Properties

Label 891.2.f.d
Level $891$
Weight $2$
Character orbit 891.f
Analytic conductor $7.115$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 2 q^{2} - 8 q^{4} - 4 q^{5} + 7 q^{7} - 10 q^{8} - 16 q^{10} - 5 q^{11} + 7 q^{13} - 13 q^{14} + 2 q^{16} + 5 q^{17} + 4 q^{19} - 27 q^{20} - 2 q^{22} - 6 q^{23} - 2 q^{25} + 34 q^{26} - 9 q^{28}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
82.1 −0.753178 2.31804i 0 −3.18802 + 2.31623i −0.136315 + 0.419536i 0 4.09682 2.97652i 3.82659 + 2.78018i 0 1.07517
82.2 −0.330786 1.01805i 0 0.691018 0.502054i −1.08179 + 3.32942i 0 −0.632697 + 0.459681i −2.47172 1.79581i 0 3.74737
82.3 −0.103393 0.318212i 0 1.52747 1.10977i 1.16132 3.57417i 0 0.249578 0.181329i −1.05245 0.764647i 0 −1.25742
82.4 0.344102 + 1.05904i 0 0.614881 0.446737i −0.290537 + 0.894180i 0 3.05510 2.21966i 2.48643 + 1.80650i 0 −1.04694
82.5 0.484676 + 1.49168i 0 −0.372161 + 0.270391i 0.165973 0.510812i 0 −2.28835 + 1.66258i 1.95408 + 1.41972i 0 0.842411
82.6 0.858580 + 2.64244i 0 −4.62728 + 3.36192i −0.818647 + 2.51954i 0 0.0646331 0.0469587i −8.36097 6.07460i 0 −7.36059
163.1 −0.753178 + 2.31804i 0 −3.18802 2.31623i −0.136315 0.419536i 0 4.09682 + 2.97652i 3.82659 2.78018i 0 1.07517
163.2 −0.330786 + 1.01805i 0 0.691018 + 0.502054i −1.08179 3.32942i 0 −0.632697 0.459681i −2.47172 + 1.79581i 0 3.74737
163.3 −0.103393 + 0.318212i 0 1.52747 + 1.10977i 1.16132 + 3.57417i 0 0.249578 + 0.181329i −1.05245 + 0.764647i 0 −1.25742
163.4 0.344102 1.05904i 0 0.614881 + 0.446737i −0.290537 0.894180i 0 3.05510 + 2.21966i 2.48643 1.80650i 0 −1.04694
163.5 0.484676 1.49168i 0 −0.372161 0.270391i 0.165973 + 0.510812i 0 −2.28835 1.66258i 1.95408 1.41972i 0 0.842411
163.6 0.858580 2.64244i 0 −4.62728 3.36192i −0.818647 2.51954i 0 0.0646331 + 0.0469587i −8.36097 + 6.07460i 0 −7.36059
487.1 −1.64472 + 1.19496i 0 0.659148 2.02865i −2.08540 1.51513i 0 −0.458605 + 1.41144i 0.0835835 + 0.257243i 0 5.24043
487.2 −1.44769 + 1.05181i 0 0.371476 1.14329i 2.00827 + 1.45910i 0 0.991006 3.05000i −0.441202 1.35788i 0 −4.44205
487.3 0.0412919 0.0300003i 0 −0.617229 + 1.89964i −0.498462 0.362154i 0 0.752525 2.31603i 0.0630473 + 0.194040i 0 −0.0314472
487.4 0.275589 0.200227i 0 −0.582176 + 1.79175i 2.79895 + 2.03355i 0 −1.53328 + 4.71895i 0.408848 + 1.25830i 0 1.17853
487.5 1.14839 0.834353i 0 0.00461626 0.0142074i −3.02955 2.20110i 0 −0.430288 + 1.32429i 0.870737 + 2.67985i 0 −5.31559
487.6 2.12715 1.54546i 0 1.51827 4.67274i −0.193808 0.140810i 0 −0.366442 + 1.12779i −2.36698 7.28482i 0 −0.629874
730.1 −1.64472 1.19496i 0 0.659148 + 2.02865i −2.08540 + 1.51513i 0 −0.458605 1.41144i 0.0835835 0.257243i 0 5.24043
730.2 −1.44769 1.05181i 0 0.371476 + 1.14329i 2.00827 1.45910i 0 0.991006 + 3.05000i −0.441202 + 1.35788i 0 −4.44205
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 82.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 891.2.f.d yes 24
3.b odd 2 1 891.2.f.c 24
9.c even 3 2 891.2.n.j 48
9.d odd 6 2 891.2.n.k 48
11.c even 5 1 inner 891.2.f.d yes 24
11.c even 5 1 9801.2.a.ck 12
11.d odd 10 1 9801.2.a.cf 12
33.f even 10 1 9801.2.a.cl 12
33.h odd 10 1 891.2.f.c 24
33.h odd 10 1 9801.2.a.cg 12
99.m even 15 2 891.2.n.j 48
99.n odd 30 2 891.2.n.k 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
891.2.f.c 24 3.b odd 2 1
891.2.f.c 24 33.h odd 10 1
891.2.f.d yes 24 1.a even 1 1 trivial
891.2.f.d yes 24 11.c even 5 1 inner
891.2.n.j 48 9.c even 3 2
891.2.n.j 48 99.m even 15 2
891.2.n.k 48 9.d odd 6 2
891.2.n.k 48 99.n odd 30 2
9801.2.a.cf 12 11.d odd 10 1
9801.2.a.cg 12 33.h odd 10 1
9801.2.a.ck 12 11.c even 5 1
9801.2.a.cl 12 33.f even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 2 T_{2}^{23} + 12 T_{2}^{22} - 14 T_{2}^{21} + 72 T_{2}^{20} - 62 T_{2}^{19} + 393 T_{2}^{18} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\). Copy content Toggle raw display