Properties

Label 889.2.a.d.1.5
Level $889$
Weight $2$
Character 889.1
Self dual yes
Analytic conductor $7.099$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(1,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.09870073969\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} + 152 x^{17} - 274 x^{16} - 1061 x^{15} + 3125 x^{14} + 2977 x^{13} - 15474 x^{12} + \cdots + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.60447\) of defining polynomial
Character \(\chi\) \(=\) 889.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60447 q^{2} +2.96301 q^{3} +0.574339 q^{4} +0.248535 q^{5} -4.75407 q^{6} +1.00000 q^{7} +2.28744 q^{8} +5.77943 q^{9} -0.398768 q^{10} +2.06439 q^{11} +1.70177 q^{12} +4.61355 q^{13} -1.60447 q^{14} +0.736411 q^{15} -4.81881 q^{16} -1.38495 q^{17} -9.27295 q^{18} -2.86500 q^{19} +0.142743 q^{20} +2.96301 q^{21} -3.31226 q^{22} +5.17882 q^{23} +6.77770 q^{24} -4.93823 q^{25} -7.40233 q^{26} +8.23548 q^{27} +0.574339 q^{28} -9.35535 q^{29} -1.18155 q^{30} -7.06776 q^{31} +3.15679 q^{32} +6.11681 q^{33} +2.22211 q^{34} +0.248535 q^{35} +3.31935 q^{36} +9.60134 q^{37} +4.59682 q^{38} +13.6700 q^{39} +0.568508 q^{40} +7.82024 q^{41} -4.75407 q^{42} +10.4189 q^{43} +1.18566 q^{44} +1.43639 q^{45} -8.30929 q^{46} -7.14182 q^{47} -14.2782 q^{48} +1.00000 q^{49} +7.92327 q^{50} -4.10361 q^{51} +2.64974 q^{52} +9.73442 q^{53} -13.2136 q^{54} +0.513073 q^{55} +2.28744 q^{56} -8.48903 q^{57} +15.0104 q^{58} -1.47644 q^{59} +0.422949 q^{60} -11.9646 q^{61} +11.3400 q^{62} +5.77943 q^{63} +4.57264 q^{64} +1.14663 q^{65} -9.81427 q^{66} -14.5589 q^{67} -0.795429 q^{68} +15.3449 q^{69} -0.398768 q^{70} +9.83898 q^{71} +13.2201 q^{72} -4.36287 q^{73} -15.4051 q^{74} -14.6320 q^{75} -1.64548 q^{76} +2.06439 q^{77} -21.9332 q^{78} -2.06143 q^{79} -1.19764 q^{80} +7.06353 q^{81} -12.5474 q^{82} +15.1003 q^{83} +1.70177 q^{84} -0.344207 q^{85} -16.7169 q^{86} -27.7200 q^{87} +4.72216 q^{88} -12.9515 q^{89} -2.30465 q^{90} +4.61355 q^{91} +2.97440 q^{92} -20.9418 q^{93} +11.4589 q^{94} -0.712053 q^{95} +9.35359 q^{96} -5.88747 q^{97} -1.60447 q^{98} +11.9310 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 24 q^{4} + 3 q^{5} + 6 q^{6} + 20 q^{7} + 24 q^{8} + 30 q^{9} - 8 q^{10} + 26 q^{11} - 4 q^{12} - 4 q^{13} + 8 q^{14} + 10 q^{15} + 24 q^{16} + 4 q^{17} + 5 q^{18} + q^{19} - 2 q^{20}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60447 −1.13453 −0.567267 0.823534i \(-0.691999\pi\)
−0.567267 + 0.823534i \(0.691999\pi\)
\(3\) 2.96301 1.71069 0.855347 0.518055i \(-0.173344\pi\)
0.855347 + 0.518055i \(0.173344\pi\)
\(4\) 0.574339 0.287169
\(5\) 0.248535 0.111148 0.0555740 0.998455i \(-0.482301\pi\)
