 0 0
\(196\) −12.3610 + 38.0432i −0.882927 + 2.71737i
\(197\) −3.33764 −0.237797 −0.118899 0.992906i \(-0.537936\pi\)
−0.118899 + 0.992906i \(0.537936\pi\)
\(198\) 0 0
\(199\) 13.1083 0.929224 0.464612 0.885514i \(-0.346194\pi\)
0.464612 + 0.885514i \(0.346194\pi\)
\(200\) 6.44548 19.8372i 0.455764 1.40270i
\(201\) 0 0
\(202\) 15.2585 + 11.0860i 1.07359 + 0.780005i
\(203\) 0.209118 + 0.643598i 0.0146772 + 0.0451717i
\(204\) 0 0
\(205\) 10.4829 + 7.61629i 0.732160 + 0.531945i
\(206\) 13.7415 9.98375i 0.957413 0.695601i
\(207\) 0 0
\(208\) −60.9097 −4.22333
\(209\) −4.15748 6.36144i −0.287579 0.440030i
\(210\) 0 0
\(211\) −2.13975 + 6.58547i −0.147306 + 0.453363i −0.997300 0.0734299i \(-0.976605\pi\)
0.849994 + 0.526792i \(0.176605\pi\)
\(212\) −15.1093 + 10.9776i −1.03771 + 0.753943i
\(213\) 0 0
\(214\) −10.6297 32.7147i −0.726629 2.23633i
\(215\) 3.71634 + 11.4377i 0.253452 + 0.780046i
\(216\) 0 0
\(217\) −0.333106 + 0.242016i −0.0226127 + 0.0164291i
\(218\) −2.74530 + 8.44915i −0.185935 + 0.572249i
\(219\) 0 0
\(220\) 46.9692 + 17.8735i 3.16666 + 1.20503i
\(221\) 17.3572 1.16757
\(222\) 0 0
\(223\) 21.5011 15.6215i 1.43982 1.04609i 0.451744 0.892148i \(-0.350802\pi\)
0.988079 0.153945i \(-0.0491980\pi\)
\(224\) 1.76628 + 1.28328i 0.118014 + 0.0857425i
\(225\) 0 0
\(226\) 11.9924 + 36.9089i 0.797725 + 2.45514i
\(227\) 2.77035 + 2.01278i 0.183874 + 0.133593i 0.675915 0.736980i \(-0.263749\pi\)
−0.492040 + 0.870572i \(0.663749\pi\)
\(228\) 0 0
\(229\) −2.83684 + 8.73090i −0.187464 + 0.576954i −0.999982 0.00598163i \(-0.998096\pi\)
0.812518 + 0.582935i \(0.198096\pi\)
\(230\) 10.6544 0.702530
\(231\) 0 0
\(232\) −87.5408 −5.74734
\(233\) 6.44958 19.8498i 0.422526 1.30040i −0.482817 0.875721i \(-0.660386\pi\)
0.905343 0.424681i \(-0.139614\pi\)
\(234\) 0 0
\(235\) −15.3362 11.1424i −1.00042 0.726849i
\(236\) 23.4098 + 72.0480i 1.52385 + 4.68993i
\(237\) 0 0
\(238\) −0.884026 0.642282i −0.0573029 0.0416330i
\(239\) 18.1627 13.1960i 1.17485 0.853575i 0.183264 0.983064i \(-0.441334\pi\)
0.991581 + 0.129489i \(0.0413335\pi\)
\(240\) 0 0
\(241\) 3.84131 0.247441 0.123720 0.992317i \(-0.460517\pi\)
0.123720 + 0.992317i \(0.460517\pi\)
\(242\) −12.2686 + 27.9921i −0.788656 + 1.79940i
\(243\) 0 0
\(244\) −17.0579 + 52.4989i −1.09202 + 3.36089i
\(245\) −14.9890 + 10.8902i −0.957615 + 0.695748i
\(246\) 0 0
\(247\) 2.49655 + 7.68360i 0.158852 + 0.488896i
\(248\) −16.4592 50.6563i −1.04516 3.21668i
\(249\) 0 0
\(250\) −17.7559 + 12.9004i −1.12298 + 0.815893i
\(251\) 4.12982 12.7103i 0.260672 0.802265i −0.731987 0.681318i \(-0.761407\pi\)
0.992659 0.120947i \(-0.0385930\pi\)
\(252\) 0 0
\(253\) −0.237333 + 4.79492i −0.0149210 + 0.301454i
\(254\) −28.9935 −1.81921
\(255\) 0 0
\(256\) −68.6142 + 49.8511i −4.28839 + 3.11570i
\(257\) 2.44345 + 1.77527i 0.152418 + 0.110738i 0.661381 0.750051i \(-0.269971\pi\)
−0.508963 + 0.860789i \(0.669971\pi\)
\(258\) 0 0
\(259\) −0.0993427 0.305745i −0.00617285 0.0189981i
\(260\) −43.2225 31.4030i −2.68054 1.94753i
\(261\) 0 0
\(262\) 6.81118 20.9627i 0.420796 1.29508i
\(263\) 11.1810 0.689447 0.344724 0.938704i \(-0.387973\pi\)
0.344724 + 0.938704i \(0.387973\pi\)
\(264\) 0 0
\(265\) −8.65034 −0.531386
\(266\) 0.157169 0.483717i 0.00963666 0.0296586i
\(267\) 0 0
\(268\) −1.93913 1.40886i −0.118451 0.0860601i
\(269\) 1.46263 + 4.50151i 0.0891782 + 0.274462i 0.985693 0.168552i \(-0.0539091\pi\)
−0.896515 + 0.443014i \(0.853909\pi\)
\(270\) 0 0
\(271\) 22.9084 + 16.6439i 1.39158 + 1.01105i 0.995689 + 0.0927500i \(0.0295657\pi\)
0.395895 + 0.918296i \(0.370434\pi\)
\(272\) 68.7998 49.9860i 4.17160 3.03084i
\(273\) 0 0
\(274\) −60.9000 −3.67911
\(275\) 3.66197 + 5.60325i 0.220825 + 0.337889i
\(276\) 0 0
\(277\) 4.11016 12.6498i 0.246956 0.760051i −0.748353 0.663301i \(-0.769155\pi\)
0.995309 0.0967507i \(-0.0308450\pi\)
\(278\) −12.2178 + 8.87672i −0.732772 + 0.532390i
\(279\) 0 0
\(280\) 0.675916 + 2.08026i 0.0403937 + 0.124319i
\(281\) −3.13606 9.65180i −0.187082 0.575778i 0.812896 0.582408i \(-0.197890\pi\)
−0.999978 + 0.00663019i \(0.997890\pi\)
\(282\) 0 0
\(283\) 18.6321 13.5370i 1.10756 0.804691i 0.125284 0.992121i \(-0.460016\pi\)
0.982278 + 0.187430i \(0.0600159\pi\)
\(284\) 10.4982 32.3103i 0.622956 1.91726i
\(285\) 0 0
\(286\) 20.3739 25.3096i 1.20473 1.49659i
\(287\) −0.390758 −0.0230657
\(288\) 0 0
\(289\) −5.85236 + 4.25199i −0.344256 + 0.250117i
\(290\) −50.4408 36.6474i −2.96199 2.15201i
\(291\) 0 0
\(292\) −7.03941 21.6651i −0.411950 1.26785i
\(293\) −1.21048 0.879465i −0.0707170 0.0513789i 0.551865 0.833933i \(-0.313916\pi\)
−0.622582 + 0.782555i \(0.713916\pi\)
\(294\) 0 0
