Properties

Label 891.2.bb.a.8.19
Level $891$
Weight $2$
Character 891.8
Analytic conductor $7.115$
Analytic rank $0$
Dimension $816$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(8,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(90)) chi = DirichletCharacter(H, H._module([5, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.bb (of order \(90\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(816\)
Relative dimension: \(34\) over \(\Q(\zeta_{90})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{90}]$

Embedding invariants

Embedding label 8.19
Character \(\chi\) \(=\) 891.8
Dual form 891.2.bb.a.557.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.234840 + 0.481493i) q^{2} +(1.05464 - 1.34987i) q^{4} +(0.140627 + 2.01106i) q^{5} +(2.77243 - 0.0968153i) q^{7} +(1.94563 + 0.413557i) q^{8} +(-0.935288 + 0.539989i) q^{10} +(3.28509 - 0.456240i) q^{11} +(-4.91714 + 5.09185i) q^{13} +(0.697692 + 1.31217i) q^{14} +(-0.571045 - 2.29034i) q^{16} +(-0.389206 + 3.70304i) q^{17} +(-0.350554 + 1.64923i) q^{19} +(2.86299 + 1.93111i) q^{20} +(0.991147 + 1.47461i) q^{22} +(1.79865 - 4.94174i) q^{23} +(0.926739 - 0.130245i) q^{25} +(-3.60642 - 1.17180i) q^{26} +(2.79322 - 3.84453i) q^{28} +(-5.13875 - 2.73232i) q^{29} +(7.22978 - 2.07311i) q^{31} +(4.01615 - 3.36995i) q^{32} +(-1.87439 + 0.682222i) q^{34} +(0.584581 + 5.56191i) q^{35} +(-4.00581 + 0.851461i) q^{37} +(-0.876416 + 0.218515i) q^{38} +(-0.558080 + 3.97095i) q^{40} +(2.17784 - 1.15798i) q^{41} +(0.620430 - 0.739399i) q^{43} +(2.84872 - 4.91563i) q^{44} +(2.80180 - 0.294481i) q^{46} +(-7.38871 + 5.77269i) q^{47} +(0.694030 - 0.0485313i) q^{49} +(0.280347 + 0.415631i) q^{50} +(1.68755 + 12.0076i) q^{52} +(2.90818 + 4.00277i) q^{53} +(1.37950 + 6.54237i) q^{55} +(5.43416 + 0.958189i) q^{56} +(0.108811 - 3.11593i) q^{58} +(8.00230 - 3.23314i) q^{59} +(-0.503892 + 1.75728i) q^{61} +(2.69602 + 2.99424i) q^{62} +(-1.74700 - 0.777815i) q^{64} +(-10.9315 - 9.17262i) q^{65} +(-0.347986 - 1.97353i) q^{67} +(4.58817 + 4.43075i) q^{68} +(-2.54074 + 1.58763i) q^{70} +(7.93671 + 0.834182i) q^{71} +(-10.1495 + 9.13863i) q^{73} +(-1.35070 - 1.72881i) q^{74} +(1.85654 + 2.21254i) q^{76} +(9.06351 - 1.58294i) q^{77} +(14.2775 - 6.96360i) q^{79} +(4.52571 - 1.47049i) q^{80} +(1.06900 + 0.776676i) q^{82} +(4.39047 - 4.23982i) q^{83} +(-7.50179 - 0.261968i) q^{85} +(0.501717 + 0.125092i) q^{86} +(6.58026 + 0.470898i) q^{88} +(-9.25241 - 5.34188i) q^{89} +(-13.1394 + 14.5928i) q^{91} +(-4.77381 - 7.63969i) q^{92} +(-4.51467 - 2.20195i) q^{94} +(-3.36600 - 0.473061i) q^{95} +(-2.52904 - 0.176848i) q^{97} +(0.186353 + 0.322773i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 816 q + 30 q^{2} - 18 q^{4} + 21 q^{5} - 30 q^{7} + 45 q^{8} + 33 q^{11} - 30 q^{13} + 18 q^{14} - 30 q^{16} + 45 q^{17} - 15 q^{19} + 60 q^{20} - 15 q^{22} + 84 q^{23} - 27 q^{25} - 60 q^{28} - 60 q^{29}+ \cdots - 81 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.234840 + 0.481493i 0.166057 + 0.340467i 0.965554 0.260203i \(-0.0837895\pi\)
−0.799497 + 0.600670i \(0.794901\pi\)
\(3\) 0 0
\(4\) 1.05464 1.34987i 0.527319 0.674937i
\(5\) 0.140627 + 2.01106i 0.0628904 + 0.899375i 0.921903 + 0.387421i \(0.126634\pi\)
−0.859013 + 0.511954i \(0.828922\pi\)
\(6\) 0 0
\(7\) 2.77243 0.0968153i 1.04788 0.0365927i 0.494220 0.869337i \(-0.335454\pi\)
0.553658 + 0.832744i \(0.313231\pi\)
\(8\) 1.94563 + 0.413557i 0.687885 + 0.146214i
\(9\) 0 0
\(10\) −0.935288 + 0.539989i −0.295764 + 0.170759i
\(11\) 3.28509 0.456240i 0.990493 0.137562i
\(12\) 0 0
\(13\) −4.91714 + 5.09185i −1.36377 + 1.41222i −0.544568 + 0.838717i \(0.683306\pi\)
−0.819201 + 0.573507i \(0.805583\pi\)
\(14\) 0.697692 + 1.31217i 0.186466 + 0.350691i
\(15\) 0 0
\(16\) −0.571045 2.29034i −0.142761 0.572584i
\(17\) −0.389206 + 3.70304i −0.0943962 + 0.898120i 0.840168 + 0.542326i \(0.182456\pi\)
−0.934564 + 0.355794i \(0.884210\pi\)
\(18\) 0 0
\(19\) −0.350554 + 1.64923i −0.0804227 + 0.378359i −0.999890 0.0148065i \(-0.995287\pi\)
0.919468 + 0.393166i \(0.128620\pi\)
\(20\) 2.86299 + 1.93111i 0.640185 + 0.431810i
\(21\) 0 0
\(22\) 0.991147 + 1.47461i 0.211313 + 0.314387i
\(23\) 1.79865 4.94174i 0.375044 1.03042i −0.598340 0.801242i \(-0.704173\pi\)
0.973384 0.229181i \(-0.0736049\pi\)
\(24\) 0 0
\(25\) 0.926739 0.130245i 0.185348 0.0260489i
\(26\) −3.60642 1.17180i −0.707278 0.229809i
\(27\) 0 0
\(28\) 2.79322 3.84453i 0.527868 0.726548i
\(29\) −5.13875 2.73232i −0.954242 0.507380i −0.0820957 0.996624i \(-0.526161\pi\)
−0.872146 + 0.489245i \(0.837272\pi\)
\(30\) 0 0
\(31\) 7.22978 2.07311i 1.29851 0.372341i 0.445989 0.895039i \(-0.352852\pi\)
0.852518 + 0.522698i \(0.175074\pi\)
\(32\) 4.01615 3.36995i 0.709962 0.595729i
\(33\) 0 0
\(34\) −1.87439 + 0.682222i −0.321455 + 0.117000i
\(35\) 0.584581 + 5.56191i 0.0988122 + 0.940135i
\(36\) 0 0
\(37\) −4.00581 + 0.851461i −0.658551 + 0.139979i −0.525053 0.851070i \(-0.675954\pi\)
−0.133498 + 0.991049i \(0.542621\pi\)
\(38\) −0.876416 + 0.218515i −0.142173 + 0.0354478i
\(39\) 0 0
\(40\) −0.558080 + 3.97095i −0.0882402 + 0.627862i
\(41\) 2.17784 1.15798i 0.340122 0.180846i −0.290620 0.956839i \(-0.593862\pi\)
0.630742 + 0.775992i \(0.282750\pi\)
\(42\) 0 0
\(43\) 0.620430 0.739399i 0.0946146 0.112757i −0.716660 0.697423i \(-0.754330\pi\)
0.811274 + 0.584666i \(0.198774\pi\)
\(44\) 2.84872 4.91563i 0.429460 0.741059i
\(45\) 0 0
\(46\) 2.80180 0.294481i 0.413103 0.0434189i
\(47\) −7.38871 + 5.77269i −1.07775 + 0.842034i −0.988081 0.153937i \(-0.950805\pi\)
−0.0896734 + 0.995971i \(0.528582\pi\)
\(48\) 0 0
\(49\) 0.694030 0.0485313i 0.0991472 0.00693305i
\(50\) 0.280347 + 0.415631i 0.0396470 + 0.0587792i
\(51\) 0 0
\(52\) 1.68755 + 12.0076i 0.234022 + 1.66515i
\(53\) 2.90818 + 4.00277i 0.399469 + 0.549822i 0.960611 0.277898i \(-0.0896376\pi\)
−0.561141 + 0.827720i \(0.689638\pi\)
\(54\) 0 0
\(55\) 1.37950 + 6.54237i 0.186012 + 0.882174i
\(56\) 5.43416 + 0.958189i 0.726170 + 0.128043i
\(57\) 0 0
\(58\) 0.108811 3.11593i 0.0142875 0.409141i
\(59\) 8.00230 3.23314i 1.04181 0.420919i 0.211007 0.977484i \(-0.432326\pi\)
0.830804 + 0.556565i \(0.187881\pi\)
\(60\) 0 0
\(61\) −0.503892 + 1.75728i −0.0645168 + 0.224997i −0.986914 0.161245i \(-0.948449\pi\)
0.922398 + 0.386242i \(0.126227\pi\)
\(62\) 2.69602 + 2.99424i 0.342395 + 0.380269i
\(63\) 0 0
\(64\) −1.74700 0.777815i −0.218375 0.0972269i
\(65\) −10.9315 9.17262i −1.35589 1.13772i
\(66\) 0 0