0.0555740 + 0.998455i \(0.482301\pi\)
\(6\) −4.75407 −1.94084
\(7\) 1.00000 0.377964
\(8\) 2.28744 0.808731
\(9\) 5.77943 1.92648
\(10\) −0.398768 −0.126101
\(11\) 2.06439 0.622437 0.311219 0.950338i \(-0.399263\pi\)
0.311219 + 0.950338i \(0.399263\pi\)
\(12\) 1.70177 0.491259
\(13\) 4.61355 1.27957 0.639785 0.768554i \(-0.279023\pi\)
0.639785 + 0.768554i \(0.279023\pi\)
\(14\) −1.60447 −0.428814
\(15\) 0.736411 0.190140
\(16\) −4.81881 −1.20470
\(17\) −1.38495 −0.335899 −0.167950 0.985796i \(-0.553715\pi\)
−0.167950 + 0.985796i \(0.553715\pi\)
\(18\) −9.27295 −2.18566
\(19\) −2.86500 −0.657277 −0.328638 0.944456i \(-0.606590\pi\)
−0.328638 + 0.944456i \(0.606590\pi\)
\(20\) 0.142743 0.0319183
\(21\) 2.96301 0.646582
\(22\) −3.31226 −0.706177
\(23\) 5.17882 1.07986 0.539930 0.841710i \(-0.318451\pi\)
0.539930 + 0.841710i \(0.318451\pi\)
\(24\) 6.77770 1.38349
\(25\) −4.93823 −0.987646
\(26\) −7.40233 −1.45172
\(27\) 8.23548 1.58492
\(28\) 0.574339 0.108540
\(29\) −9.35535 −1.73724 −0.868622 0.495475i \(-0.834994\pi\)
−0.868622 + 0.495475i \(0.834994\pi\)
\(30\) −1.18155 −0.215721
\(31\) −7.06776 −1.26941 −0.634703 0.772756i \(-0.718878\pi\)
−0.634703 + 0.772756i \(0.718878\pi\)
\(32\) 3.15679 0.558046
\(33\) 6.11681 1.06480
\(34\) 2.22211 0.381089
\(35\) 0.248535 0.0420100
\(36\) 3.31935 0.553225
\(37\) 9.60134 1.57845 0.789226 0.614103i \(-0.210482\pi\)
0.789226 + 0.614103i \(0.210482\pi\)
\(38\) 4.59682 0.745703
\(39\) 13.6700 2.18895
\(40\) 0.568508 0.0898889
\(41\) 7.82024 1.22132 0.610658 0.791894i \(-0.290905\pi\)
0.610658 + 0.791894i \(0.290905\pi\)
\(42\) −4.75407 −0.733570
\(43\) 10.4189 1.58887 0.794437 0.607346i \(-0.207766\pi\)
0.794437 + 0.607346i \(0.207766\pi\)
\(44\) 1.18566 0.178745
\(45\) 1.43639 0.214124
\(46\) −8.30929 −1.22514
\(47\) −7.14182 −1.04174 −0.520871 0.853636i \(-0.674393\pi\)
−0.520871 + 0.853636i \(0.674393\pi\)
\(48\) −14.2782 −2.06088
\(49\) 1.00000 0.142857
\(50\) 7.92327 1.12052
\(51\) −4.10361 −0.574621
\(52\) 2.64974 0.367453
\(53\) 9.73442 1.33713 0.668563 0.743656i \(-0.266910\pi\)
0.668563 + 0.743656i \(0.266910\pi\)
\(54\) −13.2136 −1.79815
\(55\) 0.513073 0.0691827
\(56\) 2.28744 0.305672
\(57\) −8.48903 −1.12440
\(58\) 15.0104 1.97096
\(59\) −1.47644 −0.192217 −0.0961083 0.995371i \(-0.530640\pi\)
−0.0961083 + 0.995371i \(0.530640\pi\)
\(60\) 0.422949 0.0546025
\(61\) −11.9646 −1.53191 −0.765957 0.642892i \(-0.777734\pi\)
−0.765957 + 0.642892i \(0.777734\pi\)
\(62\) 11.3400 1.44019
\(63\) 5.77943 0.728140
\(64\) 4.57264 0.571580
\(65\) 1.14663 0.142222
\(66\) −9.81427 −1.20805
\(67\) −14.5589 −1.77865 −0.889325 0.457276i \(-0.848825\pi\)
