Properties

Label 891.2.bb.a.800.19
Level $891$
Weight $2$
Character 891.800
Analytic conductor $7.115$
Analytic rank $0$
Dimension $816$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(8,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(90)) chi = DirichletCharacter(H, H._module([5, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.bb (of order \(90\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(816\)
Relative dimension: \(34\) over \(\Q(\zeta_{90})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{90}]$

Embedding invariants

Embedding label 800.19
Character \(\chi\) \(=\) 891.800
Dual form 891.2.bb.a.656.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.385357 + 0.372135i) q^{2} +(-0.0597834 - 1.71197i) q^{4} +(1.95609 - 0.487708i) q^{5} +(2.18603 + 1.70792i) q^{7} +(1.33097 - 1.47819i) q^{8} +(0.935288 + 0.539989i) q^{10} +(-0.121142 + 3.31441i) q^{11} +(6.36211 - 3.10301i) q^{13} +(0.206828 + 1.47166i) q^{14} +(-2.35470 + 0.164657i) q^{16} +(-3.40153 + 1.51446i) q^{17} +(-1.25300 - 1.12820i) q^{19} +(-0.951885 - 3.31962i) q^{20} +(-1.28009 + 1.23215i) q^{22} +(1.79865 + 4.94174i) q^{23} +(-0.826304 + 0.439353i) q^{25} +(3.60642 + 1.17180i) q^{26} +(2.79322 - 3.84453i) q^{28} +(-5.76336 - 0.809987i) q^{29} +(4.20577 - 6.23530i) q^{31} +(-4.01615 - 3.36995i) q^{32} +(-1.87439 - 0.682222i) q^{34} +(5.10905 + 2.27469i) q^{35} +(2.74029 + 3.04340i) q^{37} +(-0.0630073 - 0.901046i) q^{38} +(1.88257 - 3.54059i) q^{40} +(2.44256 - 0.343279i) q^{41} +(-0.620430 - 0.739399i) q^{43} +(5.68142 + 0.00924481i) q^{44} +(-1.14587 + 2.57367i) q^{46} +(9.37069 + 0.327232i) q^{47} +(0.168311 + 0.675059i) q^{49} +(-0.481921 - 0.138189i) q^{50} +(-5.69261 - 10.7062i) q^{52} +(-2.90818 - 4.00277i) q^{53} +(1.37950 + 6.54237i) q^{55} +(5.43416 - 0.958189i) q^{56} +(-1.91953 - 2.45688i) q^{58} +(-4.57361 - 7.31930i) q^{59} +(-1.51556 + 1.02226i) q^{61} +(3.94110 - 0.837706i) q^{62} +(0.199893 + 1.90185i) q^{64} +(10.9315 - 9.17262i) q^{65} +(-0.347986 + 1.97353i) q^{67} +(2.79607 + 5.73279i) q^{68} +(1.12231 + 2.77783i) q^{70} +(3.24593 + 7.29048i) q^{71} +(-2.83955 - 13.3590i) q^{73} +(-0.0765657 + 2.19256i) q^{74} +(-1.85654 + 2.21254i) q^{76} +(-5.92556 + 7.03852i) q^{77} +(-11.0348 + 11.4268i) q^{79} +(-4.52571 + 1.47049i) q^{80} +(1.06900 + 0.776676i) q^{82} +(2.67558 - 5.48576i) q^{83} +(-5.91509 + 4.62138i) q^{85} +(0.0360694 - 0.515817i) q^{86} +(4.73809 + 4.59044i) q^{88} +(-9.25241 + 5.34188i) q^{89} +(19.2075 + 4.08267i) q^{91} +(8.35259 - 3.37466i) q^{92} +(3.48929 + 3.61327i) q^{94} +(-3.00121 - 1.59577i) q^{95} +(-0.613324 + 2.45991i) q^{97} +(-0.186353 + 0.322773i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 816 q + 30 q^{2} - 18 q^{4} + 21 q^{5} - 30 q^{7} + 45 q^{8} + 33 q^{11} - 30 q^{13} + 18 q^{14} - 30 q^{16} + 45 q^{17} - 15 q^{19} + 60 q^{20} - 15 q^{22} + 84 q^{23} - 27 q^{25} - 60 q^{28} - 60 q^{29}+ \cdots - 81 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.385357 + 0.372135i 0.272489 + 0.263139i 0.818329 0.574750i \(-0.194901\pi\)
−0.545840 + 0.837889i \(0.683790\pi\)
\(3\) 0 0
\(4\) −0.0597834 1.71197i −0.0298917 0.855986i
\(5\) 1.95609 0.487708i 0.874791 0.218110i 0.221448 0.975172i \(-0.428922\pi\)
0.653343 + 0.757062i \(0.273366\pi\)
\(6\) 0 0
\(7\) 2.18603 + 1.70792i 0.826243 + 0.645532i 0.937394 0.348272i \(-0.113231\pi\)
−0.111150 + 0.993804i \(0.535454\pi\)
\(8\) 1.33097 1.47819i 0.470568 0.522618i
\(9\) 0 0
\(10\) 0.935288 + 0.539989i 0.295764 + 0.170759i
\(11\) −0.121142 + 3.31441i −0.0365257 + 0.999333i
\(12\) 0 0
\(13\) 6.36211 3.10301i 1.76453 0.860620i 0.798585 0.601883i \(-0.205583\pi\)
0.965948 0.258737i \(-0.0833064\pi\)
\(14\) 0.206828 + 1.47166i 0.0552771 + 0.393317i
\(15\) 0 0
\(16\) −2.35470 + 0.164657i −0.588675 + 0.0411642i
\(17\) −3.40153 + 1.51446i −0.824993 + 0.367310i −0.775409 0.631459i \(-0.782456\pi\)
−0.0495840 + 0.998770i \(0.515790\pi\)
\(18\) 0 0
\(19\) −1.25300 1.12820i −0.287457 0.258828i 0.512768 0.858527i \(-0.328620\pi\)
−0.800225 + 0.599700i \(0.795287\pi\)
\(20\) −0.951885 3.31962i −0.212848 0.742289i
\(21\) 0 0
\(22\) −1.28009 + 1.23215i −0.272917 + 0.262696i
\(23\) 1.79865 + 4.94174i 0.375044 + 1.03042i 0.973384 + 0.229181i \(0.0736049\pi\)
−0.598340 + 0.801242i \(0.704173\pi\)
\(24\) 0 0
\(25\) −0.826304 + 0.439353i −0.165261 + 0.0878707i
\(26\) 3.60642 + 1.17180i 0.707278 + 0.229809i
\(27\) 0 0
\(28\) 2.79322 3.84453i 0.527868 0.726548i
\(29\) −5.76336 0.809987i −1.07023 0.150411i −0.418010 0.908442i \(-0.637272\pi\)
−0.652218 + 0.758031i \(0.726161\pi\)
\(30\) 0 0
\(31\) 4.20577 6.23530i 0.755378 1.11989i −0.233672 0.972315i \(-0.575074\pi\)
0.989050 0.147578i \(-0.0471479\pi\)
\(32\) −4.01615 3.36995i −0.709962 0.595729i
\(33\) 0 0
\(34\) −1.87439 0.682222i −0.321455 0.117000i
\(35\) 5.10905 + 2.27469i 0.863587 + 0.384494i
\(36\) 0 0
\(37\) 2.74029 + 3.04340i 0.450501 + 0.500332i 0.925023 0.379912i \(-0.124046\pi\)
−0.474522 + 0.880244i \(0.657379\pi\)
\(38\) −0.0630073 0.901046i −0.0102211 0.146169i
\(39\) 0 0
\(40\) 1.88257 3.54059i 0.297660 0.559817i
\(41\) 2.44256 0.343279i 0.381463 0.0536112i 0.0541644 0.998532i \(-0.482750\pi\)
0.327299 + 0.944921i \(0.393862\pi\)
\(42\) 0 0
\(43\) −0.620430 0.739399i −0.0946146 0.112757i 0.716660 0.697423i \(-0.245670\pi\)
−0.811274 + 0.584666i \(0.801226\pi\)
\(44\) 5.68142 + 0.00924481i 0.856506 + 0.00139371i
\(45\) 0 0
\(46\) −1.14587 + 2.57367i −0.168950 + 0.379468i
\(47\) 9.37069 + 0.327232i 1.36686 + 0.0477317i 0.708892 0.705317i \(-0.249195\pi\)
0.657965 + 0.753049i \(0.271418\pi\)
\(48\) 0 0
\(49\) 0.168311 + 0.675059i 0.0240444 + 0.0964370i
\(50\) −0.481921 0.138189i −0.0681539 0.0195428i
\(51\) 0 0
\(52\) −5.69261 10.7062i −0.789423 1.48469i
\(53\) −2.90818 4.00277i −0.399469 0.549822i 0.561141 0.827720i \(-0.310362\pi\)
−0.960611 + 0.277898i \(0.910362\pi\)
\(54\) 0 0
\(55\) 1.37950 + 6.54237i 0.186012 + 0.882174i
\(56\) 5.43416 0.958189i 0.726170 0.128043i
\(57\) 0 0
\(58\) −1.91953 2.45688i −0.252046 0.322604i
\(59\) −4.57361 7.31930i −0.595433 0.952892i −0.999275 0.0380633i \(-0.987881\pi\)
0.403842 0.914829i \(-0.367674\pi\)
\(60\) 0 0
\(61\) −1.51556 + 1.02226i −0.194048 + 0.130887i −0.652374 0.757897i \(-0.726227\pi\)
0.458326 + 0.888784i \(0.348449\pi\)
\(62\) 3.94110 0.837706i 0.500520 0.106389i
\(63\) 0 0
\(64\) 0.199893 + 1.90185i 0.0249866 + 0.237732i
\(65\) 10.9315 9.17262i 1.35589 1.13772i
\(66\) 0 0
\(67\) −0.347986 + 1.97353i −0.0425132 + 0.241105i −0.998658 0.0517899i \(-0.983507\pi\)