\(67\) −0.347986 1.97353i −0.0425132 0.241105i 0.956145 0.292895i \(-0.0946185\pi\)
−0.998658 + 0.0517899i \(0.983507\pi\)
\(68\) 4.58817 + 4.43075i 0.556398 + 0.537307i
\(69\) 0 0
\(70\) −2.54074 + 1.58763i −0.303676 + 0.189758i
\(71\) 7.93671 + 0.834182i 0.941914 + 0.0989991i 0.563022 0.826442i \(-0.309639\pi\)
0.378892 + 0.925441i \(0.376305\pi\)
\(72\) 0 0
\(73\) −10.1495 + 9.13863i −1.18791 + 1.06960i −0.191800 + 0.981434i \(0.561432\pi\)
−0.996106 + 0.0881613i \(0.971901\pi\)
\(74\) −1.35070 1.72881i −0.157015 0.200970i
\(75\) 0 0
\(76\) 1.85654 + 2.21254i 0.212960 + 0.253796i
\(77\) 9.06351 1.58294i 1.03288 0.180393i
\(78\) 0 0
\(79\) 14.2775 6.96360i 1.60634 0.783466i 0.606412 0.795151i \(-0.292608\pi\)
0.999932 + 0.0116849i \(0.00371951\pi\)
\(80\) 4.52571 1.47049i 0.505989 0.164406i
\(81\) 0 0
\(82\) 1.06900 + 0.776676i 0.118052 + 0.0857696i
\(83\) 4.39047 4.23982i 0.481916 0.465381i −0.413569 0.910473i \(-0.635718\pi\)
0.895485 + 0.445092i \(0.146829\pi\)
\(84\) 0 0
\(85\) −7.50179 0.261968i −0.813683 0.0284144i
\(86\) 0.501717 + 0.125092i 0.0541015 + 0.0134890i
\(87\) 0 0
\(88\) 6.58026 + 0.470898i 0.701459 + 0.0501979i
\(89\) −9.25241 5.34188i −0.980753 0.566238i −0.0782556 0.996933i \(-0.524935\pi\)
−0.902497 + 0.430695i \(0.858268\pi\)
\(90\) 0 0
\(91\) −13.1394 + 14.5928i −1.37739 + 1.52974i
\(92\) −4.77381 7.63969i −0.497704 0.796493i
\(93\) 0 0
\(94\) −4.51467 2.20195i −0.465653 0.227114i
\(95\) −3.36600 0.473061i −0.345345 0.0485350i
\(96\) 0 0
\(97\) −2.52904 0.176848i −0.256785 0.0179562i −0.0592163 0.998245i \(-0.518860\pi\)
−0.197569 + 0.980289i \(0.563305\pi\)
\(98\) 0.186353 + 0.322773i 0.0188245 + 0.0326050i
\(99\) 0 0
\(100\) 0.801560 1.38834i 0.0801560 0.138834i
\(101\) 2.01728 2.99074i 0.200727 0.297589i −0.715212 0.698907i \(-0.753670\pi\)
0.915939 + 0.401318i \(0.131448\pi\)
\(102\) 0 0
\(103\) −5.59182 13.8402i −0.550978 1.36372i −0.903770 0.428017i \(-0.859212\pi\)
0.352792 0.935702i \(-0.385232\pi\)
\(104\) −11.6727 + 7.87334i −1.14460 + 0.772044i
\(105\) 0 0
\(106\) −1.24435 + 2.34028i −0.120862 + 0.227308i
\(107\) −1.23480 3.80034i −0.119373 0.367392i 0.873461 0.486894i \(-0.161870\pi\)
−0.992834 + 0.119502i \(0.961870\pi\)
\(108\) 0 0
\(109\) 1.29557i 0.124093i 0.998073 + 0.0620467i \(0.0197628\pi\)
−0.998073 + 0.0620467i \(0.980237\pi\)
\(110\) −2.82614 + 2.20063i −0.269462 + 0.209822i
\(111\) 0 0
\(112\) −1.80492 6.29450i −0.170549 0.594775i
\(113\) 0.552449 0.884104i 0.0519701 0.0831695i −0.821043 0.570867i \(-0.806607\pi\)
0.873013 + 0.487697i \(0.162163\pi\)
\(114\) 0 0
\(115\) 10.1911 + 2.92225i 0.950324 + 0.272501i
\(116\) −9.10781 + 4.05506i −0.845639 + 0.376503i
\(117\) 0 0
\(118\) 3.43599 + 3.09378i 0.316309 + 0.284806i
\(119\) −0.720533 + 10.3041i −0.0660511 + 0.944575i
\(120\) 0 0
\(121\) 10.5837 2.99758i 0.962154 0.272508i
\(122\) −0.964452 + 0.170059i −0.0873174 + 0.0153964i
\(123\) 0 0
\(124\) 4.82636 11.9457i 0.433420 1.07275i
\(125\) 2.48798 + 11.7050i 0.222532 + 1.04693i
\(126\) 0 0
\(127\) −4.60832 10.3504i −0.408922 0.918454i −0.994193 0.107616i \(-0.965678\pi\)
0.585271 0.810838i \(-0.300988\pi\)
\(128\) −0.401689 11.5029i −0.0355046 1.01672i
\(129\) 0 0
\(130\) 1.84940 7.41754i 0.162203 0.650561i
\(131\) 2.64267 + 0.961854i 0.230891 + 0.0840376i 0.454875 0.890555i \(-0.349684\pi\)
−0.223984 + 0.974593i \(0.571906\pi\)
\(132\) 0 0
\(133\) −0.812216 + 4.60631i −0.0704281 + 0.399417i
\(134\) 0.868517 0.631015i 0.0750285 0.0545114i
\(135\) 0 0
\(136\) −2.28867 + 7.04380i −0.196252 + 0.604001i
\(137\) −7.11240 7.36510i −0.607653 0.629243i 0.343061 0.939313i \(-0.388536\pi\)
−0.950714 + 0.310070i \(0.899647\pi\)
\(138\) 0 0
\(139\) −10.1013 7.89198i −0.856778 0.669389i 0.0883493 0.996090i \(-0.471841\pi\)
−0.945128 + 0.326701i \(0.894063\pi\)
\(140\) 8.12440 + 5.07669i 0.686637 + 0.429059i
\(141\) 0 0
\(142\) 1.46220 + 4.01737i 0.122705 + 0.337130i
\(143\) −13.8302 + 18.9706i −1.15654 + 1.58640i
\(144\) 0 0
\(145\) 4.77223 10.7186i 0.396312 0.890131i
\(146\) −6.78368 2.74078i −0.561421 0.226829i
\(147\) 0 0
\(148\) −3.07531 + 6.30532i −0.252789 + 0.518294i
\(149\) −8.44232 + 17.3093i −0.691622 + 1.41804i 0.206570 + 0.978432i \(0.433770\pi\)
−0.898192 + 0.439604i \(0.855119\pi\)
\(150\) 0 0
\(151\) −14.2673 5.76437i −1.16106 0.469098i −0.288438 0.957498i \(-0.593136\pi\)
−0.872620 + 0.488401i \(0.837580\pi\)
\(152\) −1.36410 + 3.06382i −0.110643 + 0.248508i
\(153\) 0 0
\(154\) 2.89065 + 3.99228i 0.232935 + 0.321707i
\(155\) 5.18585 + 14.2480i 0.416538 + 1.14443i
\(156\) 0 0
\(157\) −0.313197 0.195707i −0.0249958 0.0156191i 0.517364 0.855766i \(-0.326913\pi\)
−0.542360 + 0.840146i \(0.682469\pi\)
\(158\) 6.70584 + 5.23918i 0.533488 + 0.416807i
\(159\) 0 0
\(160\) 7.34197 + 7.60283i 0.580433 + 0.601056i
\(161\) 4.50818 13.8747i 0.355294 1.09348i
\(162\) 0 0
\(163\) −20.1301 + 14.6254i −1.57671 + 1.14555i −0.656364 + 0.754444i \(0.727906\pi\)
−0.920347 + 0.391103i \(0.872094\pi\)
\(164\) 0.733708 4.16107i 0.0572930 0.324925i
\(165\) 0 0
\(166\) 3.07250 + 1.11830i 0.238472 + 0.0867968i
\(167\) 0.641737 2.57386i 0.0496591 0.199172i −0.940342 0.340230i \(-0.889495\pi\)
0.990001 + 0.141059i \(0.0450506\pi\)
\(168\) 0 0
\(169\) −1.29495 37.0825i −0.0996116 2.85250i
\(170\) −1.63558 3.67358i −0.125443 0.281751i
\(171\) 0 0
\(172\) −0.343768 1.61730i −0.0262120 0.123318i
\(173\) −0.415449 + 1.02827i −0.0315860 + 0.0781782i −0.942153 0.335184i \(-0.891201\pi\)
0.910566 + 0.413363i \(0.135646\pi\)
\(174\) 0 0
\(175\) 2.55671 0.450816i 0.193269 0.0340785i
\(176\) −2.92088 7.26344i −0.220170 0.547502i
\(177\) 0 0
\(178\) 0.399244 5.70945i 0.0299246 0.427941i
\(179\) −16.9439 15.2564i −1.26645 1.14031i −0.983447 0.181195i \(-0.942004\pi\)
−0.283001 0.959120i \(-0.591330\pi\)
\(180\) 0 0
\(181\) 10.2699 4.57245i 0.763355 0.339867i 0.0121409 0.999926i \(-0.496135\pi\)
0.751214 + 0.660059i \(0.229469\pi\)
\(182\) −10.1120 2.89957i −0.749551 0.214930i
\(183\) 0 0
\(184\) 5.54319 8.87096i 0.408649 0.653976i
\(185\) −2.27567 7.93620i −0.167310 0.583481i
\(186\) 0 0
\(187\) 0.410900 + 12.3424i 0.0300480 + 0.902567i
\(188\) 16.0619i 1.17144i
\(189\) 0 0
\(190\) −0.562696 1.73180i −0.0408222 0.125638i
\(191\) 5.52129 10.3840i 0.399506 0.751362i −0.599284 0.800537i \(-0.704548\pi\)
0.998790 + 0.0491744i \(0.0156590\pi\)
\(192\) 0 0
\(193\) −1.26331 + 0.852112i −0.0909349 + 0.0613364i −0.603819 0.797122i \(-0.706355\pi\)
0.512884 + 0.858458i \(0.328577\pi\)
\(194\) −0.508768 1.25925i −0.0365274 0.0904085i