\(295\) −10.8429 + 33.3709i −0.631296 + 1.94293i
\(296\) 41.5868 2.41718
\(297\) 0 0
\(298\) −4.56243 −0.264295
\(299\) 1.57713 4.85391i 0.0912077 0.280709i
\(300\) 0 0
\(301\) −0.293409 0.213174i −0.0169118 0.0122872i
\(302\) 14.3501 + 44.1649i 0.825753 + 2.54141i
\(303\) 0 0
\(304\) 32.0232 + 23.2662i 1.83666 + 1.33441i
\(305\) −20.6846 + 15.0282i −1.18440 + 0.860514i
\(306\) 0 0
\(307\) 17.3347 0.989343 0.494672 0.869080i \(-0.335288\pi\)
0.494672 + 0.869080i \(0.335288\pi\)
\(308\) −1.46274 + 0.396494i −0.0833471 + 0.0225924i
\(309\) 0 0
\(310\) 11.7226 36.0784i 0.665798 2.04911i
\(311\) −3.76162 + 2.73298i −0.213302 + 0.154973i −0.689306 0.724470i \(-0.742085\pi\)
0.476004 + 0.879443i \(0.342085\pi\)
\(312\) 0 0
\(313\) 0.751865 + 2.31400i 0.0424979 + 0.130795i 0.970054 0.242888i \(-0.0780947\pi\)
−0.927556 + 0.373683i \(0.878095\pi\)
\(314\) 0.525438 + 1.61713i 0.0296522 + 0.0912601i
\(315\) 0 0
\(316\) 28.1950 20.4849i 1.58609 1.15236i
\(317\) −6.02187 + 18.5334i −0.338222 + 1.04094i 0.626892 + 0.779106i \(0.284327\pi\)
−0.965113 + 0.261833i \(0.915673\pi\)
\(318\) 0 0
\(319\) 17.6164 21.8841i 0.986331 1.22527i
\(320\) −109.619 −6.12788
\(321\) 0 0
\(322\) −0.259938 + 0.188856i −0.0144858 + 0.0105245i
\(323\) −9.12554 6.63010i −0.507759 0.368908i
\(324\) 0 0
\(325\) −2.19900 6.76782i −0.121979 0.375411i
\(326\) −3.13500 2.27771i −0.173632 0.126151i
\(327\) 0 0
\(328\) 15.6204 48.0747i 0.862493 2.65448i
\(329\) 0.571666 0.0315170
\(330\) 0 0
\(331\) 18.4167 1.01227 0.506136 0.862454i \(-0.331074\pi\)
0.506136 + 0.862454i \(0.331074\pi\)
\(332\) −6.32802 + 19.4756i −0.347295 + 1.06886i
\(333\) 0 0
\(334\) −41.2180 29.9466i −2.25535 1.63860i
\(335\) −0.343067 1.05585i −0.0187437 0.0576873i
\(336\) 0 0
\(337\) −13.5488 9.84376i −0.738049 0.536224i 0.154051 0.988063i \(-0.450768\pi\)
−0.892099 + 0.451839i \(0.850768\pi\)
\(338\) 1.27695 0.927755i 0.0694567 0.0504632i
\(339\) 0 0
\(340\) 74.5924 4.04534
\(341\) 15.9756 + 6.07931i 0.865129 + 0.329213i
\(342\) 0 0
\(343\) 0.345469 1.06325i 0.0186536 0.0574098i
\(344\) 37.9556 27.5764i 2.04643 1.48682i
\(345\) 0 0
\(346\) 2.84376 + 8.75219i 0.152881 + 0.470521i
\(347\) 3.27060 + 10.0659i 0.175575 + 0.540365i 0.999659 0.0261025i \(-0.00830964\pi\)
−0.824084 + 0.566468i \(0.808310\pi\)
\(348\) 0 0
\(349\) 21.2064 15.4073i 1.13515 0.824736i 0.148716 0.988880i \(-0.452486\pi\)
0.986436 + 0.164144i \(0.0524860\pi\)
\(350\) −0.138437 + 0.426065i −0.00739976 + 0.0227741i
\(351\) 0 0
\(352\) 4.48070 90.5251i 0.238822 4.82501i
\(353\) −22.3235 −1.18816 −0.594079 0.804407i \(-0.702483\pi\)
−0.594079 + 0.804407i \(0.702483\pi\)
\(354\) 0 0
\(355\) 12.7303 9.24908i 0.675652 0.490890i
\(356\) −2.39190 1.73782i −0.126771 0.0921043i
\(357\) 0 0
\(358\) 4.33876 + 13.3533i 0.229310 + 0.705745i
\(359\) −16.4544 11.9548i −0.868428 0.630950i 0.0617363 0.998092i \(-0.480336\pi\)
−0.930165 + 0.367142i \(0.880336\pi\)
\(360\) 0 0
\(361\) −4.24891 + 13.0768i −0.223627 + 0.688253i
\(362\) −57.3982 −3.01678
\(363\) 0 0
\(364\) 1.61114 0.0844469
\(365\) 3.26048 10.0347i 0.170661 0.525242i
\(366\) 0 0
\(367\) 6.10614 + 4.43637i 0.318738 + 0.231577i 0.735637 0.677376i \(-0.236883\pi\)
−0.416899 + 0.908953i \(0.636883\pi\)
\(368\) −7.72709 23.7815i −0.402803 1.23970i
\(369\) 0 0
\(370\) 23.9622 + 17.4096i 1.24574 + 0.905080i
\(371\) 0.211044 0.153333i 0.0109569 0.00796064i
\(372\) 0 0
\(373\) 20.6599 1.06973 0.534865 0.844937i \(-0.320362\pi\)
0.534865 + 0.844937i \(0.320362\pi\)
\(374\) −2.24260 + 45.3080i −0.115962 + 2.34282i
\(375\) 0 0
\(376\) −22.8521 + 70.3317i −1.17851 + 3.62708i
\(377\) −24.1623 + 17.5549i −1.24442 + 0.904125i
\(378\) 0 0
\(379\) 1.72879 + 5.32066i 0.0888019 + 0.273304i 0.985589 0.169158i \(-0.0541050\pi\)
−0.896787 + 0.442463i \(0.854105\pi\)
\(380\) 10.7289 + 33.0201i 0.550380 + 1.69390i
\(381\) 0 0
\(382\) −10.3707 + 7.53475i −0.530611 + 0.385511i
\(383\) −0.595916 + 1.83404i −0.0304499 + 0.0937151i −0.965126 0.261784i \(-0.915689\pi\)
0.934677 + 0.355499i \(0.115689\pi\)
\(384\) 0 0
\(385\) −0.656057 0.249653i −0.0334357 0.0127235i
\(386\) 52.3968 2.66693
\(387\) 0 0
\(388\) −9.67924 + 7.03238i −0.491389 + 0.357015i
\(389\) 5.18643 + 3.76816i 0.262963 + 0.191054i 0.711452 0.702735i \(-0.248038\pi\)
−0.448489 + 0.893788i \(0.648038\pi\)
\(390\) 0 0
\(391\) 2.20196 + 6.77695i 0.111358 + 0.342725i
\(392\) 58.4734 + 42.4834i 2.95336 + 2.14574i
\(393\) 0 0
\(394\) −2.86563 + 8.81951i −0.144368 + 0.444320i
\(395\) 16.1421 0.812198
\(396\) 0 0
\(397\) 31.8131 1.59666 0.798328 0.602223i \(-0.205718\pi\)
0.798328 + 0.602223i \(0.205718\pi\)