0.956145 + 0.292895i \(0.0946185\pi\)
\(68\) 2.79607 + 5.73279i 0.339073 + 0.695203i
\(69\) 0 0
\(70\) 1.12231 + 2.77783i 0.134142 + 0.332014i
\(71\) 3.24593 + 7.29048i 0.385221 + 0.865221i 0.997231 + 0.0743705i \(0.0236948\pi\)
−0.612009 + 0.790850i \(0.709639\pi\)
\(72\) 0 0
\(73\) −2.83955 13.3590i −0.332344 1.56355i −0.754047 0.656821i \(-0.771901\pi\)
0.421703 0.906734i \(-0.361432\pi\)
\(74\) −0.0765657 + 2.19256i −0.00890059 + 0.254879i
\(75\) 0 0
\(76\) −1.85654 + 2.21254i −0.212960 + 0.253796i
\(77\) −5.92556 + 7.03852i −0.675280 + 0.802113i
\(78\) 0 0
\(79\) −11.0348 + 11.4268i −1.24151 + 1.28562i −0.297883 + 0.954602i \(0.596280\pi\)
−0.943625 + 0.331017i \(0.892608\pi\)
\(80\) −4.52571 + 1.47049i −0.505989 + 0.164406i
\(81\) 0 0
\(82\) 1.06900 + 0.776676i 0.118052 + 0.0857696i
\(83\) 2.67558 5.48576i 0.293683 0.602140i −0.700028 0.714116i \(-0.746829\pi\)
0.993711 + 0.111976i \(0.0357179\pi\)
\(84\) 0 0
\(85\) −5.91509 + 4.62138i −0.641582 + 0.501259i
\(86\) 0.0360694 0.515817i 0.00388946 0.0556219i
\(87\) 0 0
\(88\) 4.73809 + 4.59044i 0.505082 + 0.489343i
\(89\) −9.25241 + 5.34188i −0.980753 + 0.566238i −0.902497 0.430695i \(-0.858268\pi\)
−0.0782556 + 0.996933i \(0.524935\pi\)
\(90\) 0 0
\(91\) 19.2075 + 4.08267i 2.01349 + 0.427981i
\(92\) 8.35259 3.37466i 0.870817 0.351833i
\(93\) 0 0
\(94\) 3.48929 + 3.61327i 0.359893 + 0.372680i
\(95\) −3.00121 1.59577i −0.307918 0.163723i
\(96\) 0 0
\(97\) −0.613324 + 2.45991i −0.0622736 + 0.249766i −0.993362 0.115027i \(-0.963305\pi\)
0.931089 + 0.364793i \(0.118860\pi\)
\(98\) −0.186353 + 0.322773i −0.0188245 + 0.0326050i
\(99\) 0 0
\(100\) 0.801560 + 1.38834i 0.0801560 + 0.138834i
\(101\) −3.46773 + 0.994356i −0.345052 + 0.0989422i −0.443688 0.896181i \(-0.646330\pi\)
0.0986353 + 0.995124i \(0.468552\pi\)
\(102\) 0 0
\(103\) 12.6590 7.91020i 1.24732 0.779415i 0.264577 0.964365i \(-0.414768\pi\)
0.982748 + 0.184950i \(0.0592122\pi\)
\(104\) 3.88093 13.5344i 0.380556 1.32716i
\(105\) 0 0
\(106\) 0.368882 2.62473i 0.0358290 0.254936i
\(107\) 1.23480 + 3.80034i 0.119373 + 0.367392i 0.992834 0.119502i \(-0.0381297\pi\)
−0.873461 + 0.486894i \(0.838130\pi\)
\(108\) 0 0
\(109\) 1.29557i 0.124093i 0.998073 + 0.0620467i \(0.0197628\pi\)
−0.998073 + 0.0620467i \(0.980237\pi\)
\(110\) −1.90305 + 3.03451i −0.181448 + 0.289329i
\(111\) 0 0
\(112\) −5.42868 3.66169i −0.512962 0.345997i
\(113\) −0.966604 0.390533i −0.0909304 0.0367383i 0.328691 0.944438i \(-0.393393\pi\)
−0.419621 + 0.907699i \(0.637837\pi\)
\(114\) 0 0
\(115\) 5.92844 + 8.78928i 0.552830 + 0.819604i
\(116\) −1.04212 + 9.91513i −0.0967586 + 0.920596i
\(117\) 0 0
\(118\) 0.961297 4.52255i 0.0884945 0.416334i
\(119\) −10.0224 2.49887i −0.918755 0.229071i
\(120\) 0 0
\(121\) −10.9706 0.803028i −0.997332 0.0730026i
\(122\) −0.964452 0.170059i −0.0873174 0.0153964i
\(123\) 0 0
\(124\) −10.9261 6.82738i −0.981193 0.613117i
\(125\) −8.89285 + 8.00716i −0.795401 + 0.716182i
\(126\) 0 0
\(127\) 11.2679 + 1.18430i 0.999865 + 0.105090i 0.590294 0.807188i \(-0.299012\pi\)
0.409571 + 0.912278i \(0.365678\pi\)
\(128\) −7.08619 + 9.06991i −0.626337 + 0.801674i
\(129\) 0 0
\(130\) 7.62599 + 0.533261i 0.668844 + 0.0467701i
\(131\) −2.64267 + 0.961854i −0.230891 + 0.0840376i −0.454875 0.890555i \(-0.650316\pi\)
0.223984 + 0.974593i \(0.428094\pi\)
\(132\) 0 0
\(133\) −0.812216 4.60631i −0.0704281 0.399417i
\(134\) −0.868517 + 0.631015i −0.0750285 + 0.0545114i
\(135\) 0 0
\(136\) −2.28867 + 7.04380i −0.196252 + 0.604001i
\(137\) −9.20248 4.48835i −0.786221 0.383466i 0.00110751 0.999999i \(-0.499647\pi\)
−0.787328 + 0.616534i \(0.788536\pi\)
\(138\) 0 0
\(139\) −12.8109 + 0.447366i −1.08661 + 0.0379451i −0.572595 0.819839i \(-0.694063\pi\)
−0.514011 + 0.857784i \(0.671841\pi\)
\(140\) 3.58878 8.88253i 0.303307 0.750711i
\(141\) 0 0
\(142\) −1.46220 + 4.01737i −0.122705 + 0.337130i
\(143\) 9.51393 + 21.4626i 0.795595 + 1.79479i
\(144\) 0 0
\(145\) −11.6687 + 1.22643i −0.969032 + 0.101849i
\(146\) 3.87712 6.20469i 0.320873 0.513504i
\(147\) 0 0
\(148\) 5.04639 4.87325i 0.414811 0.400578i
\(149\) −13.8533 + 13.3780i −1.13491 + 1.09597i −0.140531 + 0.990076i \(0.544881\pi\)
−0.994378 + 0.105892i \(0.966230\pi\)
\(150\) 0 0
\(151\) −8.15429 + 13.0496i −0.663587 + 1.06196i 0.329452 + 0.944172i \(0.393136\pi\)
−0.993039 + 0.117789i \(0.962420\pi\)
\(152\) −3.33539 + 0.350564i −0.270536 + 0.0284345i
\(153\) 0 0
\(154\) −4.90274 + 0.507234i −0.395074 + 0.0408741i
\(155\) 5.18585 14.2480i 0.416538 1.14443i
\(156\) 0 0
\(157\) 0.138348 0.342423i 0.0110413 0.0273283i −0.921562 0.388230i \(-0.873087\pi\)
0.932604 + 0.360902i \(0.117531\pi\)
\(158\) −8.50465 + 0.296989i −0.676594 + 0.0236272i
\(159\) 0 0
\(160\) −9.49951 4.63322i −0.751002 0.366288i
\(161\) −4.50818 + 13.8747i −0.355294 + 1.09348i
\(162\) 0 0
\(163\) −20.1301 + 14.6254i −1.57671 + 1.14555i −0.656364 + 0.754444i \(0.727906\pi\)
−0.920347 + 0.391103i \(0.872094\pi\)
\(164\) −0.733708 4.16107i −0.0572930 0.324925i
\(165\) 0 0
\(166\) 3.07250 1.11830i 0.238472 0.0867968i
\(167\) −2.64620 0.185040i −0.204769 0.0143188i −0.0329964 0.999455i \(-0.510505\pi\)
−0.171773 + 0.985137i \(0.554949\pi\)
\(168\) 0 0
\(169\) 22.8442 29.2392i 1.75725 2.24917i
\(170\) −3.99920 0.420333i −0.306725 0.0322381i
\(171\) 0 0
\(172\) −1.22874 + 1.10636i −0.0936905 + 0.0843593i
\(173\) −0.940509 0.587695i −0.0715056 0.0446817i 0.493695 0.869635i \(-0.335646\pi\)
−0.565201 + 0.824953i \(0.691201\pi\)
\(174\) 0 0
\(175\) −2.55671 0.450816i −0.193269 0.0340785i
\(176\) −0.260487 7.82440i −0.0196350 0.589786i
\(177\) 0 0
\(178\) −5.55338 1.38461i −0.416244 0.103781i
\(179\) 4.74045 22.3020i 0.354318 1.66693i −0.334804 0.942288i \(-0.608670\pi\)
0.689122 0.724646i \(-0.257996\pi\)
\(180\) 0 0
\(181\) −1.17509 + 11.1802i −0.0873436 + 0.831018i 0.859891 + 0.510477i \(0.170531\pi\)
−0.947235 + 0.320541i \(0.896135\pi\)
\(182\) 5.88243 + 8.72107i 0.436035 + 0.646448i
\(183\) 0 0
\(184\) 9.69875 + 3.91855i 0.715002 + 0.288879i
\(185\) 6.84455 + 4.61671i 0.503222 + 0.339427i
\(186\) 0 0
\(187\) −4.60748 11.4575i −0.336932 0.837859i
\(188\) 16.0619i 1.17144i
\(189\) 0 0
\(190\) −0.562696 1.73180i −0.0408222 0.125638i
\(191\) 1.63677 11.6462i 0.118432 0.842689i −0.836942 0.547291i \(-0.815659\pi\)
0.955374 0.295398i \(-0.0954521\pi\)
\(192\) 0 0
\(193\) −0.420023 + 1.46479i −0.0302339 + 0.105438i −0.974932 0.222503i \(-0.928577\pi\)
0.944698 + 0.327942i \(0.106355\pi\)