\(195\) 0 0
\(196\) 0.666439 0.988037i 0.0476028 0.0705741i
\(197\) −5.57501 + 9.65620i −0.397203 + 0.687976i −0.993380 0.114878i \(-0.963352\pi\)
0.596177 + 0.802853i \(0.296686\pi\)
\(198\) 0 0
\(199\) −0.596514 1.03319i −0.0422857 0.0732410i 0.844108 0.536173i \(-0.180131\pi\)
−0.886394 + 0.462932i \(0.846797\pi\)
\(200\) 1.85696 + 0.129851i 0.131307 + 0.00918186i
\(201\) 0 0
\(202\) 1.91375 + 0.268961i 0.134651 + 0.0189240i
\(203\) −14.5113 7.07765i −1.01850 0.496754i
\(204\) 0 0
\(205\) 2.63504 + 4.21694i 0.184039 + 0.294524i
\(206\) 5.35079 5.94266i 0.372807 0.414044i
\(207\) 0 0
\(208\) 14.4699 + 8.35422i 1.00331 + 0.579261i
\(209\) −0.399160 + 5.57781i −0.0276105 + 0.385825i
\(210\) 0 0
\(211\) −5.16358 1.28742i −0.355475 0.0886299i 0.0600909 0.998193i \(-0.480861\pi\)
−0.415566 + 0.909563i \(0.636417\pi\)
\(212\) 8.47031 + 0.295790i 0.581743 + 0.0203149i
\(213\) 0 0
\(214\) 1.53985 1.48702i 0.105262 0.101651i
\(215\) 1.57423 + 1.14374i 0.107361 + 0.0780027i
\(216\) 0 0
\(217\) 19.8433 6.44749i 1.34705 0.437684i
\(218\) −0.623809 + 0.304252i −0.0422496 + 0.0206065i
\(219\) 0 0
\(220\) 10.2863 + 5.03768i 0.693499 + 0.339640i
\(221\) −16.9415 20.1902i −1.13961 1.35814i
\(222\) 0 0
\(223\) −0.921016 1.17885i −0.0616758 0.0789414i 0.756184 0.654359i \(-0.227062\pi\)
−0.817859 + 0.575418i \(0.804839\pi\)
\(224\) 10.8082 9.73177i 0.722155 0.650231i
\(225\) 0 0
\(226\) 0.555426 + 0.0583777i 0.0369464 + 0.00388322i
\(227\) −2.67466 + 1.67131i −0.177523 + 0.110929i −0.615770 0.787926i \(-0.711155\pi\)
0.438247 + 0.898855i \(0.355600\pi\)
\(228\) 0 0
\(229\) −13.4308 12.9699i −0.887530 0.857078i 0.102957 0.994686i \(-0.467170\pi\)
−0.990487 + 0.137608i \(0.956059\pi\)
\(230\) 0.986231 + 5.59319i 0.0650301 + 0.368804i
\(231\) 0 0
\(232\) −8.86815 7.44126i −0.582222 0.488542i
\(233\) −1.77131 0.788640i −0.116043 0.0516655i 0.347894 0.937534i \(-0.386897\pi\)
−0.463937 + 0.885868i \(0.653564\pi\)
\(234\) 0 0
\(235\) −12.6483 14.0474i −0.825085 0.916349i
\(236\) 4.07520 14.2119i 0.265273 0.925116i
\(237\) 0 0
\(238\) −5.13056 + 2.07288i −0.332565 + 0.134365i
\(239\) −0.296285 + 8.48450i −0.0191651 + 0.548817i 0.951397 + 0.307966i \(0.0996485\pi\)
−0.970562 + 0.240850i \(0.922574\pi\)
\(240\) 0 0
\(241\) 7.30698 + 1.28842i 0.470684 + 0.0829943i 0.403959 0.914777i \(-0.367634\pi\)
0.0667250 + 0.997771i \(0.478745\pi\)
\(242\) 3.92878 + 4.39202i 0.252552 + 0.282330i
\(243\) 0 0
\(244\) 1.84069 + 2.53349i 0.117838 + 0.162190i
\(245\) 0.195199 + 1.38891i 0.0124708 + 0.0887345i
\(246\) 0 0
\(247\) −6.67389 9.89446i −0.424650 0.629569i
\(248\) 14.9238 1.04358i 0.947665 0.0662672i
\(249\) 0 0
\(250\) −5.05160 + 3.94675i −0.319492 + 0.249614i
\(251\) 2.21172 0.232461i 0.139602 0.0146728i −0.0344695 0.999406i \(-0.510974\pi\)
0.174072 + 0.984733i \(0.444307\pi\)
\(252\) 0 0
\(253\) 3.65410 17.0547i 0.229731 1.07222i
\(254\) 3.90145 4.64956i 0.244799 0.291740i
\(255\) 0 0
\(256\) 2.06724 1.09917i 0.129202 0.0686981i
\(257\) 4.01814 28.5905i 0.250644 1.78343i −0.305348 0.952241i \(-0.598773\pi\)
0.555992 0.831187i \(-0.312338\pi\)
\(258\) 0 0
\(259\) −11.0234 + 2.74844i −0.684960 + 0.170780i
\(260\) −23.9107 + 5.08237i −1.48288 + 0.315195i
\(261\) 0 0
\(262\) 0.157479 + 1.49831i 0.00972906 + 0.0925658i
\(263\) −5.01185 + 1.82416i −0.309044 + 0.112483i −0.491886 0.870659i \(-0.663692\pi\)
0.182842 + 0.983142i \(0.441470\pi\)
\(264\) 0 0
\(265\) −7.64085 + 6.41143i −0.469374 + 0.393851i
\(266\) −2.40864 + 0.690667i −0.147683 + 0.0423475i
\(267\) 0 0
\(268\) −3.03101 1.61162i −0.185148 0.0984452i
\(269\) −11.6256 + 16.0013i −0.708828 + 0.975617i 0.290994 + 0.956725i \(0.406014\pi\)
−0.999822 + 0.0188926i \(0.993986\pi\)
\(270\) 0 0
\(271\) −12.0019 3.89964i −0.729061 0.236886i −0.0791140 0.996866i \(-0.525209\pi\)
−0.649947 + 0.759979i \(0.725209\pi\)
\(272\) 8.70347 1.22319i 0.527725 0.0741669i
\(273\) 0 0
\(274\) 1.87597 5.15418i 0.113331 0.311376i
\(275\) 2.98500 0.850682i 0.180002 0.0512980i
\(276\) 0 0
\(277\) 25.0436 + 16.8921i 1.50472 + 1.01495i 0.987237 + 0.159256i \(0.0509097\pi\)
0.517486 + 0.855692i \(0.326868\pi\)
\(278\) 1.42775 6.71704i 0.0856308 0.402861i
\(279\) 0 0
\(280\) −1.16279 + 11.0632i −0.0694899 + 0.661152i
\(281\) 4.09352 + 16.4182i 0.244199 + 0.979430i 0.959747 + 0.280866i \(0.0906216\pi\)
−0.715548 + 0.698564i \(0.753823\pi\)
\(282\) 0 0
\(283\) −8.20240 15.4265i −0.487582 0.917008i −0.998357 0.0572940i \(-0.981753\pi\)
0.510775 0.859714i \(-0.329358\pi\)
\(284\) 9.49639 9.83380i 0.563507 0.583529i
\(285\) 0 0
\(286\) −12.3821 2.20407i −0.732167 0.130330i
\(287\) 5.92580 3.42127i 0.349789 0.201951i
\(288\) 0 0
\(289\) 3.06746 + 0.652008i 0.180439 + 0.0383534i
\(290\) 6.28163 0.219359i 0.368870 0.0128812i
\(291\) 0 0
\(292\) 1.63198 + 23.3385i 0.0955046 + 1.36578i
\(293\) 0.997875 1.27722i 0.0582965 0.0746161i −0.757979 0.652279i \(-0.773813\pi\)
0.816275 + 0.577663i \(0.196035\pi\)
\(294\) 0 0
\(295\) 7.62739 + 15.6385i 0.444084 + 0.910507i
\(296\) −8.14596 −0.473474
\(297\) 0 0
\(298\) −10.3169 −0.597642
\(299\) 16.3184 + 33.4576i 0.943716 + 1.93490i
\(300\) 0 0
\(301\) 1.64851 2.11000i 0.0950186 0.121618i
\(302\) −0.575030 8.22331i −0.0330893 0.473198i
\(303\) 0 0
\(304\) 3.97747 0.138896i 0.228124 0.00796625i
\(305\) −3.60487 0.766238i −0.206414 0.0438747i
\(306\) 0 0
\(307\) −3.84384 + 2.21924i −0.219379 + 0.126659i −0.605663 0.795721i \(-0.707092\pi\)
0.386283 + 0.922380i \(0.373759\pi\)
\(308\) 7.42195 13.9040i 0.422905 0.792256i
\(309\) 0 0
\(310\) −5.64247 + 5.84295i −0.320471 + 0.331857i
\(311\) 12.1985 + 22.9420i 0.691712 + 1.30092i 0.942930 + 0.332990i \(0.108058\pi\)
−0.251218 + 0.967930i \(0.580831\pi\)
\(312\) 0 0
\(313\) 0.297865 + 1.19467i 0.0168363 + 0.0675268i 0.978126 0.208012i \(-0.0666993\pi\)
−0.961290 + 0.275539i \(0.911144\pi\)
\(314\) 0.0206805 0.196762i 0.00116707 0.0111039i
\(315\) 0 0
\(316\) 5.65759 26.6169i 0.318265 1.49732i
\(317\) −9.96177 6.71930i −0.559509 0.377394i 0.246639 0.969107i \(-0.420674\pi\)
−0.806148 + 0.591714i \(0.798452\pi\)
\(318\) 0 0
\(319\) −18.1279 6.63143i −1.01497 0.371289i
\(320\) 1.31856 3.62271i 0.0737097 0.202516i
\(321\) 0 0
\(322\) 7.73929 1.08769i 0.431294 0.0606144i
\(323\) −5.97073 1.94001i −0.332220 0.107945i
\(324\) 0 0
\(325\) −3.89372 + 5.35924i −0.215985 + 0.297277i
\(326\) −11.7694 6.25788i −0.651844 0.346592i
\(327\) 0 0
\(328\) 4.71617 1.35234i 0.260407 0.0746705i
\(329\) −19.9258 + 16.7197i −1.09854 + 0.921787i