−0.889325 + 0.457276i \(0.848825\pi\)
\(68\) −0.795429 −0.0964599
\(69\) 15.3449 1.84731
\(70\) −0.398768 −0.0476618
\(71\) 9.83898 1.16767 0.583836 0.811872i \(-0.301551\pi\)
0.583836 + 0.811872i \(0.301551\pi\)
\(72\) 13.2201 1.55800
\(73\) −4.36287 −0.510636 −0.255318 0.966857i \(-0.582180\pi\)
−0.255318 + 0.966857i \(0.582180\pi\)
\(74\) −15.4051 −1.79081
\(75\) −14.6320 −1.68956
\(76\) −1.64548 −0.188750
\(77\) 2.06439 0.235259
\(78\) −21.9332 −2.48344
\(79\) −2.06143 −0.231929 −0.115964 0.993253i \(-0.536996\pi\)
−0.115964 + 0.993253i \(0.536996\pi\)
\(80\) −1.19764 −0.133900
\(81\) 7.06353 0.784836
\(82\) −12.5474 −1.38563
\(83\) 15.1003 1.65747 0.828735 0.559642i \(-0.189061\pi\)
0.828735 + 0.559642i \(0.189061\pi\)
\(84\) 1.70177 0.185678
\(85\) −0.344207 −0.0373345
\(86\) −16.7169 −1.80263
\(87\) −27.7200 −2.97190
\(88\) 4.72216 0.503384
\(89\) −12.9515 −1.37286 −0.686429 0.727197i \(-0.740823\pi\)
−0.686429 + 0.727197i \(0.740823\pi\)
\(90\) −2.30465 −0.242931
\(91\) 4.61355 0.483632
\(92\) 2.97440 0.310102
\(93\) −20.9418 −2.17157
\(94\) 11.4589 1.18189
\(95\) −0.712053 −0.0730551
\(96\) 9.35359 0.954647
\(97\) −5.88747 −0.597782 −0.298891 0.954287i \(-0.596617\pi\)
−0.298891 + 0.954287i \(0.596617\pi\)
\(98\) −1.60447 −0.162076
\(99\) 11.9310 1.19911
\(100\) −2.83622 −0.283622
\(101\) 12.2737 1.22128 0.610642 0.791907i \(-0.290912\pi\)
0.610642 + 0.791907i \(0.290912\pi\)
\(102\) 6.58414 0.651927
\(103\) 10.0831 0.993514 0.496757 0.867890i \(-0.334524\pi\)
0.496757 + 0.867890i \(0.334524\pi\)
\(104\) 10.5532 1.03483
\(105\) 0.736411 0.0718663
\(106\) −15.6186 −1.51702
\(107\) 11.0209 1.06543 0.532713 0.846296i \(-0.321172\pi\)
0.532713 + 0.846296i \(0.321172\pi\)
\(108\) 4.72995 0.455140
\(109\) −3.92874 −0.376305 −0.188152 0.982140i \(-0.560250\pi\)
−0.188152 + 0.982140i \(0.560250\pi\)
\(110\) −0.823212 −0.0784902
\(111\) 28.4489 2.70025
\(112\) −4.81881 −0.455335
\(113\) 5.84341 0.549702 0.274851 0.961487i \(-0.411372\pi\)
0.274851 + 0.961487i \(0.411372\pi\)
\(114\) 13.6204 1.27567
\(115\) 1.28712 0.120024
\(116\) −5.37314 −0.498883
\(117\) 26.6637 2.46506
\(118\) 2.36892 0.218076
\(119\) −1.38495 −0.126958
\(120\) 1.68449 0.153773
\(121\) −6.73829 −0.612572
\(122\) 19.1969 1.73801
\(123\) 23.1714 2.08930
\(124\) −4.05929 −0.364535
\(125\) −2.47000 −0.220923
\(126\) −9.27295 −0.826100
\(127\) −1.00000 −0.0887357
\(128\) −13.6503 −1.20652
\(129\) 30.8714 2.71808
\(130\) −1.83974 −0.161355
\(131\) 5.23380 0.457279 0.228640 0.973511i \(-0.426572\pi\)
0.228640 + 0.973511i \(0.426572\pi\)
\(132\) 3.51312 0.305778
\(133\) −2.86500 −0.248427
\(134\) 23.3593 2.01794