\(194\) −1.15177 + 0.719704i −0.0826921 + 0.0516718i
\(195\) 0 0
\(196\) 1.14562 0.328501i 0.0818300 0.0234644i
\(197\) 5.57501 + 9.65620i 0.397203 + 0.687976i 0.993380 0.114878i \(-0.0366476\pi\)
−0.596177 + 0.802853i \(0.703314\pi\)
\(198\) 0 0
\(199\) −0.596514 + 1.03319i −0.0422857 + 0.0732410i −0.886394 0.462932i \(-0.846797\pi\)
0.844108 + 0.536173i \(0.180131\pi\)
\(200\) −0.450335 + 1.80620i −0.0318435 + 0.127717i
\(201\) 0 0
\(202\) −1.70635 0.907283i −0.120058 0.0638362i
\(203\) −11.2155 11.6140i −0.787174 0.815142i
\(204\) 0 0
\(205\) 4.61044 1.86274i 0.322007 0.130099i
\(206\) 7.82189 + 1.66259i 0.544977 + 0.115838i
\(207\) 0 0
\(208\) −14.4699 + 8.35422i −1.00331 + 0.579261i
\(209\) 3.89112 4.01628i 0.269155 0.277812i
\(210\) 0 0
\(211\) 0.371220 5.30869i 0.0255558 0.365465i −0.967907 0.251309i \(-0.919139\pi\)
0.993463 0.114156i \(-0.0364165\pi\)
\(212\) −6.67876 + 5.21802i −0.458699 + 0.358375i
\(213\) 0 0
\(214\) −0.938398 + 1.92400i −0.0641476 + 0.131522i
\(215\) −1.57423 1.14374i −0.107361 0.0780027i
\(216\) 0 0
\(217\) 19.8433 6.44749i 1.34705 0.437684i
\(218\) −0.482128 + 0.499258i −0.0326538 + 0.0338140i
\(219\) 0 0
\(220\) 11.1179 2.75279i 0.749568 0.185593i
\(221\) −16.9415 + 20.1902i −1.13961 + 1.35814i
\(222\) 0 0
\(223\) 0.0522089 1.49507i 0.00349616 0.100117i −0.996388 0.0849142i \(-0.972938\pi\)
0.999884 0.0152028i \(-0.00483940\pi\)
\(224\) −3.02385 14.2261i −0.202039 0.950520i
\(225\) 0 0
\(226\) −0.227157 0.510202i −0.0151102 0.0339381i
\(227\) −1.18147 2.92425i −0.0784171 0.194089i 0.882883 0.469594i \(-0.155600\pi\)
−0.961300 + 0.275505i \(0.911155\pi\)
\(228\) 0 0
\(229\) 8.18481 + 16.7813i 0.540867 + 1.10894i 0.977818 + 0.209457i \(0.0671696\pi\)
−0.436950 + 0.899486i \(0.643941\pi\)
\(230\) −0.986231 + 5.59319i −0.0650301 + 0.368804i
\(231\) 0 0
\(232\) −8.86815 + 7.44126i −0.582222 + 0.488542i
\(233\) −0.202675 1.92832i −0.0132777 0.126329i 0.985875 0.167482i \(-0.0535635\pi\)
−0.999153 + 0.0411531i \(0.986897\pi\)
\(234\) 0 0
\(235\) 18.4895 3.93007i 1.20612 0.256370i
\(236\) −12.2570 + 8.26746i −0.797863 + 0.538166i
\(237\) 0 0
\(238\) −2.93230 4.69266i −0.190073 0.304180i
\(239\) −5.22676 6.68995i −0.338091 0.432737i 0.588678 0.808367i \(-0.299648\pi\)
−0.926770 + 0.375630i \(0.877426\pi\)
\(240\) 0 0
\(241\) −7.30698 + 1.28842i −0.470684 + 0.0829943i −0.403959 0.914777i \(-0.632366\pi\)
−0.0667250 + 0.997771i \(0.521255\pi\)
\(242\) −3.92878 4.39202i −0.252552 0.282330i
\(243\) 0 0
\(244\) 1.84069 + 2.53349i 0.117838 + 0.162190i
\(245\) 0.658464 + 1.23839i 0.0420677 + 0.0791179i
\(246\) 0 0
\(247\) −11.4725 3.28970i −0.729980 0.209318i
\(248\) −3.61922 14.5159i −0.229821 0.921760i
\(249\) 0 0
\(250\) −6.40667 0.223726i −0.405194 0.0141497i
\(251\) 0.904542 2.03163i 0.0570942 0.128236i −0.882746 0.469851i \(-0.844307\pi\)
0.939840 + 0.341616i \(0.110974\pi\)
\(252\) 0 0
\(253\) −16.5968 + 5.36280i −1.04343 + 0.337156i
\(254\) 3.90145 + 4.64956i 0.244799 + 0.291740i
\(255\) 0 0
\(256\) −2.31851 + 0.325845i −0.144907 + 0.0203653i
\(257\) 13.5544 25.4920i 0.845497 1.59015i 0.0387524 0.999249i \(-0.487662\pi\)
0.806745 0.590900i \(-0.201227\pi\)
\(258\) 0 0
\(259\) 0.792493 + 11.3332i 0.0492431 + 0.704209i
\(260\) −16.3568 18.1661i −1.01441 1.12661i
\(261\) 0 0
\(262\) −1.37631 0.612774i −0.0850289 0.0378573i
\(263\) 5.01185 + 1.82416i 0.309044 + 0.112483i 0.491886 0.870659i \(-0.336308\pi\)
−0.182842 + 0.983142i \(0.558530\pi\)
\(264\) 0 0
\(265\) −7.64085 6.41143i −0.469374 0.393851i
\(266\) 1.40118 2.07733i 0.0859116 0.127369i
\(267\) 0 0
\(268\) 3.39942 + 0.477758i 0.207653 + 0.0291837i
\(269\) 11.6256 16.0013i 0.708828 0.975617i −0.290994 0.956725i \(-0.593986\pi\)
0.999822 0.0188926i \(-0.00601405\pi\)
\(270\) 0 0
\(271\) −12.0019 3.89964i −0.729061 0.236886i −0.0791140 0.996866i \(-0.525209\pi\)
−0.649947 + 0.759979i \(0.725209\pi\)
\(272\) 7.76023 4.12619i 0.470533 0.250187i
\(273\) 0 0
\(274\) −1.87597 5.15418i −0.113331 0.311376i
\(275\) −1.35610 2.79193i −0.0817758 0.168360i
\(276\) 0 0
\(277\) 8.32646 + 29.0378i 0.500288 + 1.74471i 0.653899 + 0.756581i \(0.273132\pi\)
−0.153611 + 0.988131i \(0.549090\pi\)
\(278\) −5.10325 4.59499i −0.306073 0.275589i
\(279\) 0 0
\(280\) 10.1624 4.52459i 0.607319 0.270396i
\(281\) −16.8796 + 1.18034i −1.00695 + 0.0704131i −0.563697 0.825981i \(-0.690622\pi\)
−0.443257 + 0.896394i \(0.646177\pi\)
\(282\) 0 0
\(283\) 2.43157 + 17.3015i 0.144542 + 1.02847i 0.918553 + 0.395297i \(0.129358\pi\)
−0.774011 + 0.633172i \(0.781753\pi\)
\(284\) 12.2870 5.99279i 0.729102 0.355607i
\(285\) 0 0
\(286\) −4.32071 + 11.8112i −0.255489 + 0.698412i
\(287\) 5.92580 + 3.42127i 0.349789 + 0.201951i
\(288\) 0 0
\(289\) −2.09838 + 2.33049i −0.123434 + 0.137088i
\(290\) −4.95301 3.86972i −0.290851 0.227238i
\(291\) 0 0
\(292\) −22.7005 + 5.65987i −1.32845 + 0.331219i
\(293\) 0.0565657 + 1.61983i 0.00330460 + 0.0946315i 0.999922 + 0.0124554i \(0.00396477\pi\)
−0.996618 + 0.0821761i \(0.973813\pi\)
\(294\) 0 0
\(295\) −12.5161 12.0866i −0.728714 0.703711i
\(296\) 8.14596 0.473474
\(297\) 0 0
\(298\) −10.3169 −0.597642
\(299\) 26.7774 + 25.8587i 1.54858 + 1.49545i
\(300\) 0 0
\(301\) −0.0934478 2.67599i −0.00538624 0.154242i
\(302\) −7.99853 + 1.99426i −0.460264 + 0.114757i
\(303\) 0 0
\(304\) 3.13620 + 2.45027i 0.179873 + 0.140533i
\(305\) −2.46601 + 2.73879i −0.141204 + 0.156822i
\(306\) 0 0
\(307\) 3.84384 + 2.21924i 0.219379 + 0.126659i 0.605663 0.795721i \(-0.292908\pi\)
−0.386283 + 0.922380i \(0.626241\pi\)
\(308\) 12.4040 + 9.72360i 0.706783 + 0.554054i
\(309\) 0 0
\(310\) 7.30059 3.56074i 0.414646 0.202236i
\(311\) 3.61619 + 25.7305i 0.205055 + 1.45904i 0.772175 + 0.635410i \(0.219169\pi\)
−0.567120 + 0.823635i \(0.691942\pi\)
\(312\) 0 0
\(313\) 1.22825 0.0858873i 0.0694245 0.00485464i −0.0350020 0.999387i \(-0.511144\pi\)
0.104427 + 0.994533i \(0.466699\pi\)
\(314\) 0.180741 0.0804710i 0.0101998 0.00454124i
\(315\) 0 0
\(316\) 20.2221 + 18.2081i 1.13758 + 1.02428i
\(317\) 3.31208 + 11.5506i 0.186025 + 0.648746i 0.997892 + 0.0649029i \(0.0206738\pi\)
−0.811867 + 0.583843i \(0.801548\pi\)
\(318\) 0 0
\(319\) 3.38281 19.0040i 0.189401 1.06402i
\(320\) 1.31856 + 3.62271i 0.0737097 + 0.202516i
\(321\) 0 0
\(322\) −6.90054 + 3.66908i −0.384552 + 0.204470i
\(323\) 5.97073 + 1.94001i 0.332220 + 0.107945i
\(324\) 0 0
\(325\) −3.89372 + 5.35924i −0.215985 + 0.297277i
\(326\) −13.1999 1.85512i −0.731075 0.102746i
\(327\) 0 0
\(328\) 2.74353 4.06745i 0.151486 0.224587i