\(398\) 11.2545 34.6379i 0.564139 1.73624i
\(399\) 0 0
\(400\) −28.2065 20.4932i −1.41032 1.02466i
\(401\) −3.44310 10.5968i −0.171940 0.529178i 0.827540 0.561406i \(-0.189740\pi\)
−0.999481 + 0.0322287i \(0.989740\pi\)
\(402\) 0 0
\(403\) −14.7013 10.6811i −0.732322 0.532063i
\(404\) 31.4110 22.8215i 1.56276 1.13541i
\(405\) 0 0
\(406\) 1.88021 0.0933134
\(407\) −8.36879 + 10.3962i −0.414826 + 0.515319i
\(408\) 0 0
\(409\) −12.2987 + 37.8515i −0.608132 + 1.87164i −0.134505 + 0.990913i \(0.542944\pi\)
−0.473628 + 0.880725i \(0.657056\pi\)
\(410\) 29.1260 21.1613i 1.43843 1.04508i
\(411\) 0 0
\(412\) −10.8051 33.2546i −0.532328 1.63834i
\(413\) −0.326984 1.00635i −0.0160898 0.0495194i
\(414\) 0 0
\(415\) −7.67341 + 5.57506i −0.376673 + 0.273669i
\(416\) −29.7753 + 91.6388i −1.45985 + 4.49296i
\(417\) 0 0
\(418\) −20.3792 + 5.52407i −0.996782 + 0.270191i
\(419\) 35.7850 1.74821 0.874105 0.485737i \(-0.161449\pi\)
0.874105 + 0.485737i \(0.161449\pi\)
\(420\) 0 0
\(421\) 11.5988 8.42702i 0.565291 0.410708i −0.268101 0.963391i \(-0.586396\pi\)
0.833392 + 0.552683i \(0.186396\pi\)
\(422\) 15.5646 + 11.3083i 0.757671 + 0.550480i
\(423\) 0 0
\(424\) 10.4280 + 32.0941i 0.506428 + 1.55863i
\(425\) 8.03791 + 5.83988i 0.389896 + 0.283276i
\(426\) 0 0
\(427\) 0.238262 0.733294i 0.0115303 0.0354866i
\(428\) −70.8121 −3.42283
\(429\) 0 0
\(430\) 33.4143 1.61138
\(431\) 5.34463 16.4491i 0.257442 0.792324i −0.735897 0.677093i \(-0.763239\pi\)
0.993339 0.115231i \(-0.0367607\pi\)
\(432\) 0 0
\(433\) 15.0864 + 10.9609i 0.725004 + 0.526746i 0.887979 0.459884i \(-0.152109\pi\)
−0.162975 + 0.986630i \(0.552109\pi\)
\(434\) 0.353513 + 1.08800i 0.0169692 + 0.0522258i
\(435\) 0 0
\(436\) 14.7957 + 10.7497i 0.708584 + 0.514816i
\(437\) −2.68326 + 1.94950i −0.128358 + 0.0932574i
\(438\) 0 0
\(439\) −15.9892 −0.763125 −0.381562 0.924343i \(-0.624614\pi\)
−0.381562 + 0.924343i \(0.624614\pi\)
\(440\) 56.9403 70.7344i 2.71452 3.37213i
\(441\) 0 0
\(442\) 14.9026 45.8654i 0.708844 2.18160i
\(443\) −25.7908 + 18.7381i −1.22536 + 0.890276i −0.996534 0.0831910i \(-0.973489\pi\)
−0.228826 + 0.973467i \(0.573489\pi\)
\(444\) 0 0
\(445\) −0.423169 1.30238i −0.0200601 0.0617388i
\(446\) −22.8184 70.2278i −1.08048 3.32538i
\(447\) 0 0
\(448\) 2.67440 1.94306i 0.126353 0.0918011i
\(449\) −5.70480 + 17.5576i −0.269226 + 0.828593i 0.721463 + 0.692453i \(0.243470\pi\)
−0.990690 + 0.136141i \(0.956530\pi\)
\(450\) 0 0
\(451\) 8.87465 + 13.5793i 0.417891 + 0.639424i
\(452\) 79.8905 3.75773
\(453\) 0 0
\(454\) 7.69720 5.59234i 0.361248 0.262462i
\(455\) 0.603723 + 0.438631i 0.0283030 + 0.0205633i
\(456\) 0 0
\(457\) 4.37874 + 13.4764i 0.204829 + 0.630398i 0.999720 + 0.0236469i \(0.00752773\pi\)
−0.794891 + 0.606752i \(0.792472\pi\)
\(458\) 20.6352 + 14.9923i 0.964219 + 0.700546i
\(459\) 0 0
\(460\) 6.77768 20.8596i 0.316011 0.972582i
\(461\) −9.59329 −0.446804 −0.223402 0.974726i \(-0.571716\pi\)
−0.223402 + 0.974726i \(0.571716\pi\)
\(462\) 0 0
\(463\) 21.9634 1.02073 0.510363 0.859959i \(-0.329511\pi\)
0.510363 + 0.859959i \(0.329511\pi\)
\(464\) −45.2180 + 139.167i −2.09919 + 6.46065i
\(465\) 0 0
\(466\) −46.9143 34.0852i −2.17326 1.57897i
\(467\) −10.5199 32.3768i −0.486802 1.49822i −0.829354 0.558723i \(-0.811291\pi\)
0.342553 0.939499i \(-0.388709\pi\)
\(468\) 0 0
\(469\) 0.0270855 + 0.0196787i 0.00125069 + 0.000908680i
\(470\) −42.6104 + 30.9583i −1.96547 + 1.42800i
\(471\) 0 0
\(472\) 136.882 6.30051
\(473\) −0.744322 + 15.0378i −0.0342240 + 0.691439i
\(474\) 0 0
\(475\) −1.42904 + 4.39814i −0.0655690 + 0.201801i
\(476\) −1.81985 + 1.32220i −0.0834126 + 0.0606028i
\(477\) 0 0
\(478\) −19.2754 59.3235i −0.881635 2.71339i
\(479\) −10.9849 33.8079i −0.501911 1.54472i −0.805903 0.592048i \(-0.798319\pi\)
0.303992 0.952675i \(-0.401681\pi\)
\(480\) 0 0
\(481\) 11.4784 8.33958i 0.523372 0.380252i
\(482\) 3.29807 10.1504i 0.150223 0.462339i
\(483\) 0 0
\(484\) 46.9994 + 41.8268i 2.13634 + 1.90122i
\(485\) −5.54153 −0.251628
\(486\) 0 0
\(487\) −28.4135 + 20.6436i −1.28754 + 0.935453i −0.999753 0.0222417i \(-0.992920\pi\)
−0.287787 + 0.957694i \(0.592920\pi\)
\(488\) 80.6922 + 58.6263i 3.65277 + 2.65389i
\(489\) 0 0
\(490\) 15.9073 + 48.9577i 0.718619 + 2.21168i
\(491\) 7.74669 + 5.62830i 0.349603 + 0.254002i 0.748703 0.662906i \(-0.230677\pi\)
−0.399099 + 0.916908i \(0.630677\pi\)
\(492\) 0 0
\(493\) 12.8856 39.6579i 0.580340 1.78610i
\(494\) 22.4469 1.00993
\(495\) 0 0
\(496\) −89.0319 −3.99765
\(497\) −0.146637 + 0.451304i −0.00657759 + 0.0202437i
\(498\) 0 0
\(499\) 29.4923 + 21.4274i 1.32026 + 0.959223i 0.999929 + 0.0119164i \(0.00379319\pi\)