\(135\) 2.04680 0.176161
\(136\) −3.16798 −0.271652
\(137\) −2.25200 −0.192402 −0.0962008 0.995362i \(-0.530669\pi\)
−0.0962008 + 0.995362i \(0.530669\pi\)
\(138\) −24.6205 −2.09584
\(139\) −21.4076 −1.81577 −0.907885 0.419220i \(-0.862304\pi\)
−0.907885 + 0.419220i \(0.862304\pi\)
\(140\) 0.142743 0.0120640
\(141\) −21.1613 −1.78210
\(142\) −15.7864 −1.32476
\(143\) 9.52418 0.796452
\(144\) −27.8500 −2.32083
\(145\) −2.32513 −0.193091
\(146\) 7.00012 0.579334
\(147\) 2.96301 0.244385
\(148\) 5.51442 0.453283
\(149\) −5.55086 −0.454744 −0.227372 0.973808i \(-0.573013\pi\)
−0.227372 + 0.973808i \(0.573013\pi\)
\(150\) 23.4767 1.91687
\(151\) −1.74871 −0.142308 −0.0711540 0.997465i \(-0.522668\pi\)
−0.0711540 + 0.997465i \(0.522668\pi\)
\(152\) −6.55351 −0.531560
\(153\) −8.00421 −0.647102
\(154\) −3.31226 −0.266910
\(155\) −1.75658 −0.141092
\(156\) 7.85121 0.628600
\(157\) 8.65739 0.690935 0.345467 0.938431i \(-0.387720\pi\)
0.345467 + 0.938431i \(0.387720\pi\)
\(158\) 3.30751 0.263132
\(159\) 28.8432 2.28741
\(160\) 0.784571 0.0620258
\(161\) 5.17882 0.408149
\(162\) −11.3332 −0.890424
\(163\) −8.20158 −0.642397 −0.321199 0.947012i \(-0.604086\pi\)
−0.321199 + 0.947012i \(0.604086\pi\)
\(164\) 4.49146 0.350724
\(165\) 1.52024 0.118351
\(166\) −24.2280 −1.88046
\(167\) −5.68096 −0.439606 −0.219803 0.975544i \(-0.570541\pi\)
−0.219803 + 0.975544i \(0.570541\pi\)
\(168\) 6.77770 0.522911
\(169\) 8.28488 0.637298
\(170\) 0.552272 0.0423573
\(171\) −16.5581 −1.26623
\(172\) 5.98400 0.456276
\(173\) −10.8690 −0.826356 −0.413178 0.910650i \(-0.635581\pi\)
−0.413178 + 0.910650i \(0.635581\pi\)
\(174\) 44.4760 3.37172
\(175\) −4.93823 −0.373295
\(176\) −9.94791 −0.749852
\(177\) −4.37472 −0.328824
\(178\) 20.7804 1.55756
\(179\) −20.4990 −1.53217 −0.766083 0.642742i \(-0.777797\pi\)
−0.766083 + 0.642742i \(0.777797\pi\)
\(180\) 0.824974 0.0614899
\(181\) 8.86824 0.659171 0.329586 0.944126i \(-0.393091\pi\)
0.329586 + 0.944126i \(0.393091\pi\)
\(182\) −7.40233 −0.548697
\(183\) −35.4513 −2.62064
\(184\) 11.8462 0.873316
\(185\) 2.38627 0.175442
\(186\) 33.6007 2.46372
\(187\) −2.85907 −0.209076
\(188\) −4.10182 −0.299156
\(189\) 8.23548 0.599043
\(190\) 1.14247 0.0828835
\(191\) −18.2214 −1.31846 −0.659228 0.751943i \(-0.729117\pi\)
−0.659228 + 0.751943i \(0.729117\pi\)
\(192\) 13.5488 0.977799
\(193\) 13.8127 0.994263 0.497132 0.867675i \(-0.334387\pi\)
0.497132 + 0.867675i \(0.334387\pi\)
\(194\) 9.44629 0.678204
\(195\) 3.39747 0.243298
\(196\) 0.574339 0.0410242
\(197\) 8.13105 0.579314 0.289657 0.957131i \(-0.406459\pi\)
0.289657 + 0.957131i \(0.406459\pi\)
\(198\) −19.1430 −1.36043