\(330\) 0 0
\(331\) 22.6014 8.22625i 1.24229 0.452155i 0.364499 0.931204i \(-0.381240\pi\)
0.877788 + 0.479048i \(0.159018\pi\)
\(332\) −1.09288 10.3981i −0.0599796 0.570667i
\(333\) 0 0
\(334\) 1.39000 0.295454i 0.0760575 0.0161665i
\(335\) 3.91995 0.977353i 0.214170 0.0533985i
\(336\) 0 0
\(337\) 0.528559 3.76090i 0.0287925 0.204869i −0.970560 0.240861i \(-0.922570\pi\)
0.999352 + 0.0359920i \(0.0114591\pi\)
\(338\) 17.5509 9.33196i 0.954641 0.507592i
\(339\) 0 0
\(340\) −8.26529 + 9.85019i −0.448248 + 0.534202i
\(341\) 22.8047 10.1089i 1.23494 0.547426i
\(342\) 0 0
\(343\) −17.3930 + 1.82808i −0.939133 + 0.0987069i
\(344\) 1.51291 1.18202i 0.0815707 0.0637300i
\(345\) 0 0
\(346\) −0.592670 + 0.0414435i −0.0318621 + 0.00222802i
\(347\) 14.6589 + 21.7327i 0.786931 + 1.16667i 0.982551 + 0.185993i \(0.0595502\pi\)
−0.195620 + 0.980680i \(0.562672\pi\)
\(348\) 0 0
\(349\) −0.688164 4.89654i −0.0368366 0.262106i 0.963140 0.269002i \(-0.0866938\pi\)
−0.999976 + 0.00689607i \(0.997805\pi\)
\(350\) 0.817481 + 1.12517i 0.0436962 + 0.0601427i
\(351\) 0 0
\(352\) 11.6559 12.9029i 0.621263 0.687729i
\(353\) −15.1849 2.67750i −0.808210 0.142509i −0.245749 0.969333i \(-0.579034\pi\)
−0.562460 + 0.826824i \(0.690145\pi\)
\(354\) 0 0
\(355\) −0.561475 + 16.0785i −0.0298000 + 0.853360i
\(356\) −16.9688 + 6.85584i −0.899345 + 0.363359i
\(357\) 0 0
\(358\) 3.36673 11.7412i 0.177937 0.620540i
\(359\) 22.8289 + 25.3540i 1.20486 + 1.33813i 0.925871 + 0.377840i \(0.123333\pi\)
0.278990 + 0.960294i \(0.410000\pi\)
\(360\) 0 0
\(361\) 14.7603 + 6.57171i 0.776858 + 0.345879i
\(362\) 4.61338 + 3.87108i 0.242474 + 0.203460i
\(363\) 0 0
\(364\) 5.84114 + 33.1267i 0.306159 + 1.73631i
\(365\) −19.8057 19.1261i −1.03668 1.00111i
\(366\) 0 0
\(367\) −13.9701 + 8.72948i −0.729233 + 0.455675i −0.843056 0.537826i \(-0.819246\pi\)
0.113823 + 0.993501i \(0.463690\pi\)
\(368\) −12.3453 1.29755i −0.643546 0.0676394i
\(369\) 0 0
\(370\) 3.28680 2.95945i 0.170873 0.153855i
\(371\) 8.45025 + 10.8158i 0.438715 + 0.561530i
\(372\) 0 0
\(373\) 20.2914 + 24.1824i 1.05065 + 1.25212i 0.966772 + 0.255639i \(0.0822859\pi\)
0.0838773 + 0.996476i \(0.473270\pi\)
\(374\) −5.84629 + 3.09633i −0.302304 + 0.160108i
\(375\) 0 0
\(376\) −16.7630 + 8.17588i −0.864488 + 0.421639i
\(377\) 39.1805 12.7305i 2.01790 0.655655i
\(378\) 0 0
\(379\) 1.71682 + 1.24734i 0.0881871 + 0.0640717i 0.631005 0.775779i \(-0.282643\pi\)
−0.542818 + 0.839850i \(0.682643\pi\)
\(380\) −4.18848 + 4.04477i −0.214865 + 0.207492i
\(381\) 0 0
\(382\) 6.29645 + 0.219877i 0.322155 + 0.0112499i
\(383\) −15.6027 3.89019i −0.797261 0.198779i −0.178068 0.984018i \(-0.556985\pi\)
−0.619193 + 0.785239i \(0.712540\pi\)
\(384\) 0 0
\(385\) 4.45797 + 18.0047i 0.227199 + 0.917604i
\(386\) −0.706961 0.408164i −0.0359834 0.0207750i
\(387\) 0 0
\(388\) −2.90594 + 3.22738i −0.147527 + 0.163845i
\(389\) −10.1715 16.2779i −0.515718 0.825321i 0.483017 0.875611i \(-0.339541\pi\)
−0.998735 + 0.0502902i \(0.983985\pi\)
\(390\) 0 0
\(391\) 17.5994 + 8.58382i 0.890041 + 0.434102i
\(392\) 1.37040 + 0.192597i 0.0692155 + 0.00972761i
\(393\) 0 0
\(394\) −5.95862 0.416667i −0.300191 0.0209914i
\(395\) 16.0120 + 27.7337i 0.805653 + 1.39543i
\(396\) 0 0
\(397\) −8.27264 + 14.3286i −0.415192 + 0.719133i −0.995449 0.0953004i \(-0.969619\pi\)
0.580257 + 0.814434i \(0.302952\pi\)
\(398\) 0.357389 0.529851i 0.0179143 0.0265590i
\(399\) 0 0
\(400\) −0.827514 2.04817i −0.0413757 0.102408i
\(401\) 21.6552 14.6066i 1.08141 0.729420i 0.116815 0.993154i \(-0.462732\pi\)
0.964596 + 0.263733i \(0.0849539\pi\)
\(402\) 0 0
\(403\) −24.9939 + 47.0067i −1.24503 + 2.34157i
\(404\) −1.90962 5.87721i −0.0950073 0.292402i
\(405\) 0 0
\(406\) 8.64922i 0.429254i
\(407\) −12.7710 + 4.62474i −0.633035 + 0.229240i
\(408\) 0 0
\(409\) 5.22271 + 18.2137i 0.258246 + 0.900612i 0.978387 + 0.206784i \(0.0662996\pi\)
−0.720140 + 0.693828i \(0.755923\pi\)
\(410\) −1.41161 + 2.25906i −0.0697147 + 0.111567i
\(411\) 0 0
\(412\) −24.5799 7.04818i −1.21097 0.347239i
\(413\) 21.8728 9.73839i 1.07629 0.479195i
\(414\) 0 0
\(415\) 9.14397 + 8.23327i 0.448860 + 0.404155i
\(416\) −2.58870 + 37.0201i −0.126921 + 1.81506i
\(417\) 0 0
\(418\) −2.77941 + 1.11770i −0.135946 + 0.0546684i
\(419\) −6.95358 + 1.22610i −0.339704 + 0.0598991i −0.340898 0.940100i \(-0.610731\pi\)
0.00119373 + 0.999999i \(0.499620\pi\)
\(420\) 0 0
\(421\) 4.92679 12.1942i 0.240117 0.594310i −0.758217 0.652002i \(-0.773929\pi\)
0.998334 + 0.0576913i \(0.0183739\pi\)
\(422\) −0.592727 2.78856i −0.0288535 0.135745i
\(423\) 0 0
\(424\) 4.00288 + 8.99061i 0.194397 + 0.436622i
\(425\) 0.121610 + 3.48245i 0.00589894 + 0.168924i
\(426\) 0 0
\(427\) −1.22687 + 4.92072i −0.0593726 + 0.238130i
\(428\) −6.43225 2.34115i −0.310914 0.113164i
\(429\) 0 0
\(430\) −0.181013 + 1.02658i −0.00872922 + 0.0495059i
\(431\) −28.8671 + 20.9732i −1.39048 + 1.01024i −0.394668 + 0.918824i \(0.629140\pi\)
−0.995812 + 0.0914192i \(0.970860\pi\)
\(432\) 0 0
\(433\) 3.21010 9.87967i 0.154267 0.474786i −0.843818 0.536629i \(-0.819698\pi\)
0.998086 + 0.0618423i \(0.0196976\pi\)
\(434\) 7.76442 + 8.04029i 0.372704 + 0.385946i
\(435\) 0 0
\(436\) 1.74886 + 1.36636i 0.0837552 + 0.0654367i
\(437\) 7.51954 + 4.69873i 0.359708 + 0.224771i
\(438\) 0 0
\(439\) −5.31252 14.5960i −0.253553 0.696631i −0.999530 0.0306592i \(-0.990239\pi\)
0.745977 0.665972i \(-0.231983\pi\)
\(440\) −0.0216410 + 13.2996i −0.00103170 + 0.634031i
\(441\) 0 0
\(442\) 5.74286 12.8987i 0.273160 0.613528i
\(443\) 2.93354 + 1.18523i 0.139377 + 0.0563118i 0.443235 0.896405i \(-0.353831\pi\)
−0.303859 + 0.952717i \(0.598275\pi\)
\(444\) 0 0
\(445\) 9.44172 19.3584i 0.447580 0.917676i
\(446\) 0.351315 0.720302i 0.0166352 0.0341073i
\(447\) 0 0
\(448\) −4.91874 1.98730i −0.232389 0.0938911i
\(449\) 1.94037 4.35815i 0.0915720 0.205674i −0.861953 0.506988i \(-0.830759\pi\)
0.953525 + 0.301314i \(0.0974254\pi\)
\(450\) 0 0
\(451\) 6.62611 4.79770i 0.312011 0.225915i
\(452\) −0.610795 1.67815i −0.0287294 0.0789333i
\(453\) 0 0
\(454\) −1.43284 0.895339i −0.0672466 0.0420203i
\(455\) −31.1949 24.3721i −1.46244 1.14258i
\(456\) 0 0
\(457\) −6.09014 6.30652i −0.284885 0.295007i 0.561612 0.827401i \(-0.310181\pi\)
−0.846497 + 0.532394i \(0.821292\pi\)
\(458\) 3.09085 9.51267i 0.144426 0.444498i
\(459\) 0 0
\(460\) 14.6926 10.6748i 0.685045 0.497714i
\(461\) −0.392501 + 2.22598i −0.0182806 + 0.103674i −0.992583 0.121570i \(-0.961207\pi\)