0.320328 + 0.947307i \(0.396207\pi\)
\(500\) 13.9617 + 42.9696i 0.624385 + 1.92166i
\(501\) 0 0
\(502\) −30.0403 21.8256i −1.34076 0.974122i
\(503\) 16.7217 12.1490i 0.745582 0.541697i −0.148873 0.988856i \(-0.547564\pi\)
0.894454 + 0.447160i \(0.147564\pi\)
\(504\) 0 0
\(505\) 17.9833 0.800248
\(506\) 12.4665 + 4.74396i 0.554203 + 0.210895i
\(507\) 0 0
\(508\) −18.4439 + 56.7644i −0.818315 + 2.51851i
\(509\) 16.4921 11.9822i 0.731000 0.531103i −0.158880 0.987298i \(-0.550788\pi\)
0.889880 + 0.456195i \(0.150788\pi\)
\(510\) 0 0
\(511\) 0.0983252 + 0.302614i 0.00434965 + 0.0133868i
\(512\) 35.5438 + 109.393i 1.57083 + 4.83451i
\(513\) 0 0
\(514\) 6.78893 4.93244i 0.299447 0.217561i
\(515\) 5.00465 15.4027i 0.220531 0.678725i
\(516\) 0 0
\(517\) −12.9833 19.8661i −0.571006 0.873708i
\(518\) −0.893207 −0.0392453
\(519\) 0 0
\(520\) −78.0980 + 56.7415i −3.42482 + 2.48828i
\(521\) −19.5996 14.2399i −0.858673 0.623863i 0.0688503 0.997627i \(-0.478067\pi\)
−0.927524 + 0.373764i \(0.878067\pi\)
\(522\) 0 0
\(523\) −7.54257 23.2136i −0.329814 1.01506i −0.969221 0.246193i \(-0.920820\pi\)
0.639407 0.768868i \(-0.279180\pi\)
\(524\) −36.7086 26.6704i −1.60362 1.16510i
\(525\) 0 0
\(526\) 9.59975 29.5450i 0.418569 1.28822i
\(527\) 25.3711 1.10518
\(528\) 0 0
\(529\) −20.9048 −0.908903
\(530\) −7.42701 + 22.8580i −0.322609 + 0.992888i
\(531\) 0 0
\(532\) −0.847057 0.615423i −0.0367246 0.0266820i
\(533\) −5.32920 16.4016i −0.230833 0.710432i
\(534\) 0 0
\(535\) −26.5345 19.2784i −1.14719 0.833479i
\(536\) −3.50379 + 2.54566i −0.151341 + 0.109956i
\(537\) 0 0
\(538\) 13.1508 0.566969
\(539\) −22.3873 + 6.06839i −0.964290 + 0.261384i
\(540\) 0 0
\(541\) 9.10611 28.0257i 0.391502 1.20492i −0.540150 0.841569i \(-0.681633\pi\)
0.931652 0.363351i \(-0.118367\pi\)
\(542\) 63.6492 46.2438i 2.73397 1.98634i
\(543\) 0 0
\(544\) −41.5718 127.945i −1.78237 5.48558i
\(545\) 2.61761 + 8.05617i 0.112126 + 0.345089i
\(546\) 0 0
\(547\) 20.3345 14.7739i 0.869441 0.631686i −0.0609956 0.998138i \(-0.519428\pi\)
0.930437 + 0.366452i \(0.119428\pi\)
\(548\) −38.7409 + 119.232i −1.65493 + 5.09335i
\(549\) 0 0
\(550\) 17.9503 4.86568i 0.765405 0.207473i
\(551\) 19.4089 0.826847
\(552\) 0 0
\(553\) −0.393823 + 0.286129i −0.0167470 + 0.0121674i
\(554\) −29.8973 21.7217i −1.27022 0.922866i
\(555\) 0 0
\(556\) 9.60697 + 29.5672i 0.407426 + 1.25393i
\(557\) 34.5124 + 25.0747i 1.46234 + 1.06245i 0.982747 + 0.184957i \(0.0592146\pi\)
0.479590 + 0.877493i \(0.340785\pi\)
\(558\) 0 0
\(559\) 4.94619 15.2228i 0.209201 0.643856i
\(560\) 3.65619 0.154502
\(561\) 0 0
\(562\) −28.1968 −1.18941
\(563\) 9.81557 30.2092i 0.413677 1.27317i −0.499752 0.866168i \(-0.666576\pi\)
0.913429 0.406998i \(-0.133424\pi\)
\(564\) 0 0
\(565\) 29.9363 + 21.7500i 1.25943 + 0.915030i
\(566\) −19.7735 60.8567i −0.831144 2.55800i
\(567\) 0 0
\(568\) −49.6618 36.0814i −2.08376 1.51394i
\(569\) 1.91761 1.39323i 0.0803904 0.0584071i −0.546864 0.837221i \(-0.684179\pi\)
0.627255 + 0.778814i \(0.284179\pi\)
\(570\) 0 0
\(571\) 8.99511 0.376434 0.188217 0.982128i \(-0.439729\pi\)
0.188217 + 0.982128i \(0.439729\pi\)
\(572\) −36.5913 55.9891i −1.52996 2.34102i
\(573\) 0 0
\(574\) −0.335497 + 1.03255i −0.0140034 + 0.0430980i
\(575\) 2.36346 1.71715i 0.0985629 0.0716101i
\(576\) 0 0
\(577\) 10.2358 + 31.5025i 0.426122 + 1.31147i 0.901916 + 0.431911i \(0.142161\pi\)
−0.475795 + 0.879556i \(0.657839\pi\)
\(578\) 6.21089 + 19.1152i 0.258339 + 0.795086i
\(579\) 0 0
\(580\) −103.837 + 75.4420i −4.31160 + 3.13256i
\(581\) 0.0883886 0.272032i 0.00366698 0.0112858i
\(582\) 0 0
\(583\) −10.1216 3.85164i −0.419194 0.159519i
\(584\) −41.1609 −1.70325
\(585\) 0 0
\(586\) −3.36322 + 2.44353i −0.138934 + 0.100941i
\(587\) −17.4214 12.6574i −0.719060 0.522427i 0.167024 0.985953i \(-0.446584\pi\)
−0.886084 + 0.463526i \(0.846584\pi\)
\(588\) 0 0
\(589\) 3.64922 + 11.2311i 0.150363 + 0.462771i
\(590\) 78.8711 + 57.3032i 3.24707 + 2.35913i
\(591\) 0 0
\(592\) 21.4811 66.1120i 0.882868 2.71719i
\(593\) 21.7365 0.892613 0.446306 0.894880i \(-0.352739\pi\)
0.446306 + 0.894880i \(0.352739\pi\)
\(594\) 0 0
\(595\) −1.04189 −0.0427134
\(596\) −2.90234 + 8.93250i −0.118885 + 0.365889i
\(597\) 0 0
\(598\) −11.4721 8.33493i −0.469127 0.340841i
\(599\) 6.33154 + 19.4865i 0.258700 + 0.796196i 0.993078 + 0.117456i \(0.0374739\pi\)
−0.734378 + 0.678740i \(0.762526\pi\)
\(600\) 0 0
\(601\) −8.84162 6.42382i −0.360657 0.262033i 0.392669 0.919680i \(-0.371552\pi\)
−0.753326 + 0.657647i \(0.771552\pi\)
\(602\) −0.815215 + 0.592289i −0.0332257 + 0.0241399i
\(603\) 0 0
\(604\) 95.5963 3.88976
\(605\) 6.22421 + 28.4687i 0.253050 + 1.15742i