\(329\) 19.9258 + 16.7197i 1.09854 + 0.921787i
\(330\) 0 0
\(331\) 22.6014 + 8.22625i 1.24229 + 0.452155i 0.877788 0.479048i \(-0.159018\pi\)
0.364499 + 0.931204i \(0.381240\pi\)
\(332\) −9.55142 4.25257i −0.524202 0.233390i
\(333\) 0 0
\(334\) −0.950872 1.05605i −0.0520294 0.0577845i
\(335\) 0.281813 + 4.03011i 0.0153971 + 0.220189i
\(336\) 0 0
\(337\) −1.78299 + 3.35331i −0.0971254 + 0.182666i −0.926774 0.375620i \(-0.877430\pi\)
0.829648 + 0.558286i \(0.188541\pi\)
\(338\) 19.6841 2.76642i 1.07068 0.150474i
\(339\) 0 0
\(340\) 8.26529 + 9.85019i 0.448248 + 0.534202i
\(341\) 20.1569 + 14.6950i 1.09156 + 0.795779i
\(342\) 0 0
\(343\) 7.11333 15.9768i 0.384084 0.862667i
\(344\) −1.91874 0.0670040i −0.103452 0.00361261i
\(345\) 0 0
\(346\) −0.143730 0.576469i −0.00772697 0.0309912i
\(347\) −25.1989 7.22566i −1.35275 0.387894i −0.480515 0.876987i \(-0.659550\pi\)
−0.872232 + 0.489093i \(0.837328\pi\)
\(348\) 0 0
\(349\) 2.32138 + 4.36588i 0.124261 + 0.233700i 0.937312 0.348492i \(-0.113306\pi\)
−0.813051 + 0.582192i \(0.802195\pi\)
\(350\) −0.817481 1.12517i −0.0436962 0.0601427i
\(351\) 0 0
\(352\) 11.6559 12.9029i 0.621263 0.687729i
\(353\) −15.1849 + 2.67750i −0.808210 + 0.142509i −0.562460 0.826824i \(-0.690145\pi\)
−0.245749 + 0.969333i \(0.579034\pi\)
\(354\) 0 0
\(355\) 9.90497 + 12.6778i 0.525701 + 0.672867i
\(356\) 9.69829 + 15.5205i 0.514008 + 0.822585i
\(357\) 0 0
\(358\) 10.1261 6.83017i 0.535183 0.360986i
\(359\) 33.3717 7.09336i 1.76129 0.374373i 0.790155 0.612908i \(-0.210000\pi\)
0.971134 + 0.238534i \(0.0766669\pi\)
\(360\) 0 0
\(361\) −1.68888 16.0686i −0.0888886 0.845718i
\(362\) −4.61338 + 3.87108i −0.242474 + 0.203460i
\(363\) 0 0
\(364\) 5.84114 33.1267i 0.306159 1.73631i
\(365\) −12.0697 24.7466i −0.631758 1.29530i
\(366\) 0 0
\(367\) 6.17098 + 15.2737i 0.322123 + 0.797282i 0.998173 + 0.0604258i \(0.0192459\pi\)
−0.676050 + 0.736856i \(0.736310\pi\)
\(368\) −5.04896 11.3402i −0.263195 0.591147i
\(369\) 0 0
\(370\) 0.919558 + 4.32618i 0.0478056 + 0.224907i
\(371\) 0.479012 13.7171i 0.0248691 0.712157i
\(372\) 0 0
\(373\) −20.2914 + 24.1824i −1.05065 + 1.25212i −0.0838773 + 0.996476i \(0.526730\pi\)
−0.966772 + 0.255639i \(0.917714\pi\)
\(374\) 2.48823 6.12985i 0.128663 0.316967i
\(375\) 0 0
\(376\) 12.9558 13.4161i 0.668144 0.691883i
\(377\) −39.1805 + 12.7305i −2.01790 + 0.655655i
\(378\) 0 0
\(379\) 1.71682 + 1.24734i 0.0881871 + 0.0640717i 0.631005 0.775779i \(-0.282643\pi\)
−0.542818 + 0.839850i \(0.682643\pi\)
\(380\) −2.55249 + 5.23339i −0.130940 + 0.268467i
\(381\) 0 0
\(382\) 4.96470 3.87885i 0.254016 0.198459i
\(383\) −1.12171 + 16.0412i −0.0573166 + 0.819666i 0.880831 + 0.473431i \(0.156985\pi\)
−0.938148 + 0.346235i \(0.887460\pi\)
\(384\) 0 0
\(385\) −8.15819 + 16.6579i −0.415780 + 0.848967i
\(386\) −0.706961 + 0.408164i −0.0359834 + 0.0207750i
\(387\) 0 0
\(388\) 4.24796 + 0.902932i 0.215658 + 0.0458394i
\(389\) 17.7968 7.19039i 0.902336 0.364567i 0.123902 0.992294i \(-0.460459\pi\)
0.778433 + 0.627727i \(0.216015\pi\)
\(390\) 0 0
\(391\) −13.6022 14.0855i −0.687894 0.712335i
\(392\) 1.22188 + 0.649685i 0.0617143 + 0.0328141i
\(393\) 0 0
\(394\) −1.44504 + 5.79574i −0.0728001 + 0.291985i
\(395\) −16.0120 + 27.7337i −0.805653 + 1.39543i
\(396\) 0 0
\(397\) −8.27264 14.3286i −0.415192 0.719133i 0.580257 0.814434i \(-0.302952\pi\)
−0.995449 + 0.0953004i \(0.969619\pi\)
\(398\) −0.614358 + 0.176164i −0.0307950 + 0.00883032i
\(399\) 0 0
\(400\) 1.87336 1.17060i 0.0936678 0.0585301i
\(401\) −7.19990 + 25.1090i −0.359546 + 1.25389i 0.548902 + 0.835887i \(0.315046\pi\)
−0.908448 + 0.417999i \(0.862732\pi\)
\(402\) 0 0
\(403\) 7.40935 52.7202i 0.369086 2.62618i
\(404\) 1.90962 + 5.87721i 0.0950073 + 0.292402i
\(405\) 0 0
\(406\) 8.64922i 0.429254i
\(407\) −10.4191 + 8.71377i −0.516453 + 0.431926i
\(408\) 0 0
\(409\) 15.7084 + 10.5954i 0.776730 + 0.523911i 0.882406 0.470489i \(-0.155923\pi\)
−0.105675 + 0.994401i \(0.533700\pi\)
\(410\) 2.46986 + 0.997888i 0.121978 + 0.0492822i
\(411\) 0 0
\(412\) −14.2988 21.1989i −0.704453 1.04439i
\(413\) 2.50270 23.8116i 0.123150 1.17169i
\(414\) 0 0
\(415\) 2.55824 12.0355i 0.125579 0.590802i
\(416\) −36.0082 8.97785i −1.76545 0.440175i
\(417\) 0 0
\(418\) 2.99407 0.0996776i 0.146445 0.00487539i
\(419\) −6.95358 1.22610i −0.339704 0.0598991i 0.00119373 0.999999i \(-0.499620\pi\)
−0.340898 + 0.940100i \(0.610731\pi\)
\(420\) 0 0
\(421\) −11.1534 6.96945i −0.543586 0.339670i 0.230174 0.973150i \(-0.426071\pi\)
−0.773759 + 0.633480i \(0.781626\pi\)
\(422\) 2.11860 1.90760i 0.103132 0.0928604i
\(423\) 0 0
\(424\) −9.78753 1.02871i −0.475325 0.0499586i
\(425\) 2.14532 2.74588i 0.104063 0.133195i
\(426\) 0 0
\(427\) −5.05901 0.353760i −0.244823 0.0171197i
\(428\) 6.43225 2.34115i 0.310914 0.113164i
\(429\) 0 0
\(430\) −0.181013 1.02658i −0.00872922 0.0495059i
\(431\) 28.8671 20.9732i 1.39048 1.01024i 0.394668 0.918824i \(-0.370860\pi\)
0.995812 0.0914192i \(-0.0291403\pi\)
\(432\) 0 0
\(433\) 3.21010 9.87967i 0.154267 0.474786i −0.843818 0.536629i \(-0.819698\pi\)
0.998086 + 0.0618423i \(0.0196976\pi\)
\(434\) 10.0461 + 4.89981i 0.482229 + 0.235199i
\(435\) 0 0
\(436\) 2.21798 0.0774537i 0.106222 0.00370936i
\(437\) 3.32159 8.22122i 0.158893 0.393274i
\(438\) 0 0
\(439\) 5.31252 14.5960i 0.253553 0.696631i −0.745977 0.665972i \(-0.768017\pi\)
0.999530 0.0306592i \(-0.00976066\pi\)
\(440\) 11.5069 + 6.66852i 0.548571 + 0.317909i
\(441\) 0 0
\(442\) −14.0420 + 1.47588i −0.667911 + 0.0702002i
\(443\) −1.67662 + 2.68316i −0.0796588 + 0.127481i −0.885479 0.464680i \(-0.846169\pi\)
0.805820 + 0.592161i \(0.201725\pi\)
\(444\) 0 0
\(445\) −15.4933 + 14.9617i −0.734452 + 0.709252i
\(446\) 0.576486 0.556706i 0.0272974 0.0263608i
\(447\) 0 0
\(448\) −2.81124 + 4.49892i −0.132818 + 0.212554i
\(449\) 4.74446 0.498663i 0.223905 0.0235334i 0.00808837 0.999967i \(-0.497425\pi\)
0.215817 + 0.976434i \(0.430759\pi\)
\(450\) 0 0
\(451\) 0.841872 + 8.13723i 0.0396422 + 0.383167i
\(452\) −0.610795 + 1.67815i −0.0287294 + 0.0789333i
\(453\) 0 0
\(454\) 0.632926 1.56655i 0.0297047 0.0735217i
\(455\) 39.5627 1.38156i 1.85473 0.0647686i
\(456\) 0 0
\(457\) 7.87981 + 3.84324i 0.368602 + 0.179779i 0.613357 0.789806i \(-0.289819\pi\)
−0.244755 + 0.969585i \(0.578708\pi\)
\(458\) −3.09085 + 9.51267i −0.144426 + 0.444498i
\(459\) 0 0
\(460\) 14.6926 10.6748i 0.685045 0.497714i
\(461\) 0.392501 + 2.22598i 0.0182806 + 0.103674i 0.992583 0.121570i \(-0.0387930\pi\)
−0.974302 + 0.225245i \(0.927682\pi\)