0.974302 + 0.225245i \(0.0723181\pi\)
\(462\) 0 0
\(463\) 12.9450 + 4.71161i 0.601607 + 0.218967i 0.624827 0.780763i \(-0.285170\pi\)
−0.0232198 + 0.999730i \(0.507392\pi\)
\(464\) −3.32348 + 13.3297i −0.154289 + 0.618818i
\(465\) 0 0
\(466\) −0.0362505 1.03808i −0.00167927 0.0480881i
\(467\) −11.1151 24.9650i −0.514347 1.15524i −0.964930 0.262508i \(-0.915451\pi\)
0.450583 0.892735i \(-0.351216\pi\)
\(468\) 0 0
\(469\) −1.15583 5.43777i −0.0533714 0.251093i
\(470\) 3.79338 9.38895i 0.174976 0.433080i
\(471\) 0 0
\(472\) 16.9066 2.98109i 0.778190 0.137216i
\(473\) 1.70083 2.71206i 0.0782041 0.124701i
\(474\) 0 0
\(475\) −0.110069 + 1.57406i −0.00505032 + 0.0722230i
\(476\) 13.1493 + 11.8397i 0.602699 + 0.542673i
\(477\) 0 0
\(478\) −4.15480 + 1.84984i −0.190036 + 0.0846096i
\(479\) −8.07532 2.31556i −0.368971 0.105801i 0.0860279 0.996293i \(-0.472583\pi\)
−0.454999 + 0.890492i \(0.650360\pi\)
\(480\) 0 0
\(481\) 15.3616 24.5837i 0.700429 1.12092i
\(482\) 1.09560 + 3.82083i 0.0499034 + 0.174034i
\(483\) 0 0
\(484\) 7.11559 17.4480i 0.323436 0.793092i
\(485\) 5.11093i 0.232075i
\(486\) 0 0
\(487\) 8.33051 + 25.6387i 0.377491 + 1.16180i 0.941782 + 0.336223i \(0.109150\pi\)
−0.564291 + 0.825576i \(0.690850\pi\)
\(488\) −1.70712 + 3.21063i −0.0772779 + 0.145339i
\(489\) 0 0
\(490\) −0.622912 + 0.420159i −0.0281403 + 0.0189809i
\(491\) −0.874339 2.16407i −0.0394584 0.0976629i 0.906168 0.422918i \(-0.138994\pi\)
−0.945626 + 0.325255i \(0.894550\pi\)
\(492\) 0 0
\(493\) 12.1179 17.9656i 0.545765 0.809129i
\(494\) 3.19681 5.53704i 0.143831 0.249123i
\(495\) 0 0
\(496\) −8.87664 15.3748i −0.398573 0.690348i
\(497\) 22.0847 + 1.54431i 0.990634 + 0.0692719i
\(498\) 0 0
\(499\) −4.52078 0.635355i −0.202378 0.0284424i 0.0372556 0.999306i \(-0.488138\pi\)
−0.239634 + 0.970863i \(0.577027\pi\)
\(500\) 18.4242 + 8.98609i 0.823956 + 0.401870i
\(501\) 0 0
\(502\) 0.631327 + 1.01033i 0.0281775 + 0.0450934i
\(503\) 17.9511 19.9367i 0.800400 0.888934i −0.195378 0.980728i \(-0.562593\pi\)
0.995778 + 0.0917939i \(0.0292601\pi\)
\(504\) 0 0
\(505\) 6.29825 + 3.63629i 0.280268 + 0.161813i
\(506\) 9.06984 2.24569i 0.403203 0.0998333i
\(507\) 0 0
\(508\) −18.8319 4.69532i −0.835531 0.208321i
\(509\) −31.7255 1.10788i −1.40621 0.0491059i −0.678302 0.734783i \(-0.737284\pi\)
−0.727906 + 0.685677i \(0.759506\pi\)
\(510\) 0 0
\(511\) −27.2539 + 26.3188i −1.20564 + 1.16428i
\(512\) −17.6087 12.7934i −0.778200 0.565396i
\(513\) 0 0
\(514\) 14.7097 4.77949i 0.648819 0.210814i
\(515\) 27.0472 13.1918i 1.19184 0.581301i
\(516\) 0 0
\(517\) −21.6389 + 22.3349i −0.951677 + 0.982286i
\(518\) −3.91208 4.66223i −0.171887 0.204847i
\(519\) 0 0
\(520\) −17.4753 22.3673i −0.766342 0.980873i
\(521\) 20.9290 18.8445i 0.916915 0.825594i −0.0681681 0.997674i \(-0.521715\pi\)
0.985083 + 0.172080i \(0.0550488\pi\)
\(522\) 0 0
\(523\) 25.8767 + 2.71975i 1.13151 + 0.118926i 0.651722 0.758458i \(-0.274047\pi\)
0.479788 + 0.877384i \(0.340714\pi\)
\(524\) 4.08544 2.55287i 0.178473 0.111523i
\(525\) 0 0
\(526\) −2.05530 1.98478i −0.0896154 0.0865406i
\(527\) 4.86293 + 27.5791i 0.211833 + 1.20136i
\(528\) 0 0
\(529\) −3.56663 2.99276i −0.155071 0.130120i
\(530\) −4.88143 2.17335i −0.212036 0.0944045i
\(531\) 0 0
\(532\) 5.36134 + 5.95437i 0.232444 + 0.258155i
\(533\) −4.81250 + 16.7832i −0.208453 + 0.726961i
\(534\) 0 0
\(535\) 7.46907 3.01770i 0.322916 0.130467i
\(536\) 0.139113 3.98367i 0.00600875 0.172068i
\(537\) 0 0
\(538\) −10.4347 1.83991i −0.449871 0.0793244i
\(539\) 2.25781 0.476074i 0.0972509 0.0205060i
\(540\) 0 0
\(541\) −8.51340 11.7177i −0.366020 0.503783i 0.585794 0.810460i \(-0.300783\pi\)
−0.951814 + 0.306677i \(0.900783\pi\)
\(542\) −0.940865 6.69460i −0.0404136 0.287558i
\(543\) 0 0
\(544\) 10.9160 + 16.1836i 0.468018 + 0.693866i
\(545\) −2.60548 + 0.182193i −0.111606 + 0.00780428i
\(546\) 0 0
\(547\) 30.6500 23.9464i 1.31050 1.02387i 0.313255 0.949669i \(-0.398581\pi\)
0.997243 0.0742044i \(-0.0236417\pi\)
\(548\) −17.4430 + 1.83333i −0.745126 + 0.0783159i
\(549\) 0 0
\(550\) 1.11059 + 1.23748i 0.0473559 + 0.0527665i
\(551\) 6.30764 7.51715i 0.268714 0.320241i
\(552\) 0 0
\(553\) 38.9091 20.6883i 1.65458 0.879758i
\(554\) −2.25220 + 16.0252i −0.0956868 + 0.680847i
\(555\) 0 0
\(556\) −21.3064 + 5.31227i −0.903591 + 0.225290i
\(557\) −35.7215 + 7.59283i −1.51357 + 0.321719i −0.888509 0.458859i \(-0.848258\pi\)
−0.625059 + 0.780578i \(0.714925\pi\)
\(558\) 0 0
\(559\) 0.714169 + 6.79486i 0.0302061 + 0.287392i
\(560\) 12.4048 4.51499i 0.524200 0.190793i
\(561\) 0 0
\(562\) −6.94394 + 5.82665i −0.292912 + 0.245783i
\(563\) 5.99498 1.71903i 0.252658 0.0724486i −0.146918 0.989149i \(-0.546935\pi\)
0.399576 + 0.916700i \(0.369157\pi\)
\(564\) 0 0
\(565\) 1.85568 + 0.986681i 0.0780690 + 0.0415100i
\(566\) 5.50148 7.57214i 0.231245 0.318281i
\(567\) 0 0
\(568\) 15.0969 + 4.90529i 0.633453 + 0.205821i
\(569\) 3.94713 0.554733i 0.165472 0.0232556i −0.0559503 0.998434i \(-0.517819\pi\)
0.221423 + 0.975178i \(0.428930\pi\)
\(570\) 0 0
\(571\) 2.01549 5.53753i 0.0843458 0.231738i −0.890349 0.455279i \(-0.849539\pi\)
0.974695 + 0.223541i \(0.0717617\pi\)
\(572\) 11.0221 + 38.6761i 0.460857 + 1.61713i
\(573\) 0 0
\(574\) 3.03893 + 2.04978i 0.126842 + 0.0855563i
\(575\) 1.02324 4.81397i 0.0426721 0.200756i
\(576\) 0 0
\(577\) −2.46434 + 23.4467i −0.102592 + 0.976097i 0.815239 + 0.579125i \(0.196606\pi\)
−0.917831 + 0.396972i \(0.870061\pi\)
\(578\) 0.406423 + 1.63008i 0.0169050 + 0.0678022i
\(579\) 0 0
\(580\) −9.43579 17.7461i −0.391800 0.736868i
\(581\) 11.7618 12.1797i 0.487960 0.505298i
\(582\) 0 0
\(583\) 11.3799 + 11.8226i 0.471306 + 0.489644i
\(584\) −23.5265 + 13.5830i −0.973533 + 0.562069i
\(585\) 0 0
\(586\) 0.849313 + 0.180527i 0.0350848 + 0.00745751i
\(587\) 43.2690 1.51099i 1.78590 0.0623651i 0.877279 0.479981i \(-0.159356\pi\)
0.908624 + 0.417616i \(0.137134\pi\)
\(588\) 0 0
\(589\) 0.884595 + 12.6503i 0.0364491 + 0.521247i
\(590\) −5.73860 + 7.34507i −0.236254 + 0.302392i
\(591\) 0 0
\(592\) 4.23763 + 8.68843i 0.174165 + 0.357092i
\(593\) 35.6507 1.46400 0.731998 0.681306i \(-0.238588\pi\)
0.731998 + 0.681306i \(0.238588\pi\)
\(594\) 0 0
\(595\) −20.8235 −0.853681
\(596\) 14.4618 + 29.6511i 0.592380 + 1.21456i
\(597\) 0 0
\(598\) −12.2774 + 15.7144i −0.502060 + 0.642608i
\(599\) 2.64089 + 37.7666i 0.107904 + 1.54310i 0.686285 + 0.727333i \(0.259240\pi\)
−0.578381 + 0.815767i \(0.696315\pi\)
\(600\) 0 0