\(606\) 0 0
\(607\) 4.88443 15.0327i 0.198253 0.610159i −0.801671 0.597766i \(-0.796055\pi\)
0.999923 0.0123929i \(-0.00394488\pi\)
\(608\) 50.6584 36.8055i 2.05447 1.49266i
\(609\) 0 0
\(610\) 21.9518 + 67.5607i 0.888802 + 2.73545i
\(611\) 7.79645 + 23.9950i 0.315410 + 0.970734i
\(612\) 0 0
\(613\) 12.7199 9.24157i 0.513753 0.373264i −0.300492 0.953784i \(-0.597151\pi\)
0.814246 + 0.580521i \(0.197151\pi\)
\(614\) 14.8832 45.8059i 0.600638 1.84857i
\(615\) 0 0
\(616\) −0.135375 + 2.73502i −0.00545441 + 0.110197i
\(617\) −36.9248 −1.48654 −0.743268 0.668993i \(-0.766725\pi\)
−0.743268 + 0.668993i \(0.766725\pi\)
\(618\) 0 0
\(619\) −33.0593 + 24.0190i −1.32877 + 0.965405i −0.328988 + 0.944334i \(0.606708\pi\)
−0.999778 + 0.0210710i \(0.993292\pi\)
\(620\) −63.1784 45.9018i −2.53730 1.84346i
\(621\) 0 0
\(622\) 3.99207 + 12.2863i 0.160067 + 0.492637i
\(623\) 0.0334097 + 0.0242735i 0.00133853 + 0.000972499i
\(624\) 0 0
\(625\) −9.58506 + 29.4998i −0.383402 + 1.17999i
\(626\) 6.76015 0.270190
\(627\) 0 0
\(628\) 3.50033 0.139679
\(629\) −6.12140 + 18.8397i −0.244076 + 0.751189i
\(630\) 0 0
\(631\) −20.1222 14.6196i −0.801051 0.581997i 0.110172 0.993913i \(-0.464860\pi\)
−0.911222 + 0.411915i \(0.864860\pi\)
\(632\) −19.4593 59.8896i −0.774050 2.38228i
\(633\) 0 0
\(634\) 43.8031 + 31.8248i 1.73964 + 1.26392i
\(635\) −22.3652 + 16.2493i −0.887537 + 0.644833i
\(636\) 0 0
\(637\) 24.6587 0.977015
\(638\) −42.7022 65.3396i −1.69060 2.58682i
\(639\) 0 0
\(640\) −49.3730 + 151.954i −1.95164 + 6.00653i
\(641\) −38.3138 + 27.8366i −1.51330 + 1.09948i −0.548620 + 0.836072i \(0.684847\pi\)
−0.964684 + 0.263409i \(0.915153\pi\)
\(642\) 0 0
\(643\) −13.0891 40.2841i −0.516184 1.58865i −0.781117 0.624385i \(-0.785350\pi\)
0.264933 0.964267i \(-0.414650\pi\)
\(644\) 0.204392 + 0.629054i 0.00805418 + 0.0247882i
\(645\) 0 0
\(646\) −25.3546 + 18.4212i −0.997565 + 0.724773i
\(647\) −3.00628 + 9.25236i −0.118189 + 0.363748i −0.992599 0.121440i \(-0.961249\pi\)
0.874410 + 0.485188i \(0.161249\pi\)
\(648\) 0 0
\(649\) −27.5457 + 34.2188i −1.08126 + 1.34320i
\(650\) −19.7716 −0.775505
\(651\) 0 0
\(652\) −6.45369 + 4.68888i −0.252746 + 0.183631i
\(653\) −23.3761 16.9837i −0.914777 0.664624i 0.0274414 0.999623i \(-0.491264\pi\)
−0.942218 + 0.334999i \(0.891264\pi\)
\(654\) 0 0
\(655\) −6.49439 19.9877i −0.253757 0.780983i
\(656\) −68.3575 49.6646i −2.66891 1.93908i
\(657\) 0 0
\(658\) 0.490821 1.51059i 0.0191342 0.0588890i
\(659\) 29.3783 1.14441 0.572207 0.820109i \(-0.306087\pi\)
0.572207 + 0.820109i \(0.306087\pi\)
\(660\) 0 0
\(661\) −40.1300 −1.56088 −0.780439 0.625233i \(-0.785004\pi\)
−0.780439 + 0.625233i \(0.785004\pi\)
\(662\) 15.8122 48.6649i 0.614558 1.89141i
\(663\) 0 0
\(664\) 29.9346 + 21.7488i 1.16169 + 0.844016i
\(665\) −0.149859 0.461219i −0.00581129 0.0178853i
\(666\) 0 0
\(667\) −9.91939 7.20686i −0.384080 0.279051i
\(668\) −84.8509 + 61.6478i −3.28298 + 2.38522i
\(669\) 0 0
\(670\) −3.08457 −0.119167
\(671\) −30.8941 + 8.37426i −1.19265 + 0.323285i
\(672\) 0 0
\(673\) −5.62675 + 17.3174i −0.216895 + 0.667535i 0.782118 + 0.623130i \(0.214139\pi\)
−0.999014 + 0.0444052i \(0.985861\pi\)
\(674\) −37.6442 + 27.3501i −1.45000 + 1.05349i
\(675\) 0 0
\(676\) −1.00408 3.09023i −0.0386184 0.118855i
\(677\) 0.335152 + 1.03149i 0.0128809 + 0.0396435i 0.957290 0.289128i \(-0.0933654\pi\)
−0.944409 + 0.328772i \(0.893365\pi\)
\(678\) 0 0
\(679\) 0.135198 0.0982270i 0.00518842 0.00376961i
\(680\) 41.6493 128.183i 1.59718 4.91561i
\(681\) 0 0
\(682\) 29.7806 36.9950i 1.14036 1.41661i
\(683\) 31.3775 1.20063 0.600313 0.799765i \(-0.295043\pi\)
0.600313 + 0.799765i \(0.295043\pi\)
\(684\) 0 0
\(685\) −46.9776 + 34.1312i −1.79492 + 1.30409i
\(686\) −2.51295 1.82576i −0.0959447 0.0697079i
\(687\) 0 0
\(688\) −24.2337 74.5836i −0.923900 2.84347i
\(689\) 9.31420 + 6.76716i 0.354843 + 0.257808i
\(690\) 0 0
\(691\) 0.299803 0.922700i 0.0114051 0.0351012i −0.945192 0.326515i \(-0.894126\pi\)
0.956597 + 0.291414i \(0.0941256\pi\)
\(692\) 18.9444 0.720158
\(693\) 0 0
\(694\) 29.4066 1.11626
\(695\) −4.44971 + 13.6948i −0.168787 + 0.519474i
\(696\) 0 0
\(697\) 19.4796 + 14.1528i 0.737843 + 0.536074i
\(698\) −22.5056 69.2650i −0.851848 2.62172i
\(699\) 0 0
\(700\) 0.746100 + 0.542073i 0.0281999 + 0.0204885i
\(701\) −33.0112 + 23.9841i −1.24682 + 0.905865i −0.998033 0.0626935i \(-0.980031\pi\)
−0.248784 + 0.968559i \(0.580031\pi\)
\(702\) 0 0
\(703\) −9.22032 −0.347751
\(704\) −128.263 48.8087i −4.83409 1.83955i
\(705\) 0 0
\(706\) −19.1665 + 58.9884i −0.721340 + 2.22006i
\(707\) −0.438744 + 0.318766i −0.0165006 + 0.0119884i