\(462\) 0 0
\(463\) 12.9450 4.71161i 0.601607 0.218967i −0.0232198 0.999730i \(-0.507392\pi\)
0.624827 + 0.780763i \(0.285170\pi\)
\(464\) 13.7044 + 0.958302i 0.636209 + 0.0444880i
\(465\) 0 0
\(466\) 0.639495 0.818516i 0.0296240 0.0379170i
\(467\) −27.1779 2.85651i −1.25764 0.132184i −0.547839 0.836584i \(-0.684549\pi\)
−0.709803 + 0.704400i \(0.751216\pi\)
\(468\) 0 0
\(469\) −4.13133 + 3.71986i −0.190767 + 0.171767i
\(470\) 8.58759 + 5.36612i 0.396116 + 0.247521i
\(471\) 0 0
\(472\) −16.9066 2.98109i −0.778190 0.137216i
\(473\) 2.52583 1.96679i 0.116138 0.0904330i
\(474\) 0 0
\(475\) 1.53104 + 0.381730i 0.0702488 + 0.0175150i
\(476\) −3.67883 + 17.3075i −0.168619 + 0.793289i
\(477\) 0 0
\(478\) 0.475395 4.52308i 0.0217441 0.206881i
\(479\) 4.69764 + 6.96454i 0.214641 + 0.318218i 0.920947 0.389689i \(-0.127417\pi\)
−0.706306 + 0.707907i \(0.749640\pi\)
\(480\) 0 0
\(481\) 26.8777 + 10.8593i 1.22552 + 0.495142i
\(482\) −3.29526 2.22268i −0.150095 0.101240i
\(483\) 0 0
\(484\) −0.718899 + 18.8294i −0.0326772 + 0.855884i
\(485\) 5.11093i 0.232075i
\(486\) 0 0
\(487\) 8.33051 + 25.6387i 0.377491 + 1.16180i 0.941782 + 0.336223i \(0.109150\pi\)
−0.564291 + 0.825576i \(0.690850\pi\)
\(488\) −0.506071 + 3.60088i −0.0229087 + 0.163004i
\(489\) 0 0
\(490\) −0.207105 + 0.722260i −0.00935604 + 0.0326284i
\(491\) −1.97936 + 1.23684i −0.0893273 + 0.0558179i −0.573847 0.818962i \(-0.694550\pi\)
0.484520 + 0.874780i \(0.338994\pi\)
\(492\) 0 0
\(493\) 20.8309 5.97317i 0.938178 0.269018i
\(494\) −3.19681 5.53704i −0.143831 0.249123i
\(495\) 0 0
\(496\) −8.87664 + 15.3748i −0.398573 + 0.690348i
\(497\) −5.35582 + 21.4810i −0.240241 + 0.963555i
\(498\) 0 0
\(499\) 4.03084 + 2.14324i 0.180445 + 0.0959444i 0.557237 0.830354i \(-0.311862\pi\)
−0.376792 + 0.926298i \(0.622973\pi\)
\(500\) 14.2397 + 14.7456i 0.636818 + 0.659444i
\(501\) 0 0
\(502\) 1.10461 0.446293i 0.0493014 0.0199190i
\(503\) 26.2412 + 5.57775i 1.17004 + 0.248700i 0.751646 0.659566i \(-0.229260\pi\)
0.418393 + 0.908266i \(0.362593\pi\)
\(504\) 0 0
\(505\) −6.29825 + 3.63629i −0.280268 + 0.161813i
\(506\) −8.39140 4.10968i −0.373043 0.182697i
\(507\) 0 0
\(508\) 1.35386 19.3611i 0.0600679 0.859012i
\(509\) 25.0153 19.5441i 1.10878 0.866276i 0.116864 0.993148i \(-0.462716\pi\)
0.991919 + 0.126872i \(0.0404937\pi\)
\(510\) 0 0
\(511\) 16.6087 34.0530i 0.734728 1.50641i
\(512\) 17.6087 + 12.7934i 0.778200 + 0.565396i
\(513\) 0 0
\(514\) 14.7097 4.77949i 0.648819 0.210814i
\(515\) 20.9042 21.6470i 0.921150 0.953879i
\(516\) 0 0
\(517\) −2.21976 + 31.0187i −0.0976252 + 1.36420i
\(518\) −3.91208 + 4.66223i −0.171887 + 0.204847i
\(519\) 0 0
\(520\) 0.990607 28.3673i 0.0434410 1.24399i
\(521\) −5.85536 27.5473i −0.256528 1.20687i −0.898095 0.439802i \(-0.855049\pi\)
0.641567 0.767067i \(-0.278285\pi\)
\(522\) 0 0
\(523\) −10.5830 23.7698i −0.462762 1.03938i −0.982705 0.185179i \(-0.940714\pi\)
0.519943 0.854201i \(-0.325953\pi\)
\(524\) 1.80465 + 4.46668i 0.0788367 + 0.195128i
\(525\) 0 0
\(526\) 1.25252 + 2.56804i 0.0546123 + 0.111972i
\(527\) −4.86293 + 27.5791i −0.211833 + 1.20136i
\(528\) 0 0
\(529\) −3.56663 + 2.99276i −0.155071 + 0.130120i
\(530\) −0.558537 5.31412i −0.0242613 0.230831i
\(531\) 0 0
\(532\) −7.83731 + 1.66587i −0.339790 + 0.0722247i
\(533\) 14.4746 9.76326i 0.626966 0.422894i
\(534\) 0 0
\(535\) 4.26885 + 6.83158i 0.184558 + 0.295355i
\(536\) 2.45409 + 3.14109i 0.106000 + 0.135674i
\(537\) 0 0
\(538\) 10.4347 1.83991i 0.449871 0.0793244i
\(539\) −2.25781 + 0.476074i −0.0972509 + 0.0205060i
\(540\) 0 0
\(541\) −8.51340 11.7177i −0.366020 0.503783i 0.585794 0.810460i \(-0.300783\pi\)
−0.951814 + 0.306677i \(0.900783\pi\)
\(542\) −3.17381 5.96907i −0.136327 0.256394i
\(543\) 0 0
\(544\) 18.7647 + 5.38070i 0.804531 + 0.230696i
\(545\) 0.631862 + 2.53426i 0.0270660 + 0.108556i
\(546\) 0 0
\(547\) 38.8717 + 1.35743i 1.66203 + 0.0580395i 0.850403 0.526132i \(-0.176358\pi\)
0.811630 + 0.584172i \(0.198581\pi\)
\(548\) −7.13377 + 16.0227i −0.304740 + 0.684456i
\(549\) 0 0
\(550\) 0.516395 1.58054i 0.0220191 0.0673946i
\(551\) 6.30764 + 7.51715i 0.268714 + 0.320241i
\(552\) 0 0
\(553\) −43.6384 + 6.13298i −1.85570 + 0.260801i
\(554\) −7.59733 + 14.2885i −0.322780 + 0.607060i
\(555\) 0 0
\(556\) 1.53176 + 21.9051i 0.0649609 + 0.928984i
\(557\) −24.4363 27.1393i −1.03540 1.14993i −0.988530 0.151028i \(-0.951742\pi\)
−0.0468708 0.998901i \(-0.514925\pi\)
\(558\) 0 0
\(559\) −6.24161 2.77894i −0.263992 0.117537i
\(560\) −12.4048 4.51499i −0.524200 0.190793i
\(561\) 0 0
\(562\) −6.94394 5.82665i −0.292912 0.245783i
\(563\) −3.48745 + 5.17035i −0.146978 + 0.217904i −0.895336 0.445391i \(-0.853065\pi\)
0.748358 + 0.663295i \(0.230843\pi\)
\(564\) 0 0
\(565\) −2.08123 0.292498i −0.0875581 0.0123055i
\(566\) −5.50148 + 7.57214i −0.231245 + 0.318281i
\(567\) 0 0
\(568\) 15.0969 + 4.90529i 0.633453 + 0.205821i
\(569\) 3.51936 1.87128i 0.147539 0.0784480i −0.394061 0.919084i \(-0.628930\pi\)
0.541600 + 0.840636i \(0.317819\pi\)
\(570\) 0 0
\(571\) −2.01549 5.53753i −0.0843458 0.231738i 0.890349 0.455279i \(-0.150461\pi\)
−0.974695 + 0.223541i \(0.928238\pi\)
\(572\) 36.1745 17.5707i 1.51253 0.734667i
\(573\) 0 0
\(574\) 1.01038 + 3.52361i 0.0421724 + 0.147073i
\(575\) −3.65740 3.29314i −0.152524 0.137333i
\(576\) 0 0
\(577\) 21.5376 9.58914i 0.896621 0.399201i 0.0939176 0.995580i \(-0.470061\pi\)
0.802703 + 0.596379i \(0.203394\pi\)
\(578\) −1.67589 + 0.117189i −0.0697077 + 0.00487443i
\(579\) 0 0
\(580\) 2.79720 + 19.9031i 0.116148 + 0.826433i
\(581\) 15.2181 7.42238i 0.631355 0.307932i
\(582\) 0 0
\(583\) 13.6191 9.15400i 0.564046 0.379120i
\(584\) −23.5265 13.5830i −0.973533 0.562069i
\(585\) 0 0
\(586\) −0.580998 + 0.645263i −0.0240008 + 0.0266556i
\(587\) −34.1172 26.6553i −1.40817 1.10018i −0.980560 0.196218i \(-0.937134\pi\)
−0.427608 0.903964i \(-0.640644\pi\)
\(588\) 0 0
\(589\) −12.3045 + 3.06786i −0.506998 + 0.126409i
\(590\) −0.325299 9.31535i −0.0133924 0.383507i
\(591\) 0 0
\(592\) −6.95369 6.71510i −0.285795 0.275989i
\(593\) −35.6507 −1.46400 −0.731998 0.681306i \(-0.761412\pi\)
−0.731998 + 0.681306i \(0.761412\pi\)
\(594\) 0 0
\(595\) −20.8235 −0.853681
\(596\) 23.7310 + 22.9167i 0.972058 + 0.938705i
\(597\) 0 0
\(598\) 0.695959 + 19.9297i 0.0284599 + 0.814984i
\(599\) 36.7342 9.15887i 1.50092 0.374221i 0.597111 0.802159i \(-0.296315\pi\)
0.903808 + 0.427938i \(0.140760\pi\)
\(600\) 0 0
\(601\) −1.04235 0.814370i −0.0425182 0.0332188i 0.594178 0.804333i \(-0.297477\pi\)