\(601\) −1.32195 + 0.0461635i −0.0539235 + 0.00188305i −0.0618485 0.998086i \(-0.519700\pi\)
0.00792507 + 0.999969i \(0.497477\pi\)
\(602\) 1.40308 + 0.298235i 0.0571854 + 0.0121551i
\(603\) 0 0
\(604\) −22.8280 + 13.1798i −0.928859 + 0.536277i
\(605\) 7.51669 + 20.8629i 0.305597 + 0.848199i
\(606\) 0 0
\(607\) −0.854118 + 0.884465i −0.0346676 + 0.0358993i −0.736450 0.676492i \(-0.763499\pi\)
0.701782 + 0.712392i \(0.252388\pi\)
\(608\) 4.14994 + 7.80490i 0.168302 + 0.316531i
\(609\) 0 0
\(610\) −0.477628 1.91566i −0.0193386 0.0775628i
\(611\) 6.93765 66.0073i 0.280667 2.67037i
\(612\) 0 0
\(613\) −8.25160 + 38.8207i −0.333279 + 1.56795i 0.418298 + 0.908310i \(0.362627\pi\)
−0.751577 + 0.659645i \(0.770707\pi\)
\(614\) −1.97123 1.32961i −0.0795525 0.0536589i
\(615\) 0 0
\(616\) 18.2889 + 0.668460i 0.736880 + 0.0269330i
\(617\) −7.43732 + 20.4339i −0.299415 + 0.822636i 0.695183 + 0.718833i \(0.255323\pi\)
−0.994598 + 0.103803i \(0.966899\pi\)
\(618\) 0 0
\(619\) −20.8890 + 2.93576i −0.839600 + 0.117998i −0.545849 0.837884i \(-0.683793\pi\)
−0.293752 + 0.955882i \(0.594904\pi\)
\(620\) 24.7022 + 8.02624i 0.992065 + 0.322342i
\(621\) 0 0
\(622\) −8.18171 + 11.2612i −0.328057 + 0.451531i
\(623\) −26.1688 13.9142i −1.04843 0.557460i
\(624\) 0 0
\(625\) −18.6917 + 5.35976i −0.747668 + 0.214390i
\(626\) −0.505275 + 0.423976i −0.0201949 + 0.0169455i
\(627\) 0 0
\(628\) −0.594489 + 0.216376i −0.0237227 + 0.00863435i
\(629\) −1.59391 15.1651i −0.0635535 0.604671i
\(630\) 0 0
\(631\) 12.6347 2.68559i 0.502979 0.106911i 0.0505672 0.998721i \(-0.483897\pi\)
0.452412 + 0.891809i \(0.350564\pi\)
\(632\) 30.6586 7.64404i 1.21953 0.304064i
\(633\) 0 0
\(634\) 0.895875 6.37448i 0.0355797 0.253163i
\(635\) 20.1674 10.7232i 0.800317 0.425536i
\(636\) 0 0
\(637\) −3.16553 + 3.77253i −0.125423 + 0.149473i
\(638\) −1.06416 10.2858i −0.0421304 0.407217i
\(639\) 0 0
\(640\) 23.0765 2.42544i 0.912179 0.0958739i
\(641\) −12.9048 + 10.0824i −0.509710 + 0.398229i −0.837429 0.546546i \(-0.815942\pi\)
0.327719 + 0.944775i \(0.393720\pi\)
\(642\) 0 0
\(643\) −15.0896 + 1.05517i −0.595075 + 0.0416117i −0.364119 0.931352i \(-0.618630\pi\)
−0.230956 + 0.972964i \(0.574185\pi\)
\(644\) −13.9747 20.7183i −0.550679 0.816415i
\(645\) 0 0
\(646\) −0.468065 3.33045i −0.0184158 0.131035i
\(647\) −11.1748 15.3808i −0.439326 0.604680i 0.530736 0.847537i \(-0.321915\pi\)
−0.970062 + 0.242857i \(0.921915\pi\)
\(648\) 0 0
\(649\) 24.8132 14.2721i 0.974005 0.560231i
\(650\) −3.49484 0.616234i −0.137079 0.0241707i
\(651\) 0 0
\(652\) −1.48754 + 42.5976i −0.0582566 + 1.66825i
\(653\) 15.1482 6.12028i 0.592796 0.239505i −0.0585519 0.998284i \(-0.518648\pi\)
0.651348 + 0.758779i \(0.274204\pi\)
\(654\) 0 0
\(655\) −1.56272 + 5.44985i −0.0610604 + 0.212943i
\(656\) −3.89581 4.32674i −0.152106 0.168931i
\(657\) 0 0
\(658\) −12.7298 5.66766i −0.496258 0.220948i
\(659\) 5.34987 + 4.48907i 0.208401 + 0.174869i 0.741014 0.671490i \(-0.234345\pi\)
−0.532613 + 0.846359i \(0.678790\pi\)
\(660\) 0 0
\(661\) 8.74606 + 49.6014i 0.340182 + 1.92927i 0.368397 + 0.929669i \(0.379907\pi\)
−0.0282147 + 0.999602i \(0.508982\pi\)
\(662\) 9.26859 + 8.95057i 0.360234 + 0.347874i
\(663\) 0 0
\(664\) 10.2956 6.43343i 0.399548 0.249665i
\(665\) −9.37780 0.985646i −0.363655 0.0382217i
\(666\) 0 0
\(667\) −22.7452 + 20.4799i −0.880698 + 0.792984i
\(668\) −2.79759 3.58076i −0.108242 0.138544i
\(669\) 0 0
\(670\) 1.39115 + 1.65791i 0.0537447 + 0.0640505i
\(671\) −0.853592 + 6.00273i −0.0329525 + 0.231733i
\(672\) 0 0
\(673\) 17.7450 8.65481i 0.684019 0.333618i −0.0633843 0.997989i \(-0.520189\pi\)
0.747403 + 0.664371i \(0.231300\pi\)
\(674\) 1.93497 0.628710i 0.0745323 0.0242170i
\(675\) 0 0
\(676\) −51.4225 37.3606i −1.97779 1.43695i
\(677\) −7.38868 + 7.13516i −0.283970 + 0.274227i −0.822977 0.568075i \(-0.807688\pi\)
0.539007 + 0.842301i \(0.318800\pi\)
\(678\) 0 0
\(679\) −7.02870 0.245448i −0.269737 0.00941942i
\(680\) −14.4874 3.61211i −0.555566 0.138518i
\(681\) 0 0
\(682\) 10.2228 + 8.60632i 0.391451 + 0.329553i
\(683\) 1.16852 + 0.674647i 0.0447123 + 0.0258146i 0.522190 0.852829i \(-0.325115\pi\)
−0.477477 + 0.878644i \(0.658449\pi\)
\(684\) 0 0
\(685\) 13.8115 15.3392i 0.527710 0.586081i
\(686\) −4.96477 7.94529i −0.189556 0.303353i
\(687\) 0 0
\(688\) −2.04777 0.998762i −0.0780703 0.0380775i
\(689\) −34.6814 4.87415i −1.32126 0.185690i
\(690\) 0 0
\(691\) 2.89146 + 0.202191i 0.109996 + 0.00769169i 0.124649 0.992201i \(-0.460220\pi\)
−0.0146522 + 0.999893i \(0.504664\pi\)
\(692\) 0.949891 + 1.64526i 0.0361094 + 0.0625434i
\(693\) 0 0
\(694\) −7.02165 + 12.1619i −0.266538 + 0.461658i
\(695\) 14.4508 21.4241i 0.548148 0.812663i
\(696\) 0 0
\(697\) 3.44042 + 8.51535i 0.130315 + 0.322542i
\(698\) 2.19604 1.48125i 0.0831213 0.0560661i
\(699\) 0 0
\(700\) 2.08785 3.92668i 0.0789134 0.148415i
\(701\) 2.68287 + 8.25702i 0.101330 + 0.311863i 0.988852 0.148904i \(-0.0475744\pi\)
−0.887521 + 0.460767i \(0.847574\pi\)
\(702\) 0 0
\(703\) 6.90498i 0.260426i
\(704\) −6.09393 1.75814i −0.229674 0.0662625i
\(705\) 0 0
\(706\) −2.27681 7.94019i −0.0856890 0.298833i
\(707\) 5.30321 8.48690i 0.199448 0.319183i
\(708\) 0 0
\(709\) 11.8213 + 3.38971i 0.443959 + 0.127303i 0.490167 0.871629i \(-0.336936\pi\)
−0.0462077 + 0.998932i \(0.514714\pi\)
\(710\) −7.87355 + 3.50553i −0.295489 + 0.131560i
\(711\) 0 0
\(712\) −15.7926 14.2197i −0.591853 0.532907i
\(713\) 2.75906 39.4565i 0.103328 1.47766i
\(714\) 0 0
\(715\) −40.0960 25.1455i −1.49950 0.940390i
\(716\) −38.4639 + 6.78222i −1.43746 + 0.253463i
\(717\) 0 0
\(718\) −6.84665 + 16.9461i −0.255515 + 0.632421i
\(719\) −2.15672 10.1466i −0.0804321 0.378403i 0.919459 0.393187i \(-0.128627\pi\)
−0.999891 + 0.0147834i \(0.995294\pi\)
\(720\) 0 0
\(721\) −16.8429 37.8297i −0.627261 1.40885i
\(722\) 0.302074 + 8.65027i 0.0112420 + 0.321930i
\(723\) 0 0
\(724\) 4.65878 18.6853i 0.173142 0.694435i
\(725\) −5.11815 1.86286i −0.190083 0.0691847i
\(726\) 0 0
\(727\) 3.74787 21.2552i 0.139001 0.788312i −0.832989 0.553289i \(-0.813372\pi\)
0.971990 0.235023i \(-0.0755165\pi\)
\(728\) −31.5995 + 22.9584i −1.17115 + 0.850893i
\(729\) 0 0
\(730\) 4.55792 14.0278i 0.168696 0.519194i
\(731\) 2.49655 + 2.58526i 0.0923384 + 0.0956192i
\(732\) 0 0
\(733\) −5.01187 3.91570i −0.185118 0.144630i 0.518841 0.854871i \(-0.326364\pi\)
−0.703959 + 0.710241i \(0.748586\pi\)
\(734\) −7.48391 4.67647i −0.276236 0.172612i
\(735\) 0 0
\(736\) −9.42978 25.9081i −0.347586 0.954986i