\(708\) 0 0
\(709\) 2.92572 + 9.00443i 0.109878 + 0.338169i 0.990844 0.135010i \(-0.0431066\pi\)
−0.880967 + 0.473178i \(0.843107\pi\)
\(710\) −13.5102 41.5800i −0.507027 1.56047i
\(711\) 0 0
\(712\) −4.32190 + 3.14004i −0.161970 + 0.117678i
\(713\) 2.30529 7.09497i 0.0863339 0.265709i
\(714\) 0 0
\(715\) 1.53153 30.9420i 0.0572759 1.15716i
\(716\) 28.9037 1.08018
\(717\) 0 0
\(718\) −45.7172 + 33.2155i −1.70615 + 1.23959i
\(719\) −16.1880 11.7613i −0.603710 0.438621i 0.243484 0.969905i \(-0.421710\pi\)
−0.847194 + 0.531284i \(0.821710\pi\)
\(720\) 0 0
\(721\) 0.150923 + 0.464494i 0.00562068 + 0.0172987i
\(722\) 30.9066 + 22.4550i 1.15022 + 0.835687i
\(723\) 0 0
\(724\) −36.5132 + 112.376i −1.35700 + 4.17643i
\(725\) −17.0956 −0.634916
\(726\) 0 0
\(727\) −15.0966 −0.559904 −0.279952 0.960014i \(-0.590318\pi\)
−0.279952 + 0.960014i \(0.590318\pi\)
\(728\) 0.899596 2.76867i 0.0333413 0.102614i
\(729\) 0 0
\(730\) −23.7168 17.2312i −0.877797 0.637757i
\(731\) 6.90579 + 21.2538i 0.255420 + 0.786101i
\(732\) 0 0
\(733\) −34.7686 25.2609i −1.28421 0.933032i −0.284537 0.958665i \(-0.591840\pi\)
−0.999671 + 0.0256328i \(0.991840\pi\)
\(734\) 16.9654 12.3261i 0.626206 0.454965i
\(735\) 0 0
\(736\) −39.5567 −1.45808
\(737\) 0.0687106 1.38818i 0.00253099 0.0511344i
\(738\) 0 0
\(739\) −9.45629 + 29.1035i −0.347855 + 1.07059i 0.612182 + 0.790717i \(0.290292\pi\)
−0.960037 + 0.279871i \(0.909708\pi\)
\(740\) 49.3284 35.8392i 1.81335 1.31747i
\(741\) 0 0
\(742\) −0.223974 0.689320i −0.00822233 0.0253057i
\(743\) 2.02214 + 6.22352i 0.0741853 + 0.228319i 0.981273 0.192623i \(-0.0616996\pi\)
−0.907088 + 0.420942i \(0.861700\pi\)
\(744\) 0 0
\(745\) −3.51941 + 2.55700i −0.128941 + 0.0936813i
\(746\) 17.7382 54.5926i 0.649442 1.99878i
\(747\) 0 0
\(748\) 87.2791 + 33.2129i 3.19124 + 1.21438i
\(749\) 0.989090 0.0361406
\(750\) 0 0
\(751\) 31.6106 22.9665i 1.15349 0.838058i 0.164547 0.986369i \(-0.447384\pi\)
0.988941 + 0.148312i \(0.0473838\pi\)
\(752\) 100.005 + 72.6577i 3.64680 + 2.64955i
\(753\) 0 0
\(754\) 25.6426 + 78.9197i 0.933847 + 2.87408i
\(755\) 35.8216 + 26.0259i 1.30368 + 0.947179i
\(756\) 0 0
\(757\) −13.5885 + 41.8212i −0.493884 + 1.52002i 0.324804 + 0.945781i \(0.394702\pi\)
−0.818689 + 0.574238i \(0.805298\pi\)
\(758\) 15.5438 0.564577
\(759\) 0 0
\(760\) 62.7340 2.27560
\(761\) −9.30633 + 28.6419i −0.337354 + 1.03827i 0.628196 + 0.778055i \(0.283793\pi\)
−0.965551 + 0.260215i \(0.916207\pi\)
\(762\) 0 0
\(763\) −0.206663 0.150150i −0.00748171 0.00543578i
\(764\) 8.15460 + 25.0973i 0.295023 + 0.907988i
\(765\) 0 0
\(766\) 4.33470 + 3.14934i 0.156619 + 0.113790i
\(767\) 37.7810 27.4495i 1.36419 0.991145i
\(768\) 0 0
\(769\) −24.6918 −0.890410 −0.445205 0.895429i \(-0.646869\pi\)
−0.445205 + 0.895429i \(0.646869\pi\)
\(770\) −1.22297 + 1.51924i −0.0440728 + 0.0547497i
\(771\) 0 0
\(772\) 33.3317 102.584i 1.19963 3.69209i
\(773\) −11.0104 + 7.99955i −0.396018 + 0.287724i −0.767917 0.640549i \(-0.778707\pi\)
0.371899 + 0.928273i \(0.378707\pi\)
\(774\) 0 0
\(775\) −3.21428 9.89255i −0.115460 0.355351i
\(776\) 6.68031 + 20.5599i 0.239809 + 0.738057i
\(777\) 0 0
\(778\) 14.4101 10.4696i 0.516627 0.375352i
\(779\) −3.46324 + 10.6588i −0.124083 + 0.381889i
\(780\) 0 0
\(781\) 19.0137 5.15391i 0.680362 0.184421i
\(782\) 19.7982 0.707983
\(783\) 0 0
\(784\) 97.7411 71.0131i 3.49075 2.53618i
\(785\) 1.31163 + 0.952958i 0.0468142 + 0.0340125i
\(786\) 0 0
\(787\) −8.12309 25.0003i −0.289557 0.891165i −0.984996 0.172579i \(-0.944790\pi\)
0.695439 0.718586i \(-0.255210\pi\)
\(788\) 15.4442 + 11.2209i 0.550177 + 0.399727i
\(789\) 0 0
\(790\) 13.8593 42.6545i 0.493092 1.51758i
\(791\) −1.11590 −0.0396767
\(792\) 0 0
\(793\) 34.0286 1.20839
\(794\) 27.3141 84.0642i 0.969342 2.98333i
\(795\) 0 0
\(796\) −60.6559 44.0691i −2.14989 1.56199i
\(797\) −0.377842 1.16288i −0.0133839 0.0411913i 0.944142 0.329540i \(-0.106894\pi\)
−0.957525 + 0.288349i \(0.906894\pi\)
\(798\) 0 0
\(799\) −28.4980 20.7050i −1.00819 0.732491i
\(800\) −44.6206 + 32.4188i −1.57758 + 1.14618i
\(801\) 0 0
\(802\) −30.9575 −1.09315
\(803\) 8.28308 10.2897i 0.292303 0.363115i
\(804\) 0 0
\(805\) −0.0946694 + 0.291363i −0.00333666 + 0.0102692i
\(806\) −40.8463 + 29.6766i −1.43875 + 1.04531i
\(807\) 0 0
\(808\) −21.6789 66.7208i −0.762662 2.34723i
\(809\) 2.92510 + 9.00253i 0.102841 + 0.316512i 0.989218 0.146453i \(-0.0467856\pi\)
−0.886377 + 0.462965i \(0.846786\pi\)
\(810\) 0 0
\(811\) 1.87016 1.35875i 0.0656701 0.0477121i −0.554466 0.832206i \(-0.687077\pi\)
0.620136 + 0.784494i \(0.287077\pi\)
\(812\) 1.19608 3.68115i 0.0419741 0.129183i
\(813\) 0 0