\(199\) −21.0663 −1.49335 −0.746676 0.665188i \(-0.768351\pi\)
−0.746676 + 0.665188i \(0.768351\pi\)
\(200\) −11.2959 −0.798740
\(201\) −43.1381 −3.04273
\(202\) −19.6929 −1.38559
\(203\) −9.35535 −0.656617
\(204\) −2.35686 −0.165013
\(205\) 1.94360 0.135747
\(206\) −16.1780 −1.12718
\(207\) 29.9307 2.08032
\(208\) −22.2318 −1.54150
\(209\) −5.91449 −0.409113
\(210\) −1.18155 −0.0815349
\(211\) −22.9120 −1.57733 −0.788663 0.614826i \(-0.789226\pi\)
−0.788663 + 0.614826i \(0.789226\pi\)
\(212\) 5.59085 0.383981
\(213\) 29.1530 1.99753
\(214\) −17.6827 −1.20876
\(215\) 2.58947 0.176600
\(216\) 18.8382 1.28177
\(217\) −7.06776 −0.479791
\(218\) 6.30356 0.426931
\(219\) −12.9272 −0.873542
\(220\) 0.294677 0.0198671
\(221\) −6.38953 −0.429806
\(222\) −45.6455 −3.06353
\(223\) −0.0417173 −0.00279359 −0.00139680 0.999999i \(-0.500445\pi\)
−0.00139680 + 0.999999i \(0.500445\pi\)
\(224\) 3.15679 0.210922
\(225\) −28.5402 −1.90268
\(226\) −9.37560 −0.623656
\(227\) 26.8446 1.78174 0.890870 0.454259i \(-0.150096\pi\)
0.890870 + 0.454259i \(0.150096\pi\)
\(228\) −4.87558 −0.322893
\(229\) 10.6928 0.706602 0.353301 0.935510i \(-0.385059\pi\)
0.353301 + 0.935510i \(0.385059\pi\)
\(230\) −2.06515 −0.136172
\(231\) 6.11681 0.402457
\(232\) −21.3998 −1.40496
\(233\) 7.67199 0.502609 0.251304 0.967908i \(-0.419140\pi\)
0.251304 + 0.967908i \(0.419140\pi\)
\(234\) −42.7813 −2.79670
\(235\) −1.77499 −0.115788
\(236\) −0.847979 −0.0551987
\(237\) −6.10804 −0.396760
\(238\) 2.22211 0.144038
\(239\) 4.88761 0.316153 0.158077 0.987427i \(-0.449471\pi\)
0.158077 + 0.987427i \(0.449471\pi\)
\(240\) −3.54863 −0.229063
\(241\) −21.2974 −1.37189 −0.685943 0.727656i \(-0.740610\pi\)
−0.685943 + 0.727656i \(0.740610\pi\)
\(242\) 10.8114 0.694984
\(243\) −3.77714 −0.242304
\(244\) −6.87175 −0.439918
\(245\) 0.248535 0.0158783
\(246\) −37.1780 −2.37038
\(247\) −13.2178 −0.841031
\(248\) −16.1671 −1.02661
\(249\) 44.7422 2.83542
\(250\) 3.96304 0.250645
\(251\) −11.3807 −0.718341 −0.359170 0.933272i \(-0.616940\pi\)
−0.359170 + 0.933272i \(0.616940\pi\)
\(252\) 3.31935 0.209099
\(253\) 10.6911 0.672145
\(254\) 1.60447 0.100674
\(255\) −1.01989 −0.0638680
\(256\) 12.7562 0.797263
\(257\) 4.17847 0.260646 0.130323 0.991472i \(-0.458399\pi\)
0.130323 + 0.991472i \(0.458399\pi\)
\(258\) −49.5324 −3.08376
\(259\) 9.60134 0.596598
\(260\) 0.658553 0.0408417
\(261\) −54.0686 −3.34676
\(262\) −8.39749 −0.518799
\(263\) −19.8837 −1.22608 −0.613040 0.790052i \(-0.710053\pi\)
−0.613040 + 0.790052i \(0.710053\pi\)
\(264\) 13.9918 0.861137
\(265\) 2.41934 0.148619
\(266\) 4.59682 0.281849
\(267\) −38.3755 −2.34854
\(268\) −8.36172 −0.510773