\(737\) −2.04357 6.32445i −0.0752758 0.232964i
\(738\) 0 0
\(739\) 14.1340 31.7455i 0.519928 1.16778i −0.442631 0.896704i \(-0.645955\pi\)
0.962559 0.271073i \(-0.0873785\pi\)
\(740\) −13.1129 5.29795i −0.482039 0.194756i
\(741\) 0 0
\(742\) −3.22329 + 6.60872i −0.118331 + 0.242614i
\(743\) −1.03011 + 2.11204i −0.0377911 + 0.0774832i −0.916854 0.399222i \(-0.869280\pi\)
0.879063 + 0.476705i \(0.158169\pi\)
\(744\) 0 0
\(745\) −35.9974 14.5439i −1.31884 0.532847i
\(746\) −6.87840 + 15.4491i −0.251836 + 0.565633i
\(747\) 0 0
\(748\) 17.0941 + 12.4621i 0.625021 + 0.455660i
\(749\) −3.79134 10.4166i −0.138532 0.380615i
\(750\) 0 0
\(751\) 23.1579 + 14.4706i 0.845043 + 0.528041i 0.881986 0.471276i \(-0.156206\pi\)
−0.0369431 + 0.999317i \(0.511762\pi\)
\(752\) 17.4407 + 13.6262i 0.635996 + 0.496895i
\(753\) 0 0
\(754\) 15.3308 + 15.8755i 0.558314 + 0.578151i
\(755\) 9.58614 29.5031i 0.348875 1.07373i
\(756\) 0 0
\(757\) 18.5897 13.5062i 0.675655 0.490892i −0.196258 0.980552i \(-0.562879\pi\)
0.871914 + 0.489660i \(0.162879\pi\)
\(758\) −0.197409 + 1.11956i −0.00717021 + 0.0406643i
\(759\) 0 0
\(760\) −6.35336 2.31244i −0.230461 0.0838808i
\(761\) 4.44226 17.8169i 0.161032 0.645864i −0.834464 0.551062i \(-0.814223\pi\)
0.995496 0.0948017i \(-0.0302217\pi\)
\(762\) 0 0
\(763\) 0.125431 + 3.59188i 0.00454091 + 0.130035i
\(764\) −8.19418 18.4044i −0.296455 0.665849i
\(765\) 0 0
\(766\) −1.79103 8.42615i −0.0647127 0.304449i
\(767\) −22.8858 + 56.6443i −0.826357 + 2.04531i
\(768\) 0 0
\(769\) −4.66158 + 0.821963i −0.168101 + 0.0296407i −0.257065 0.966394i \(-0.582755\pi\)
0.0889641 + 0.996035i \(0.471644\pi\)
\(770\) −7.62222 + 6.37470i −0.274686 + 0.229728i
\(771\) 0 0
\(772\) −0.182088 + 2.60398i −0.00655348 + 0.0937192i
\(773\) 39.3852 + 35.4626i 1.41659 + 1.27550i 0.910804 + 0.412839i \(0.135463\pi\)
0.505783 + 0.862661i \(0.331204\pi\)
\(774\) 0 0
\(775\) 6.43011 2.86287i 0.230976 0.102837i
\(776\) −4.84744 1.38998i −0.174013 0.0498974i
\(777\) 0 0
\(778\) 5.44899 8.72021i 0.195356 0.312635i
\(779\) 1.14632 + 3.99770i 0.0410712 + 0.143232i
\(780\) 0 0
\(781\) 26.4534 0.880679i 0.946578 0.0315132i
\(782\) 10.4898i 0.375115i
\(783\) 0 0
\(784\) −0.507475 1.56185i −0.0181241 0.0557803i
\(785\) 0.349535 0.657380i 0.0124754 0.0234629i
\(786\) 0 0
\(787\) 5.95643 4.01766i 0.212324 0.143214i −0.448427 0.893819i \(-0.648016\pi\)
0.660751 + 0.750605i \(0.270238\pi\)
\(788\) 7.15504 + 17.7093i 0.254888 + 0.630869i
\(789\) 0 0
\(790\) −9.59330 + 14.2226i −0.341314 + 0.506019i
\(791\) 1.44603 2.50460i 0.0514149 0.0890533i
\(792\) 0 0
\(793\) −6.47010 11.2065i −0.229760 0.397956i
\(794\) −8.84187 0.618284i −0.313786 0.0219421i
\(795\) 0 0
\(796\) −2.02378 0.284424i −0.0717312 0.0100812i
\(797\) −14.0703 6.86256i −0.498397 0.243084i 0.171986 0.985099i \(-0.444981\pi\)
−0.670383 + 0.742015i \(0.733870\pi\)
\(798\) 0 0
\(799\) −18.5008 29.6075i −0.654511 1.04744i
\(800\) 3.28301 3.64615i 0.116072 0.128911i
\(801\) 0 0
\(802\) 12.1185 + 6.99661i 0.427919 + 0.247059i
\(803\) −29.1726 + 34.6518i −1.02948 + 1.22284i
\(804\) 0 0
\(805\) 28.5370 + 7.11507i 1.00580 + 0.250773i
\(806\) −28.5029 0.995344i −1.00397 0.0350595i
\(807\) 0 0
\(808\) 5.16172 4.98461i 0.181589 0.175358i
\(809\) −18.7796 13.6442i −0.660255 0.479704i 0.206494 0.978448i \(-0.433795\pi\)
−0.866749 + 0.498744i \(0.833795\pi\)
\(810\) 0 0
\(811\) −6.16014 + 2.00155i −0.216312 + 0.0702839i −0.415168 0.909745i \(-0.636277\pi\)
0.198856 + 0.980029i \(0.436277\pi\)
\(812\) −24.8582 + 12.1241i −0.872350 + 0.425474i
\(813\) 0 0
\(814\) −5.22591 5.06307i −0.183168 0.177460i
\(815\) −32.2434 38.4262i −1.12944 1.34601i
\(816\) 0 0
\(817\) 1.00194 + 1.28243i 0.0350536 + 0.0448666i
\(818\) −7.54329 + 6.79201i −0.263745 + 0.237477i
\(819\) 0 0
\(820\) 8.47135 + 0.890375i 0.295832 + 0.0310932i
\(821\) −28.6920 + 17.9288i −1.00136 + 0.625718i −0.928387 0.371616i \(-0.878804\pi\)
−0.0729718 + 0.997334i \(0.523248\pi\)
\(822\) 0 0
\(823\) −2.52323 2.43666i −0.0879544 0.0849366i 0.649382 0.760463i \(-0.275028\pi\)
−0.737336 + 0.675526i \(0.763917\pi\)
\(824\) −5.15590 29.2405i −0.179614 1.01864i
\(825\) 0 0
\(826\) 9.82556 + 8.24462i 0.341875 + 0.286867i
\(827\) 8.95033 + 3.98494i 0.311233 + 0.138570i 0.556409 0.830909i \(-0.312179\pi\)
−0.245175 + 0.969479i \(0.578846\pi\)
\(828\) 0 0
\(829\) −19.6267 21.7976i −0.681663 0.757064i 0.298682 0.954353i \(-0.403453\pi\)
−0.980345 + 0.197289i \(0.936786\pi\)
\(830\) −1.81689 + 6.33626i −0.0630652 + 0.219935i
\(831\) 0 0
\(832\) 12.5508 5.07084i 0.435119 0.175800i
\(833\) −0.0904068 + 2.58891i −0.00313241 + 0.0897005i
\(834\) 0 0
\(835\) 5.26645 + 0.928617i 0.182253 + 0.0321361i
\(836\) 7.10837 + 6.42138i 0.245848 + 0.222088i
\(837\) 0 0
\(838\) −2.22334 3.06016i −0.0768038 0.105711i
\(839\) −3.97429 28.2785i −0.137208 0.976283i −0.930200 0.367052i \(-0.880367\pi\)
0.792993 0.609231i \(-0.208522\pi\)
\(840\) 0 0
\(841\) 2.72458 + 4.03936i 0.0939511 + 0.139288i
\(842\) 7.02844 0.491476i 0.242216 0.0169374i
\(843\) 0 0
\(844\) −7.18356 + 5.61241i −0.247268 + 0.193187i
\(845\) 74.3932 7.81904i 2.55920 0.268983i
\(846\) 0 0
\(847\) 29.0523 9.33524i 0.998249 0.320763i
\(848\) 7.50698 8.94647i 0.257791 0.307223i
\(849\) 0 0
\(850\) −1.64821 + 0.876371i −0.0565333 + 0.0300593i
\(851\) −2.99733 + 21.3271i −0.102747 + 0.731085i
\(852\) 0 0
\(853\) −9.92686 + 2.47504i −0.339889 + 0.0847439i −0.408127 0.912925i \(-0.633818\pi\)
0.0682377 + 0.997669i \(0.478262\pi\)
\(854\) −2.65741 + 0.564850i −0.0909347 + 0.0193288i
\(855\) 0 0
\(856\) −0.830819 7.90472i −0.0283968 0.270178i
\(857\) 20.3024 7.38948i 0.693517 0.252420i 0.0288769 0.999583i \(-0.490807\pi\)
0.664641 + 0.747163i \(0.268585\pi\)
\(858\) 0 0
\(859\) −19.4772 + 16.3433i −0.664552 + 0.557626i −0.911447 0.411417i \(-0.865034\pi\)
0.246895 + 0.969042i \(0.420590\pi\)
\(860\) 3.20415 0.918775i 0.109261 0.0313300i
\(861\) 0 0
\(862\) −16.8776 8.97397i −0.574853 0.305655i
\(863\) −8.84285 + 12.1711i −0.301014 + 0.414310i −0.932553 0.361034i \(-0.882424\pi\)
0.631539 + 0.775344i \(0.282424\pi\)
\(864\) 0 0
\(865\) −2.12635 0.690892i −0.0722979 0.0234910i
\(866\) 5.51084 0.774499i 0.187266 0.0263185i
\(867\) 0 0
\(868\) 12.2242 33.5858i 0.414917 1.13998i
\(869\) 43.7258 29.3900i 1.48330 0.996989i
\(870\) 0 0
\(871\) 11.7600 + 7.93221i 0.398472 + 0.268773i
\(872\) −0.535793 + 2.52071i −0.0181442 + 0.0853619i
\(873\) 0 0
\(874\) −0.496518 + 4.72405i −0.0167950 + 0.159793i