\(814\) 20.2860 + 31.0400i 0.711023 + 1.08795i
\(815\) −3.69484 −0.129425
\(816\) 0 0
\(817\) −8.41523 + 6.11402i −0.294412 + 0.213903i
\(818\) 89.4609 + 64.9972i 3.12793 + 2.27257i
\(819\) 0 0
\(820\) −22.9021 70.4855i −0.799777 2.46146i
\(821\) 33.1728 + 24.1014i 1.15774 + 0.841146i 0.989490 0.144599i \(-0.0461893\pi\)
0.168247 + 0.985745i \(0.446189\pi\)
\(822\) 0 0
\(823\) 12.7588 39.2676i 0.444744 1.36878i −0.438020 0.898965i \(-0.644320\pi\)
0.882764 0.469816i \(-0.155680\pi\)
\(824\) −63.1795 −2.20096
\(825\) 0 0
\(826\) −2.93997 −0.102295
\(827\) 3.23676 9.96172i 0.112553 0.346403i −0.878876 0.477051i \(-0.841706\pi\)
0.991429 + 0.130648i \(0.0417057\pi\)
\(828\) 0 0
\(829\) −32.8312 23.8533i −1.14027 0.828458i −0.153117 0.988208i \(-0.548931\pi\)
−0.987157 + 0.159750i \(0.948931\pi\)
\(830\) 8.14351 + 25.0632i 0.282665 + 0.869955i
\(831\) 0 0
\(832\) 118.031 + 85.7548i 4.09200 + 2.97301i
\(833\) −27.8530 + 20.2364i −0.965048 + 0.701148i
\(834\) 0 0
\(835\) −48.5785 −1.68113
\(836\) −2.14882 + 43.4133i −0.0743185 + 1.50148i
\(837\) 0 0
\(838\) 30.7243 94.5595i 1.06135 3.26650i
\(839\) −34.5140 + 25.0759i −1.19156 + 0.865716i −0.993428 0.114460i \(-0.963486\pi\)
−0.198128 + 0.980176i \(0.563486\pi\)
\(840\) 0 0
\(841\) 13.2105 + 40.6578i 0.455536 + 1.40199i
\(842\) −12.3094 37.8844i −0.424209 1.30558i
\(843\) 0 0
\(844\) 32.0410 23.2792i 1.10290 0.801303i
\(845\) 0.465064 1.43132i 0.0159987 0.0492389i
\(846\) 0 0
\(847\) −0.656479 0.584229i −0.0225569 0.0200744i
\(848\) 56.4075 1.93704
\(849\) 0 0
\(850\) 22.3327 16.2257i 0.766006 0.556536i
\(851\) 4.71227 + 3.42366i 0.161535 + 0.117362i
\(852\) 0 0
\(853\) −10.8987 33.5428i −0.373165 1.14849i −0.944708 0.327913i \(-0.893655\pi\)
0.571543 0.820572i \(-0.306345\pi\)
\(854\) −1.73312 1.25918i −0.0593061 0.0430884i
\(855\) 0 0
\(856\) −39.5385 + 121.687i −1.35140 + 4.15918i
\(857\) −19.7097 −0.673272 −0.336636 0.941635i \(-0.609289\pi\)
−0.336636 + 0.941635i \(0.609289\pi\)
\(858\) 0 0
\(859\) 4.52292 0.154320 0.0771601 0.997019i \(-0.475415\pi\)
0.0771601 + 0.997019i \(0.475415\pi\)
\(860\) 21.2561 65.4197i 0.724828 2.23079i
\(861\) 0 0
\(862\) −38.8769 28.2457i −1.32415 0.962052i
\(863\) −9.40646 28.9501i −0.320200 0.985473i −0.973561 0.228427i \(-0.926642\pi\)
0.653361 0.757046i \(-0.273358\pi\)
\(864\) 0 0
\(865\) 7.09878 + 5.15757i 0.241366 + 0.175363i
\(866\) 41.9163 30.4540i 1.42437 1.03487i
\(867\) 0 0
\(868\) 2.35501 0.0799344
\(869\) 18.8876 + 7.18741i 0.640717 + 0.243816i
\(870\) 0 0
\(871\) −0.456597 + 1.40526i −0.0154712 + 0.0476155i
\(872\) 26.7341 19.4234i 0.905330 0.657761i
\(873\) 0 0
\(874\) 2.84765 + 8.76416i 0.0963231 + 0.296452i
\(875\) −0.195014 0.600191i −0.00659268 0.0202902i
\(876\) 0 0
\(877\) 18.4844 13.4297i 0.624173 0.453488i −0.230204 0.973142i \(-0.573939\pi\)
0.854377 + 0.519654i \(0.173939\pi\)
\(878\) −13.7280 + 42.2506i −0.463299 + 1.42589i
\(879\) 0 0
\(880\) −83.0372 127.057i −2.79918 4.28309i
\(881\) −23.1357 −0.779461 −0.389731 0.920929i \(-0.627432\pi\)
−0.389731 + 0.920929i \(0.627432\pi\)
\(882\) 0 0
\(883\) −27.1834 + 19.7499i −0.914793 + 0.664636i −0.942223 0.334988i \(-0.891268\pi\)
0.0274293 + 0.999624i \(0.491268\pi\)
\(884\) −80.3169 58.3536i −2.70135 1.96265i
\(885\) 0 0
\(886\) 27.3709 + 84.2389i 0.919543 + 2.83006i
\(887\) 0.318107 + 0.231118i 0.0106810 + 0.00776018i 0.593113 0.805119i \(-0.297899\pi\)
−0.582432 + 0.812879i \(0.697899\pi\)
\(888\) 0 0
\(889\) 0.257621 0.792875i 0.00864032 0.0265922i
\(890\) −3.80479 −0.127537
\(891\) 0 0
\(892\) −152.010 −5.08968
\(893\) 5.06661 15.5934i 0.169548 0.521814i
\(894\) 0 0
\(895\) 10.8307 + 7.86896i 0.362030 + 0.263030i
\(896\) −1.48892 4.58243i −0.0497414 0.153088i
\(897\) 0 0
\(898\) 41.4968 + 30.1492i 1.38477 + 1.00609i
\(899\) −35.3181 + 25.6601i −1.17792 + 0.855812i
\(900\) 0 0
\(901\) −16.0743 −0.535511
\(902\) 43.5020 11.7918i 1.44846 0.392624i
\(903\) 0 0
\(904\) 44.6075 137.288i 1.48362 4.56613i
\(905\) −44.2763 + 32.1686i −1.47179 + 1.06932i
\(906\) 0 0
\(907\) 9.52958 + 29.3290i 0.316425 + 0.973855i 0.975164 + 0.221484i \(0.0710899\pi\)
−0.658740 + 0.752371i \(0.728910\pi\)
\(908\) −6.05240 18.6274i −0.200856 0.618171i
\(909\) 0 0
\(910\) 1.67740 1.21870i 0.0556052 0.0403996i
\(911\) −5.80004 + 17.8507i −0.192164 + 0.591420i 0.807834 + 0.589410i \(0.200640\pi\)
−0.999998 + 0.00200989i \(0.999360\pi\)
\(912\) 0 0
\(913\) −11.4609 + 3.10662i −0.379299 + 0.102814i
\(914\) 39.3700 1.30224
\(915\) 0 0
\(916\) 42.4794 30.8631i 1.40356 1.01975i
\(917\) 0.512739 + 0.372527i 0.0169321 + 0.0123019i
\(918\) 0 0