\(269\) −1.42998 −0.0871876 −0.0435938 0.999049i \(-0.513881\pi\)
−0.0435938 + 0.999049i \(0.513881\pi\)
\(270\) −3.28404 −0.199861
\(271\) 28.2370 1.71527 0.857637 0.514255i \(-0.171932\pi\)
0.857637 + 0.514255i \(0.171932\pi\)
\(272\) 6.67380 0.404659
\(273\) 13.6700 0.827347
\(274\) 3.61328 0.218286
\(275\) −10.1944 −0.614748
\(276\) 8.81317 0.530491
\(277\) 11.5810 0.695834 0.347917 0.937525i \(-0.386889\pi\)
0.347917 + 0.937525i \(0.386889\pi\)
\(278\) 34.3480 2.06005
\(279\) −40.8476 −2.44548
\(280\) 0.568508 0.0339748
\(281\) −15.9817 −0.953389 −0.476694 0.879069i \(-0.658165\pi\)
−0.476694 + 0.879069i \(0.658165\pi\)
\(282\) 33.9527 2.02186
\(283\) −8.61636 −0.512190 −0.256095 0.966652i \(-0.582436\pi\)
−0.256095 + 0.966652i \(0.582436\pi\)
\(284\) 5.65091 0.335320
\(285\) −2.10982 −0.124975
\(286\) −15.2813 −0.903602
\(287\) 7.82024 0.461614
\(288\) 18.2444 1.07506
\(289\) −15.0819 −0.887172
\(290\) 3.73061 0.219069
\(291\) −17.4446 −1.02262
\(292\) −2.50577 −0.146639
\(293\) 5.27199 0.307993 0.153997 0.988071i \(-0.450786\pi\)
0.153997 + 0.988071i \(0.450786\pi\)
\(294\) −4.75407 −0.277263
\(295\) −0.366948 −0.0213645
\(296\) 21.9625 1.27654
\(297\) 17.0013 0.986513
\(298\) 8.90621 0.515923
\(299\) 23.8928 1.38176
\(300\) −8.40374 −0.485190
\(301\) 10.4189 0.600538
\(302\) 2.80576 0.161453
\(303\) 36.3672 2.08924
\(304\) 13.8059 0.791823
\(305\) −2.97362 −0.170269
\(306\) 12.8425 0.734159
\(307\) −4.86994 −0.277942 −0.138971 0.990296i \(-0.544379\pi\)
−0.138971 + 0.990296i \(0.544379\pi\)
\(308\) 1.18566 0.0675592
\(309\) 29.8762 1.69960
\(310\) 2.81839 0.160074
\(311\) 8.28578 0.469844 0.234922 0.972014i \(-0.424517\pi\)
0.234922 + 0.972014i \(0.424517\pi\)
\(312\) 31.2693 1.77027
\(313\) −29.8516 −1.68731 −0.843657 0.536883i \(-0.819602\pi\)
−0.843657 + 0.536883i \(0.819602\pi\)
\(314\) −13.8906 −0.783890
\(315\) 1.43639 0.0809314
\(316\) −1.18396 −0.0666029
\(317\) 15.3754 0.863570 0.431785 0.901977i \(-0.357884\pi\)
0.431785 + 0.901977i \(0.357884\pi\)
\(318\) −46.2782 −2.59515
\(319\) −19.3131 −1.08133
\(320\) 1.13646 0.0635300
\(321\) 32.6549 1.82262
\(322\) −8.30929 −0.463059
\(323\) 3.96788 0.220779
\(324\) 4.05686 0.225381
\(325\) −22.7828 −1.26376
\(326\) 13.1592 0.728822
\(327\) −11.6409 −0.643743
\(328\) 17.8883 0.987716
\(329\) −7.14182 −0.393741
\(330\) −2.43919 −0.134273
\(331\) −31.5246 −1.73275 −0.866374 0.499396i \(-0.833555\pi\)
−0.866374 + 0.499396i \(0.833555\pi\)
\(332\) 8.67267 0.475974
\(333\) 55.4903 3.04085
\(334\) 9.11496 0.498748
\(335\) −3.61839 −0.197694
\(336\) −14.2782 −0.778939
\(337\) −9.40882 −0.512531 −0.256265 0.966606i \(-0.582492\pi\)
−0.256265 + 0.966606i \(0.582492\pi\)