\(875\) 8.03096 + 32.2104i 0.271496 + 1.08891i
\(876\) 0 0
\(877\) 10.6369 + 20.0050i 0.359181 + 0.675521i 0.995381 0.0960029i \(-0.0306058\pi\)
−0.636200 + 0.771524i \(0.719495\pi\)
\(878\) 5.78029 5.98567i 0.195075 0.202007i
\(879\) 0 0
\(880\) 14.1965 6.89551i 0.478563 0.232448i
\(881\) −30.6507 + 17.6962i −1.03265 + 0.596200i −0.917742 0.397176i \(-0.869990\pi\)
−0.114906 + 0.993376i \(0.536657\pi\)
\(882\) 0 0
\(883\) −12.0118 2.55318i −0.404229 0.0859214i 0.00131049 0.999999i \(-0.499583\pi\)
−0.405539 + 0.914078i \(0.632916\pi\)
\(884\) −45.1214 + 1.57567i −1.51760 + 0.0529956i
\(885\) 0 0
\(886\) 0.118233 + 1.69082i 0.00397213 + 0.0568041i
\(887\) 22.9126 29.3267i 0.769328 0.984695i −0.230604 0.973048i \(-0.574070\pi\)
0.999932 0.0116476i \(-0.00370762\pi\)
\(888\) 0 0
\(889\) −13.7783 28.2497i −0.462109 0.947465i
\(890\) 11.5382 0.386762
\(891\) 0 0
\(892\) −2.56263 −0.0858033
\(893\) −6.93035 14.2093i −0.231915 0.475497i
\(894\) 0 0
\(895\) 28.2988 36.2208i 0.945923 1.21073i
\(896\) −2.22731 31.8520i −0.0744091 1.06410i
\(897\) 0 0
\(898\) 2.55410 0.0891910i 0.0852313 0.00297634i
\(899\) −42.8164 9.10091i −1.42801 0.303532i
\(900\) 0 0
\(901\) −15.9543 + 9.21122i −0.531515 + 0.306870i
\(902\) 3.86613 + 2.06373i 0.128728 + 0.0687148i
\(903\) 0 0
\(904\) 1.44049 1.49167i 0.0479100 0.0496122i
\(905\) 10.6397 + 20.0104i 0.353676 + 0.665168i
\(906\) 0 0
\(907\) 5.55438 + 22.2774i 0.184430 + 0.739709i 0.989255 + 0.146197i \(0.0467035\pi\)
−0.804825 + 0.593512i \(0.797741\pi\)
\(908\) −0.564734 + 5.37308i −0.0187414 + 0.178312i
\(909\) 0 0
\(910\) 4.40919 20.7436i 0.146163 0.687645i
\(911\) −6.52529 4.40136i −0.216192 0.145824i 0.446323 0.894872i \(-0.352733\pi\)
−0.662515 + 0.749048i \(0.730511\pi\)
\(912\) 0 0
\(913\) 12.4887 15.9313i 0.413316 0.527250i
\(914\) 1.60634 4.41338i 0.0531329 0.145982i
\(915\) 0 0
\(916\) −31.6724 + 4.45126i −1.04648 + 0.147074i
\(917\) 7.41974 + 2.41082i 0.245021 + 0.0796123i
\(918\) 0 0
\(919\) 12.0930 16.6445i 0.398910 0.549053i −0.561560 0.827436i \(-0.689799\pi\)
0.960470 + 0.278383i \(0.0897986\pi\)
\(920\) 18.6196 + 9.90021i 0.613870 + 0.326400i
\(921\) 0 0
\(922\) −1.16397 + 0.333763i −0.0383333 + 0.0109919i
\(923\) −43.2734 + 36.3107i −1.42436 + 1.19518i
\(924\) 0 0
\(925\) −3.60144 + 1.31082i −0.118415 + 0.0430994i
\(926\) 0.771404 + 7.33941i 0.0253499 + 0.241188i
\(927\) 0 0
\(928\) −29.8458 + 6.34392i −0.979736 + 0.208249i
\(929\) 1.74833 0.435909i 0.0573610 0.0143017i −0.213136 0.977023i \(-0.568368\pi\)
0.270497 + 0.962721i \(0.412812\pi\)
\(930\) 0 0
\(931\) −0.163256 + 1.16163i −0.00535050 + 0.0380708i
\(932\) −2.93266 + 1.55932i −0.0960624 + 0.0510773i
\(933\) 0 0
\(934\) 9.41019 11.2146i 0.307911 0.366954i
\(935\) −24.7636 + 2.56203i −0.809857 + 0.0837872i
\(936\) 0 0
\(937\) 15.2491 1.60274i 0.498165 0.0523592i 0.147886 0.989004i \(-0.452753\pi\)
0.350279 + 0.936645i \(0.386087\pi\)
\(938\) 2.34681 1.83353i 0.0766260 0.0598668i
\(939\) 0 0
\(940\) −32.3016 + 2.25874i −1.05356 + 0.0736721i
\(941\) −22.9642 34.0458i −0.748612 1.10986i −0.990224 0.139490i \(-0.955454\pi\)
0.241612 0.970373i \(-0.422324\pi\)
\(942\) 0 0
\(943\) −1.80527 12.8451i −0.0587875 0.418295i
\(944\) −11.9747 16.4817i −0.389742 0.536433i
\(945\) 0 0
\(946\) 1.70526 + 0.182036i 0.0554428 + 0.00591850i
\(947\) 57.9533 + 10.2187i 1.88323 + 0.332064i 0.992477 0.122428i \(-0.0390682\pi\)
0.890751 + 0.454492i \(0.150179\pi\)
\(948\) 0 0
\(949\) 3.37389 96.6154i 0.109521 3.13627i
\(950\) −0.783748 + 0.316655i −0.0254282 + 0.0102736i
\(951\) 0 0
\(952\) −5.66322 + 19.7500i −0.183546 + 0.640101i
\(953\) −9.65092 10.7184i −0.312624 0.347204i 0.566271 0.824219i \(-0.308385\pi\)
−0.878895 + 0.477015i \(0.841719\pi\)
\(954\) 0 0
\(955\) 21.6594 + 9.64338i 0.700882 + 0.312053i
\(956\) 11.1405 + 9.34802i 0.360311 + 0.302337i
\(957\) 0 0
\(958\) −0.781480 4.43200i −0.0252485 0.143191i
\(959\) −20.4317 19.7306i −0.659773 0.637135i
\(960\) 0 0
\(961\) 21.6825 13.5487i 0.699434 0.437055i
\(962\) 15.4444 + 1.62327i 0.497947 + 0.0523364i
\(963\) 0 0
\(964\) 9.44541 8.50469i 0.304216 0.273918i
\(965\) −1.89131 2.42076i −0.0608834 0.0779271i
\(966\) 0 0
\(967\) 19.7776 + 23.5701i 0.636006 + 0.757962i 0.983734 0.179633i \(-0.0574911\pi\)
−0.347728 + 0.937596i \(0.613047\pi\)
\(968\) 21.8316 1.45524i 0.701695 0.0467731i
\(969\) 0 0
\(970\) 2.46088 1.20025i 0.0790139 0.0385377i
\(971\) −46.8858 + 15.2341i −1.50464 + 0.488886i −0.941366 0.337386i \(-0.890457\pi\)
−0.563271 + 0.826272i \(0.690457\pi\)
\(972\) 0 0
\(973\) −28.7691 20.9020i −0.922295 0.670086i
\(974\) −10.3885 + 10.0321i −0.332869 + 0.321448i
\(975\) 0 0
\(976\) 4.31251 + 0.150596i 0.138040 + 0.00482047i
\(977\) 37.1269 + 9.25679i 1.18780 + 0.296151i 0.785209 0.619231i \(-0.212555\pi\)
0.402587 + 0.915382i \(0.368111\pi\)
\(978\) 0 0
\(979\) −32.8322 13.3273i −1.04932 0.425941i
\(980\) 2.08072 + 1.20131i 0.0664663 + 0.0383743i
\(981\) 0 0
\(982\) 0.836652 0.929196i 0.0266986 0.0296518i
\(983\) −13.9760 22.3662i −0.445764 0.713371i 0.546508 0.837454i \(-0.315957\pi\)
−0.992272 + 0.124082i \(0.960401\pi\)
\(984\) 0 0
\(985\) −20.2032 9.85377i −0.643728 0.313967i
\(986\) 11.4961 + 1.61567i 0.366109 + 0.0514533i
\(987\) 0 0
\(988\) −20.3948 1.42614i −0.648845 0.0453717i
\(989\) −2.53798 4.39592i −0.0807032 0.139782i
\(990\) 0 0
\(991\) 6.79604 11.7711i 0.215883 0.373921i −0.737662 0.675170i \(-0.764070\pi\)
0.953545 + 0.301249i \(0.0974036\pi\)
\(992\) 22.0496 32.6899i 0.700076 1.03791i
\(993\) 0 0
\(994\) 4.44279 + 10.9963i 0.140917 + 0.348781i
\(995\) 1.99393 1.34492i 0.0632118 0.0426369i
\(996\) 0 0
\(997\) 1.25349 2.35747i 0.0396984 0.0746619i −0.862309 0.506383i \(-0.830982\pi\)
0.902007 + 0.431721i \(0.142093\pi\)
\(998\) −0.755740 2.32593i −0.0239225 0.0736260i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.bb.a.8.19 816
3.2 odd 2 297.2.x.a.272.16 yes 816
11.7 odd 10 inner 891.2.bb.a.656.19 816
27.13 even 9 297.2.x.a.41.16 yes 816
27.14 odd 18 inner 891.2.bb.a.800.19 816
33.29 even 10 297.2.x.a.29.16 816
297.40 odd 90 297.2.x.a.95.16 yes 816
297.95 even 90 inner 891.2.bb.a.557.19 816
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.x.a.29.16 816 33.29 even 10
297.2.x.a.41.16 yes 816 27.13 even 9
297.2.x.a.95.16 yes 816 297.40 odd 90
297.2.x.a.272.16 yes 816 3.2 odd 2
891.2.bb.a.8.19 816 1.1 even 1 trivial
891.2.bb.a.557.19 816 297.95 even 90 inner
891.2.bb.a.656.19 816 11.7 odd 10 inner
891.2.bb.a.800.19 816 27.14 odd 18 inner