−0.636696 + 0.771115i \(0.719700\pi\)
\(602\) 0.959821 1.06599i 0.0391194 0.0434465i
\(603\) 0 0
\(604\) 22.8280 + 13.1798i 0.928859 + 0.536277i
\(605\) −21.8512 + 3.77968i −0.888379 + 0.153666i
\(606\) 0 0
\(607\) 1.10511 0.539000i 0.0448552 0.0218773i −0.415807 0.909453i \(-0.636501\pi\)
0.460662 + 0.887576i \(0.347612\pi\)
\(608\) 1.23023 + 8.75357i 0.0498926 + 0.355004i
\(609\) 0 0
\(610\) −1.96950 + 0.137721i −0.0797426 + 0.00557614i
\(611\) 60.6328 26.9955i 2.45294 1.09212i
\(612\) 0 0
\(613\) −29.4939 26.5565i −1.19125 1.07261i −0.995768 0.0918981i \(-0.970707\pi\)
−0.195481 0.980708i \(-0.562627\pi\)
\(614\) 0.655393 + 2.28563i 0.0264495 + 0.0922404i
\(615\) 0 0
\(616\) 2.51753 + 18.1271i 0.101434 + 0.730362i
\(617\) −7.43732 20.4339i −0.299415 0.822636i −0.994598 0.103803i \(-0.966899\pi\)
0.695183 0.718833i \(-0.255323\pi\)
\(618\) 0 0
\(619\) 18.6252 9.90317i 0.748609 0.398042i −0.0508947 0.998704i \(-0.516207\pi\)
0.799503 + 0.600662i \(0.205096\pi\)
\(620\) −24.7022 8.02624i −0.992065 0.322342i
\(621\) 0 0
\(622\) −8.18171 + 11.2612i −0.328057 + 0.451531i
\(623\) −29.3496 4.12481i −1.17587 0.165257i
\(624\) 0 0
\(625\) −10.8735 + 16.1206i −0.434939 + 0.644824i
\(626\) 0.505275 + 0.423976i 0.0201949 + 0.0169455i
\(627\) 0 0
\(628\) −0.594489 0.216376i −0.0237227 0.00863435i
\(629\) −13.9303 6.20217i −0.555438 0.247297i
\(630\) 0 0
\(631\) −8.64313 9.59917i −0.344078 0.382137i 0.546124 0.837705i \(-0.316103\pi\)
−0.890201 + 0.455568i \(0.849436\pi\)
\(632\) 2.20411 + 31.5202i 0.0876746 + 1.25381i
\(633\) 0 0
\(634\) −3.02205 + 5.68364i −0.120021 + 0.225726i
\(635\) 22.6187 3.17884i 0.897594 0.126149i
\(636\) 0 0
\(637\) 3.16553 + 3.77253i 0.125423 + 0.149473i
\(638\) 8.37565 6.06447i 0.331595 0.240095i
\(639\) 0 0
\(640\) −9.43776 + 21.1976i −0.373060 + 0.837907i
\(641\) 16.3665 + 0.571531i 0.646438 + 0.0225741i 0.356243 0.934393i \(-0.384058\pi\)
0.290195 + 0.956968i \(0.406280\pi\)
\(642\) 0 0
\(643\) −3.65942 14.6771i −0.144313 0.578809i −0.998288 0.0584942i \(-0.981370\pi\)
0.853974 0.520315i \(-0.174185\pi\)
\(644\) 24.0227 + 6.88839i 0.946626 + 0.271441i
\(645\) 0 0
\(646\) 1.57892 + 2.96951i 0.0621217 + 0.116834i
\(647\) 11.1748 + 15.3808i 0.439326 + 0.604680i 0.970062 0.242857i \(-0.0780845\pi\)
−0.530736 + 0.847537i \(0.678085\pi\)
\(648\) 0 0
\(649\) 24.8132 14.2721i 0.974005 0.560231i
\(650\) −3.49484 + 0.616234i −0.137079 + 0.0241707i
\(651\) 0 0
\(652\) 26.2417 + 33.5878i 1.02770 + 1.31540i
\(653\) −8.65776 13.8553i −0.338804 0.542200i 0.634146 0.773213i \(-0.281352\pi\)
−0.972951 + 0.231013i \(0.925796\pi\)
\(654\) 0 0
\(655\) −4.70020 + 3.17033i −0.183652 + 0.123875i
\(656\) −5.69497 + 1.21050i −0.222351 + 0.0472622i
\(657\) 0 0
\(658\) 1.45655 + 13.8581i 0.0567822 + 0.540247i
\(659\) −5.34987 + 4.48907i −0.208401 + 0.174869i −0.741014 0.671490i \(-0.765655\pi\)
0.532613 + 0.846359i \(0.321210\pi\)
\(660\) 0 0
\(661\) 8.74606 49.6014i 0.340182 1.92927i −0.0282147 0.999602i \(-0.508982\pi\)
0.368397 0.929669i \(-0.379907\pi\)
\(662\) 5.64835 + 11.5808i 0.219529 + 0.450102i
\(663\) 0 0
\(664\) −4.54787 11.2564i −0.176492 0.436832i
\(665\) −3.83530 8.61423i −0.148727 0.334046i
\(666\) 0 0
\(667\) −6.36349 29.9379i −0.246395 1.15920i
\(668\) −0.158585 + 4.54128i −0.00613584 + 0.175707i
\(669\) 0 0
\(670\) −1.39115 + 1.65791i −0.0537447 + 0.0640505i
\(671\) −3.20459 5.14704i −0.123712 0.198699i
\(672\) 0 0
\(673\) −13.7147 + 14.2020i −0.528663 + 0.547447i −0.929557 0.368678i \(-0.879811\pi\)
0.400894 + 0.916124i \(0.368700\pi\)
\(674\) −1.93497 + 0.628710i −0.0745323 + 0.0242170i
\(675\) 0 0
\(676\) −51.4225 37.3606i −1.97779 1.43695i
\(677\) −4.50272 + 9.23194i −0.173053 + 0.354812i −0.967638 0.252341i \(-0.918800\pi\)
0.794585 + 0.607153i \(0.207688\pi\)
\(678\) 0 0
\(679\) −5.54207 + 4.32994i −0.212685 + 0.166168i
\(680\) −1.04153 + 14.8945i −0.0399407 + 0.571179i
\(681\) 0 0
\(682\) 2.29907 + 13.1639i 0.0880360 + 0.504072i
\(683\) 1.16852 0.674647i 0.0447123 0.0258146i −0.477477 0.878644i \(-0.658449\pi\)
0.522190 + 0.852829i \(0.325115\pi\)
\(684\) 0 0
\(685\) −20.1899 4.29150i −0.771416 0.163970i
\(686\) 8.68671 3.50966i 0.331660 0.133999i
\(687\) 0 0
\(688\) 1.58267 + 1.63891i 0.0603389 + 0.0624827i
\(689\) −30.9228 16.4419i −1.17806 0.626388i
\(690\) 0 0
\(691\) 0.701216 2.81242i 0.0266755 0.106990i −0.955482 0.295049i \(-0.904664\pi\)
0.982158 + 0.188059i \(0.0602197\pi\)
\(692\) −0.949891 + 1.64526i −0.0361094 + 0.0625434i
\(693\) 0 0
\(694\) −7.02165 12.1619i −0.266538 0.461658i
\(695\) −24.8411 + 7.12307i −0.942276 + 0.270193i
\(696\) 0 0
\(697\) −7.78856 + 4.86683i −0.295013 + 0.184344i
\(698\) −0.730137 + 2.54629i −0.0276361 + 0.0963785i
\(699\) 0 0
\(700\) −0.618936 + 4.40396i −0.0233936 + 0.166454i
\(701\) −2.68287 8.25702i −0.101330 0.311863i 0.887521 0.460767i \(-0.152426\pi\)
−0.988852 + 0.148904i \(0.952426\pi\)
\(702\) 0 0
\(703\) 6.90498i 0.260426i
\(704\) −6.32775 + 0.432133i −0.238486 + 0.0162866i
\(705\) 0 0
\(706\) −6.84800 4.61903i −0.257728 0.173840i
\(707\) −9.27886 3.74890i −0.348967 0.140992i
\(708\) 0 0
\(709\) 6.87680 + 10.1953i 0.258263 + 0.382891i 0.935762 0.352633i \(-0.114714\pi\)
−0.677498 + 0.735524i \(0.736936\pi\)
\(710\) −0.900897 + 8.57146i −0.0338101 + 0.321681i
\(711\) 0 0
\(712\) −4.41834 + 20.7867i −0.165584 + 0.779013i
\(713\) 38.3779 + 9.56869i 1.43726 + 0.358350i
\(714\) 0 0
\(715\) 29.0776 + 37.3427i 1.08744 + 1.39654i
\(716\) −38.4639 6.78222i −1.43746 0.253463i
\(717\) 0 0
\(718\) 15.4997 + 9.68529i 0.578444 + 0.361452i
\(719\) 7.70883 6.94106i 0.287491 0.258858i −0.512748 0.858539i \(-0.671373\pi\)
0.800239 + 0.599681i \(0.204706\pi\)
\(720\) 0 0
\(721\) 41.1829 + 4.32850i 1.53373 + 0.161202i
\(722\) 5.32888 6.82066i 0.198321 0.253839i
\(723\) 0 0
\(724\) 19.2105 + 1.34333i 0.713951 + 0.0499243i
\(725\) 5.11815 1.86286i 0.190083 0.0691847i
\(726\) 0 0
\(727\) 3.74787 + 21.2552i 0.139001 + 0.788312i 0.971990 + 0.235023i \(0.0755165\pi\)
−0.832989 + 0.553289i \(0.813372\pi\)
\(728\) 31.5995 22.9584i 1.17115 0.850893i
\(729\) 0 0
\(730\) 4.55792 14.0278i 0.168696 0.519194i
\(731\) 3.23020 + 1.57548i 0.119473 + 0.0582711i
\(732\) 0 0
\(733\) −6.35628 + 0.221966i −0.234775 + 0.00819851i −0.152045 0.988374i \(-0.548586\pi\)
−0.0827294 + 0.996572i \(0.526364\pi\)
\(734\) −3.30585 + 8.18228i −0.122021 + 0.302013i
\(735\) 0 0
\(736\) 9.42978 25.9081i 0.347586 0.954986i
\(737\) −6.49892 1.39245i −0.239391 0.0512914i