\(919\) 3.34672 + 10.3002i 0.110398 + 0.339771i 0.990959 0.134162i \(-0.0428341\pi\)
−0.880561 + 0.473932i \(0.842834\pi\)
\(920\) −32.0617 23.2942i −1.05704 0.767988i
\(921\) 0 0
\(922\) −8.23661 + 25.3497i −0.271258 + 0.834847i
\(923\) −20.9428 −0.689340
\(924\) 0 0
\(925\) 8.12139 0.267030
\(926\) 18.8573 58.0370i 0.619691 1.90721i
\(927\) 0 0
\(928\) 187.272 + 136.061i 6.14751 + 4.46643i
\(929\) 14.4711 + 44.5375i 0.474782 + 1.46123i 0.846252 + 0.532784i \(0.178854\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(930\) 0 0
\(931\) −12.9643 9.41911i −0.424888 0.308699i
\(932\) −96.5774 + 70.1676i −3.16350 + 2.29842i
\(933\) 0 0
\(934\) −94.5860 −3.09495
\(935\) 23.6628 + 36.2070i 0.773857 + 1.18409i
\(936\) 0 0
\(937\) 15.2404 46.9051i 0.497882 1.53232i −0.314534 0.949246i \(-0.601848\pi\)
0.812417 0.583077i \(-0.198152\pi\)
\(938\) 0.0752549 0.0546759i 0.00245716 0.00178523i
\(939\) 0 0
\(940\) 33.5051 + 103.118i 1.09282 + 3.36334i
\(941\) −6.27193 19.3030i −0.204459 0.629260i −0.999735 0.0230126i \(-0.992674\pi\)
0.795276 0.606247i \(-0.207326\pi\)
\(942\) 0 0
\(943\) 5.72775 4.16146i 0.186521 0.135516i
\(944\) 70.7046 217.606i 2.30124 7.08248i
\(945\) 0 0
\(946\) 39.0974 + 14.8780i 1.27117 + 0.483725i
\(947\) 38.8652 1.26295 0.631475 0.775396i \(-0.282450\pi\)
0.631475 + 0.775396i \(0.282450\pi\)
\(948\) 0 0
\(949\) −11.3609 + 8.25416i −0.368790 + 0.267941i
\(950\) 10.3949 + 7.55232i 0.337254 + 0.245030i
\(951\) 0 0
\(952\) 1.25600 + 3.86558i 0.0407073 + 0.125284i
\(953\) 14.0214 + 10.1871i 0.454198 + 0.329994i 0.791251 0.611492i \(-0.209430\pi\)
−0.337053 + 0.941486i \(0.609430\pi\)
\(954\) 0 0
\(955\) −3.77701 + 11.6244i −0.122221 + 0.376158i
\(956\) −128.408 −4.15300
\(957\) 0 0
\(958\) −98.7667 −3.19101
\(959\) 0.541126 1.66541i 0.0174739 0.0537791i
\(960\) 0 0
\(961\) 3.59066 + 2.60877i 0.115828 + 0.0841538i
\(962\) −12.1817 37.4913i −0.392752 1.20877i
\(963\) 0 0
\(964\) −17.7748 12.9142i −0.572489 0.415938i
\(965\) 40.4183 29.3656i 1.30111 0.945313i
\(966\) 0 0
\(967\) −34.3964 −1.10611 −0.553057 0.833144i \(-0.686539\pi\)
−0.553057 + 0.833144i \(0.686539\pi\)
\(968\) 98.1198 57.4118i 3.15369 1.84528i
\(969\) 0 0
\(970\) −4.75784 + 14.6431i −0.152765 + 0.470163i
\(971\) 44.7417 32.5067i 1.43583 1.04319i 0.446935 0.894566i \(-0.352516\pi\)
0.988894 0.148624i \(-0.0474845\pi\)
\(972\) 0 0
\(973\) −0.134188 0.412989i −0.00430188 0.0132398i
\(974\) 30.1542 + 92.8052i 0.966204 + 2.97367i
\(975\) 0 0
\(976\) 134.881 97.9967i 4.31743 3.13680i
\(977\) −2.38102 + 7.32803i −0.0761756 + 0.234444i −0.981893 0.189439i \(-0.939333\pi\)
0.905717 + 0.423883i \(0.139333\pi\)
\(978\) 0 0
\(979\) 0.0847539 1.71231i 0.00270874 0.0547257i
\(980\) 105.970 3.38510
\(981\) 0 0
\(982\) 21.5236 15.6378i 0.686846 0.499023i
\(983\) 28.9470 + 21.0313i 0.923267 + 0.670793i 0.944335 0.328985i \(-0.106707\pi\)
−0.0210677 + 0.999778i \(0.506707\pi\)
\(984\) 0 0
\(985\) 2.73235 + 8.40931i 0.0870599 + 0.267943i
\(986\) −93.7302 68.0990i −2.98498 2.16871i
\(987\) 0 0
\(988\) 14.2794 43.9474i 0.454288 1.39815i
\(989\) 6.57106 0.208947
\(990\) 0 0
\(991\) 5.90515 0.187583 0.0937917 0.995592i \(-0.470101\pi\)
0.0937917 + 0.995592i \(0.470101\pi\)
\(992\) −43.5226 + 133.949i −1.38184 + 4.25287i
\(993\) 0 0
\(994\) 1.06664 + 0.774961i 0.0338318 + 0.0245803i
\(995\) −10.7311 33.0269i −0.340198 1.04702i
\(996\) 0 0
\(997\) 36.8792 + 26.7943i 1.16798 + 0.848585i 0.990765 0.135587i \(-0.0432921\pi\)
0.177212 + 0.984173i \(0.443292\pi\)
\(998\) 81.9421 59.5344i 2.59383 1.88453i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.d.163.6 yes 24
3.2 odd 2 891.2.f.c.163.1 yes 24
9.2 odd 6 891.2.n.k.757.6 48
9.4 even 3 891.2.n.j.460.6 48
9.5 odd 6 891.2.n.k.460.1 48
9.7 even 3 891.2.n.j.757.1 48
11.4 even 5 9801.2.a.ck.1.12 12
11.5 even 5 inner 891.2.f.d.82.6 yes 24
11.7 odd 10 9801.2.a.cf.1.1 12
33.5 odd 10 891.2.f.c.82.1 24
33.26 odd 10 9801.2.a.cg.1.1 12
33.29 even 10 9801.2.a.cl.1.12 12
99.5 odd 30 891.2.n.k.379.6 48
99.16 even 15 891.2.n.j.676.6 48
99.38 odd 30 891.2.n.k.676.1 48
99.49 even 15 891.2.n.j.379.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.c.82.1 24 33.5 odd 10
891.2.f.c.163.1 yes 24 3.2 odd 2
891.2.f.d.82.6 yes 24 11.5 even 5 inner
891.2.f.d.163.6 yes 24 1.1 even 1 trivial
891.2.n.j.379.1 48 99.49 even 15
891.2.n.j.460.6 48 9.4 even 3
891.2.n.j.676.6 48 99.16 even 15
891.2.n.j.757.1 48 9.7 even 3
891.2.n.k.379.6 48 99.5 odd 30
891.2.n.k.460.1 48 9.5 odd 6
891.2.n.k.676.1 48 99.38 odd 30
891.2.n.k.757.6 48 9.2 odd 6
9801.2.a.cf.1.1 12 11.7 odd 10
9801.2.a.cg.1.1 12 33.26 odd 10
9801.2.a.ck.1.12 12 11.4 even 5
9801.2.a.cl.1.12 12 33.29 even 10