\(738\) 0 0
\(739\) −34.5594 + 3.63234i −1.27129 + 0.133618i −0.716036 0.698064i \(-0.754045\pi\)
−0.555253 + 0.831682i \(0.687379\pi\)
\(740\) 7.49449 11.9937i 0.275503 0.440897i
\(741\) 0 0
\(742\) 5.28921 5.10773i 0.194173 0.187511i
\(743\) −1.69035 + 1.63235i −0.0620128 + 0.0598851i −0.725019 0.688729i \(-0.758169\pi\)
0.663006 + 0.748614i \(0.269280\pi\)
\(744\) 0 0
\(745\) −20.5738 + 32.9250i −0.753766 + 1.20628i
\(746\) −16.8186 + 1.76770i −0.615771 + 0.0647201i
\(747\) 0 0
\(748\) −19.3395 + 8.57284i −0.707124 + 0.313454i
\(749\) −3.79134 + 10.4166i −0.138532 + 0.380615i
\(750\) 0 0
\(751\) −10.2295 + 25.3188i −0.373279 + 0.923898i 0.617272 + 0.786750i \(0.288238\pi\)
−0.990551 + 0.137148i \(0.956206\pi\)
\(752\) −22.1191 + 0.772415i −0.806599 + 0.0281671i
\(753\) 0 0
\(754\) −19.8360 9.67465i −0.722383 0.352330i
\(755\) −9.58614 + 29.5031i −0.348875 + 1.07373i
\(756\) 0 0
\(757\) 18.5897 13.5062i 0.675655 0.490892i −0.196258 0.980552i \(-0.562879\pi\)
0.871914 + 0.489660i \(0.162879\pi\)
\(758\) 0.197409 + 1.11956i 0.00717021 + 0.0406643i
\(759\) 0 0
\(760\) −6.35336 + 2.31244i −0.230461 + 0.0838808i
\(761\) −18.3177 1.28090i −0.664015 0.0464324i −0.266228 0.963910i \(-0.585777\pi\)
−0.397787 + 0.917478i \(0.630222\pi\)
\(762\) 0 0
\(763\) −2.21273 + 2.83217i −0.0801062 + 0.102531i
\(764\) −20.0358 2.10585i −0.724870 0.0761869i
\(765\) 0 0
\(766\) −6.40175 + 5.76416i −0.231305 + 0.208268i
\(767\) −51.8097 32.3743i −1.87074 1.16897i
\(768\) 0 0
\(769\) 4.66158 + 0.821963i 0.168101 + 0.0296407i 0.257065 0.966394i \(-0.417245\pi\)
−0.0889641 + 0.996035i \(0.528356\pi\)
\(770\) −9.34282 + 3.38330i −0.336692 + 0.121926i
\(771\) 0 0
\(772\) 2.53280 + 0.631497i 0.0911574 + 0.0227281i
\(773\) −11.0189 + 51.8399i −0.396322 + 1.86455i 0.0978725 + 0.995199i \(0.468796\pi\)
−0.494195 + 0.869351i \(0.664537\pi\)
\(774\) 0 0
\(775\) −0.735737 + 7.00007i −0.0264285 + 0.251450i
\(776\) 2.81989 + 4.18066i 0.101228 + 0.150077i
\(777\) 0 0
\(778\) 9.53394 + 3.85196i 0.341808 + 0.138100i
\(779\) −3.44781 2.32557i −0.123530 0.0833223i
\(780\) 0 0
\(781\) −24.5569 + 9.87517i −0.878714 + 0.353361i
\(782\) 10.4898i 0.375115i
\(783\) 0 0
\(784\) −0.507475 1.56185i −0.0181241 0.0557803i
\(785\) 0.103618 0.737283i 0.00369830 0.0263148i
\(786\) 0 0
\(787\) 1.98039 6.90643i 0.0705931 0.246187i −0.918051 0.396462i \(-0.870238\pi\)
0.988644 + 0.150274i \(0.0480157\pi\)
\(788\) 16.1978 10.1215i 0.577024 0.360565i
\(789\) 0 0
\(790\) −16.4910 + 4.72873i −0.586725 + 0.168241i
\(791\) −1.44603 2.50460i −0.0514149 0.0890533i
\(792\) 0 0
\(793\) −6.47010 + 11.2065i −0.229760 + 0.397956i
\(794\) 2.14427 8.60018i 0.0760971 0.305209i
\(795\) 0 0
\(796\) 1.80446 + 0.959447i 0.0639573 + 0.0340067i
\(797\) −10.8747 11.2610i −0.385200 0.398886i 0.498538 0.866868i \(-0.333870\pi\)
−0.883738 + 0.467981i \(0.844981\pi\)
\(798\) 0 0
\(799\) −32.3703 + 13.0785i −1.14518 + 0.462682i
\(800\) 4.79916 + 1.02009i 0.169676 + 0.0360657i
\(801\) 0 0
\(802\) −12.1185 + 6.99661i −0.427919 + 0.247059i
\(803\) 44.6213 7.79309i 1.57465 0.275012i
\(804\) 0 0
\(805\) −2.05158 + 29.3389i −0.0723087 + 1.03406i
\(806\) 22.4743 17.5588i 0.791623 0.618484i
\(807\) 0 0
\(808\) −3.14559 + 6.44942i −0.110661 + 0.226890i
\(809\) 18.7796 + 13.6442i 0.660255 + 0.479704i 0.866749 0.498744i \(-0.166205\pi\)
−0.206494 + 0.978448i \(0.566205\pi\)
\(810\) 0 0
\(811\) −6.16014 + 2.00155i −0.216312 + 0.0702839i −0.415168 0.909745i \(-0.636277\pi\)
0.198856 + 0.980029i \(0.436277\pi\)
\(812\) −19.2123 + 19.8949i −0.674220 + 0.698176i
\(813\) 0 0
\(814\) −7.25776 0.519381i −0.254384 0.0182043i
\(815\) −32.2434 + 38.4262i −1.12944 + 1.34601i
\(816\) 0 0
\(817\) −0.0567964 + 1.62644i −0.00198705 + 0.0569018i
\(818\) 2.11041 + 9.92868i 0.0737886 + 0.347148i
\(819\) 0 0
\(820\) −3.46459 7.78159i −0.120989 0.271745i
\(821\) −12.6741 31.3694i −0.442328 1.09480i −0.969511 0.245048i \(-0.921196\pi\)
0.527183 0.849752i \(-0.323248\pi\)
\(822\) 0 0
\(823\) 1.53768 + 3.15271i 0.0536001 + 0.109896i 0.923913 0.382603i \(-0.124972\pi\)
−0.870313 + 0.492499i \(0.836083\pi\)
\(824\) 5.15590 29.2405i 0.179614 1.01864i
\(825\) 0 0
\(826\) 9.82556 8.24462i 0.341875 0.286867i
\(827\) 1.02410 + 9.74368i 0.0356115 + 0.338821i 0.997792 + 0.0664098i \(0.0211545\pi\)
−0.962181 + 0.272411i \(0.912179\pi\)
\(828\) 0 0
\(829\) 28.6907 6.09839i 0.996468 0.211806i 0.319315 0.947649i \(-0.396547\pi\)
0.677152 + 0.735843i \(0.263214\pi\)
\(830\) 5.46469 3.68598i 0.189682 0.127942i
\(831\) 0 0
\(832\) 7.17321 + 11.4795i 0.248686 + 0.397982i
\(833\) −1.59487 2.04134i −0.0552588 0.0707281i
\(834\) 0 0
\(835\) −5.26645 + 0.928617i −0.182253 + 0.0321361i
\(836\) −7.10837 6.42138i −0.245848 0.222088i
\(837\) 0 0
\(838\) −2.22334 3.06016i −0.0768038 0.105711i
\(839\) −13.4064 25.2138i −0.462842 0.870478i −0.999642 0.0267689i \(-0.991478\pi\)
0.536800 0.843709i \(-0.319633\pi\)
\(840\) 0 0
\(841\) 4.68360 + 1.34300i 0.161503 + 0.0463104i
\(842\) −1.70449 6.83632i −0.0587404 0.235595i
\(843\) 0 0
\(844\) −9.11052 0.318146i −0.313597 0.0109510i
\(845\) 30.4251 68.3359i 1.04666 2.35083i
\(846\) 0 0
\(847\) −22.6107 20.4924i −0.776913 0.704127i
\(848\) 7.50698 + 8.94647i 0.257791 + 0.307223i
\(849\) 0 0
\(850\) 1.84855 0.259797i 0.0634048 0.00891096i
\(851\) −10.1109 + 19.0158i −0.346597 + 0.651853i
\(852\) 0 0
\(853\) 0.713662 + 10.2058i 0.0244353 + 0.349441i 0.994362 + 0.106042i \(0.0338179\pi\)
−0.969926 + 0.243399i \(0.921738\pi\)
\(854\) −1.81788 2.01896i −0.0622065 0.0690874i
\(855\) 0 0
\(856\) 7.26110 + 3.23285i 0.248179 + 0.110496i
\(857\) −20.3024 7.38948i −0.693517 0.252420i −0.0288769 0.999583i \(-0.509193\pi\)
−0.664641 + 0.747163i \(0.731415\pi\)
\(858\) 0 0
\(859\) −19.4772 16.3433i −0.664552 0.557626i 0.246895 0.969042i \(-0.420590\pi\)
−0.911447 + 0.411417i \(0.865034\pi\)
\(860\) −1.86394 + 2.76341i −0.0635600 + 0.0942315i
\(861\) 0 0
\(862\) 18.9290 + 2.66030i 0.644725 + 0.0906102i
\(863\) 8.84285 12.1711i 0.301014 0.414310i −0.631539 0.775344i \(-0.717576\pi\)
0.932553 + 0.361034i \(0.117576\pi\)
\(864\) 0 0
\(865\) −2.12635 0.690892i −0.0722979 0.0234910i
\(866\) 4.91361 2.61261i 0.166971 0.0887801i
\(867\) 0 0
\(868\) −12.2242 33.5858i −0.414917 1.13998i
\(869\) −36.5365 37.9580i −1.23941 1.28764i
\(870\) 0 0
\(871\) 3.90994 + 13.6356i 0.132483 + 0.462025i
\(872\) 1.91510 + 1.72436i 0.0648535 + 0.0583943i
\(873\) 0 0
\(874\) 4.33940 1.93203i 0.146783 0.0653518i
\(875\) −33.1156 + 2.31567i −1.11951 + 0.0782840i
\(876\) 0 0
\(877\) −3.15326 22.4366i −0.106478 0.757629i −0.968187 0.250227i \(-0.919495\pi\)
0.861709 0.507402i \(-0.169394\pi\)
\(878\) 7.47892 3.64771i 0.252401 0.123104i
\(879\) 0 0
\(880\) −4.32556 15.1782i −0.145815 0.511657i
\(881\) −30.6507 17.6962i −1.03265 0.596200i −0.114906 0.993376i \(-0.536657\pi\)
−0.917742 + 0.397176i \(0.869990\pi\)
\(882\) 0 0
\(883\) 8.21701 9.12592i 0.276524 0.307112i −0.588845 0.808246i \(-0.700417\pi\)
0.865369 + 0.501134i \(0.167084\pi\)
\(884\) 35.5778 + 27.7964i 1.19661 + 0.934895i
\(885\) 0 0
\(886\) −1.64460 + 0.410044i −0.0552513 + 0.0137757i
\(887\) 1.29883 + 37.1935i 0.0436103 + 1.24884i 0.802116 + 0.597168i \(0.203708\pi\)
−0.758506 + 0.651667i \(0.774070\pi\)
\(888\) 0 0
\(889\) 22.6093 + 21.8336i 0.758293 + 0.732275i
\(890\) −11.5382 −0.386762
\(891\) 0 0
\(892\) −2.56263 −0.0858033
\(893\) −11.3723 10.9821i −0.380558 0.367501i
\(894\) 0 0
\(895\) −1.60415 45.9368i −0.0536208 1.53550i
\(896\) −30.9813 + 7.72451i −1.03501 + 0.258058i
\(897\) 0 0
\(898\) 2.01388 + 1.57342i 0.0672041 + 0.0525056i
\(899\) −29.2898 + 32.5297i −0.976871 + 1.08493i
\(900\) 0 0
\(901\) 15.9543 + 9.21122i 0.531515 + 0.306870i
\(902\) −2.70373 + 3.44903i −0.0900242 + 0.114840i
\(903\) 0 0
\(904\) −1.86380 + 0.909035i −0.0619890 + 0.0302341i
\(905\) 3.15410 + 22.4426i 0.104846 + 0.746018i
\(906\) 0 0
\(907\) 22.9035 1.60157i 0.760498 0.0531792i 0.315759 0.948839i \(-0.397741\pi\)
0.444739 + 0.895660i \(0.353297\pi\)
\(908\) −4.93559 + 2.19747i −0.163793 + 0.0729255i
\(909\) 0 0
\(910\) 15.7599 + 14.1903i 0.522436 + 0.470404i
\(911\) 2.16952 + 7.56601i 0.0718794 + 0.250673i 0.988995 0.147948i \(-0.0472667\pi\)
−0.917116 + 0.398621i \(0.869489\pi\)
\(912\) 0 0
\(913\) 17.8579 + 9.53254i 0.591011 + 0.315481i
\(914\) 1.60634 + 4.41338i 0.0531329 + 0.145982i
\(915\) 0 0
\(916\) 28.2399 15.0154i 0.933072 0.496123i
\(917\) −7.41974 2.41082i −0.245021 0.0796123i
\(918\) 0 0
\(919\) 12.0930 16.6445i 0.398910 0.549053i −0.561560 0.827436i \(-0.689799\pi\)
0.960470 + 0.278383i \(0.0897986\pi\)
\(920\) 20.8828 + 2.93488i 0.688484 + 0.0967602i
\(921\) 0 0
\(922\) −0.677114 + 1.00386i −0.0222996 + 0.0330605i
\(923\) 43.2734 + 36.3107i 1.42436 + 1.19518i
\(924\) 0 0
\(925\) −3.60144 1.31082i −0.118415 0.0430994i
\(926\) 6.74182 + 3.00165i 0.221550 + 0.0986404i
\(927\) 0 0
\(928\) 20.4169 + 22.6753i 0.670217 + 0.744352i
\(929\) 0.125691 + 1.79747i 0.00412379 + 0.0589730i 0.999190 0.0402395i \(-0.0128121\pi\)
−0.995066 + 0.0992125i \(0.968368\pi\)
\(930\) 0 0
\(931\) 0.550711 1.03574i 0.0180488 0.0339449i
\(932\) −3.28912 + 0.462255i −0.107739 + 0.0151417i
\(933\) 0 0
\(934\) −9.41019 11.2146i −0.307911 0.366954i
\(935\) −14.6006 20.1649i −0.477490 0.659463i
\(936\) 0 0
\(937\) −6.23651 + 14.0074i −0.203738 + 0.457603i −0.986298 0.164972i \(-0.947247\pi\)
0.782560 + 0.622575i \(0.213913\pi\)
\(938\) −2.97633 0.103936i −0.0971806 0.00339362i
\(939\) 0 0
\(940\) −7.83354 31.4186i −0.255502 1.02476i
\(941\) 39.4758 + 11.3195i 1.28688 + 0.369006i 0.848217 0.529648i \(-0.177676\pi\)
0.438658 + 0.898654i \(0.355454\pi\)
\(942\) 0 0
\(943\) 6.08969 + 11.4530i 0.198308 + 0.372962i
\(944\) 11.9747 + 16.4817i 0.389742 + 0.536433i
\(945\) 0 0
\(946\) 1.70526 + 0.182036i 0.0554428 + 0.00591850i
\(947\) 57.9533 10.2187i 1.88323 0.332064i 0.890751 0.454492i \(-0.150179\pi\)
0.992477 + 0.122428i \(0.0390682\pi\)
\(948\) 0 0
\(949\) −59.5187 76.1804i −1.93206 2.47292i
\(950\) 0.447941 + 0.716855i 0.0145331 + 0.0232578i
\(951\) 0 0
\(952\) −17.0333 + 11.4891i −0.552054 + 0.372365i
\(953\) −14.1079 + 2.99872i −0.456999 + 0.0971382i −0.430659 0.902515i \(-0.641719\pi\)
−0.0263405 + 0.999653i \(0.508385\pi\)
\(954\) 0 0
\(955\) −2.47828 23.5793i −0.0801953 0.763007i
\(956\) −11.1405 + 9.34802i −0.360311 + 0.302337i
\(957\) 0 0
\(958\) −0.781480 + 4.43200i −0.0252485 + 0.143191i
\(959\) −12.4512 25.5288i −0.402070 0.824367i
\(960\) 0 0
\(961\) −9.57775 23.7058i −0.308960 0.764702i
\(962\) 6.31640 + 14.1869i 0.203649 + 0.457403i
\(963\) 0 0
\(964\) 2.64257 + 12.4323i 0.0851114 + 0.400418i
\(965\) −0.107211 + 3.07012i −0.00345124 + 0.0988307i
\(966\) 0 0
\(967\) −19.7776 + 23.5701i −0.636006 + 0.757962i −0.983734 0.179633i \(-0.942509\pi\)
0.347728 + 0.937596i \(0.386953\pi\)
\(968\) −15.7886 + 15.1479i −0.507465 + 0.486871i
\(969\) 0 0
\(970\) −1.90196 + 1.96953i −0.0610682 + 0.0632379i
\(971\) 46.8858 15.2341i 1.50464 0.488886i 0.563271 0.826272i \(-0.309543\pi\)
0.941366 + 0.337386i \(0.109543\pi\)
\(972\) 0 0
\(973\) −28.7691 20.9020i −0.922295 0.670086i
\(974\) −6.33083 + 12.9801i −0.202853 + 0.415910i
\(975\) 0 0
\(976\) 3.40038 2.65667i 0.108843 0.0850378i
\(977\) 2.66913 38.1703i 0.0853930 1.22118i −0.746173 0.665752i \(-0.768111\pi\)
0.831566 0.555425i \(-0.187445\pi\)
\(978\) 0 0
\(979\) −16.5843 31.3134i −0.530038 1.00078i
\(980\) 2.08072 1.20131i 0.0664663 0.0383743i
\(981\) 0 0
\(982\) −1.22303 0.259964i −0.0390286 0.00829578i
\(983\) 24.4533 9.87978i 0.779940 0.315116i 0.0501088 0.998744i \(-0.484043\pi\)
0.729831 + 0.683628i \(0.239599\pi\)
\(984\) 0 0
\(985\) 15.6146 + 16.1694i 0.497524 + 0.515201i
\(986\) 10.2502 + 5.45012i 0.326432 + 0.173567i
\(987\) 0 0
\(988\) −4.94600 + 19.8373i −0.157353 + 0.631109i
\(989\) 2.53798 4.39592i 0.0807032 0.139782i
\(990\) 0 0
\(991\) 6.79604 + 11.7711i 0.215883 + 0.373921i 0.953545 0.301249i \(-0.0974036\pi\)
−0.737662 + 0.675170i \(0.764070\pi\)
\(992\) −37.9037 + 10.8687i −1.20344 + 0.345082i
\(993\) 0 0
\(994\) −10.0577 + 6.28478i −0.319012 + 0.199341i
\(995\) −0.662939 + 2.31194i −0.0210166 + 0.0732935i
\(996\) 0 0
\(997\) −0.371593 + 2.64402i −0.0117685 + 0.0837369i −0.995267 0.0971802i \(-0.969018\pi\)
0.983498 + 0.180917i \(0.0579066\pi\)
\(998\) 0.755740 + 2.32593i 0.0239225 + 0.0736260i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.bb.a.800.19 816
3.2 odd 2 297.2.x.a.41.16 yes 816
11.7 odd 10 inner 891.2.bb.a.557.19 816
27.2 odd 18 inner 891.2.bb.a.8.19 816
27.25 even 9 297.2.x.a.272.16 yes 816
33.29 even 10 297.2.x.a.95.16 yes 816
297.29 even 90 inner 891.2.bb.a.656.19 816
297.106 odd 90 297.2.x.a.29.16 816
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.x.a.29.16 816 297.106 odd 90
297.2.x.a.41.16 yes 816 3.2 odd 2
297.2.x.a.95.16 yes 816 33.29 even 10
297.2.x.a.272.16 yes 816 27.25 even 9
891.2.bb.a.8.19 816 27.2 odd 18 inner
891.2.bb.a.557.19 816 11.7 odd 10 inner
891.2.bb.a.656.19 816 297.29 even 90 inner
891.2.bb.a.800.19 816 1.1 even 1 trivial