\(338\) −13.2929 −0.723037
\(339\) 17.3141 0.940372
\(340\) −0.197692 −0.0107213
\(341\) −14.5906 −0.790126
\(342\) 26.5670 1.43658
\(343\) 1.00000 0.0539949
\(344\) 23.8327 1.28497
\(345\) 3.81374 0.205325
\(346\) 17.4391 0.937530
\(347\) 18.4781 0.991955 0.495978 0.868335i \(-0.334810\pi\)
0.495978 + 0.868335i \(0.334810\pi\)
\(348\) −15.9207 −0.853437
\(349\) 5.28963 0.283147 0.141574 0.989928i \(-0.454784\pi\)
0.141574 + 0.989928i \(0.454784\pi\)
\(350\) 7.92327 0.423516
\(351\) 37.9948 2.02801
\(352\) 6.51684 0.347349
\(353\) −14.4032 −0.766605 −0.383303 0.923623i \(-0.625213\pi\)
−0.383303 + 0.923623i \(0.625213\pi\)
\(354\) 7.01912 0.373062
\(355\) 2.44533 0.129785
\(356\) −7.43855 −0.394243
\(357\) −4.10361 −0.217186
\(358\) 32.8901 1.73830
\(359\) 6.83211 0.360585 0.180293 0.983613i \(-0.442296\pi\)
0.180293 + 0.983613i \(0.442296\pi\)
\(360\) 3.28565 0.173169
\(361\) −10.7918 −0.567987
\(362\) −14.2289 −0.747853
\(363\) −19.9656 −1.04792
\(364\) 2.64974 0.138884
\(365\) −1.08433 −0.0567562
\(366\) 56.8807 2.97320
\(367\) −36.1081 −1.88483 −0.942413 0.334451i \(-0.891449\pi\)
−0.942413 + 0.334451i \(0.891449\pi\)
\(368\) −24.9558 −1.30091
\(369\) 45.1965 2.35284
\(370\) −3.82870 −0.199045
\(371\) 9.73442 0.505386
\(372\) −12.0277 −0.623608
\(373\) −13.9607 −0.722858 −0.361429 0.932400i \(-0.617711\pi\)
−0.361429 + 0.932400i \(0.617711\pi\)
\(374\) 4.58731 0.237204
\(375\) −7.31862 −0.377932
\(376\) −16.3365 −0.842489
\(377\) −43.1614 −2.22293
\(378\) −13.2136 −0.679635
\(379\) 17.2040 0.883712 0.441856 0.897086i \(-0.354320\pi\)
0.441856 + 0.897086i \(0.354320\pi\)
\(380\) −0.408959 −0.0209792
\(381\) −2.96301 −0.151800
\(382\) 29.2358 1.49583
\(383\) −3.16174 −0.161558 −0.0807788 0.996732i \(-0.525741\pi\)
−0.0807788 + 0.996732i \(0.525741\pi\)
\(384\) −40.4459 −2.06399
\(385\) 0.513073 0.0261486
\(386\) −22.1622 −1.12803
\(387\) 60.2156 3.06093
\(388\) −3.38140 −0.171665
\(389\) 3.60627 0.182845 0.0914226 0.995812i \(-0.470859\pi\)
0.0914226 + 0.995812i \(0.470859\pi\)
\(390\) −5.45116 −0.276030
\(391\) −7.17240 −0.362724
\(392\) 2.28744 0.115533
\(393\) 15.5078 0.782265
\(394\) −13.0461 −0.657251
\(395\) −0.512337 −0.0257785
\(396\) 6.85243 0.344348
\(397\) −1.35977 −0.0682447 −0.0341224 0.999418i \(-0.510864\pi\)
−0.0341224 + 0.999418i \(0.510864\pi\)
\(398\) 33.8004 1.69426
\(399\) −8.48903 −0.424983
\(400\) 23.7964 1.18982
\(401\) 18.2667 0.912195 0.456097 0.889930i \(-0.349247\pi\)
0.456097 + 0.889930i \(0.349247\pi\)
\(402\) 69.2140 3.45208
\(403\) −32.6075 −1.62429
\(404\) 7.04928 0.350715
\(405\) 1.75553 0.0872331
\(406\) 15.0104 0.744955
\(407\) 19.8209 0.982487
\(408\) −9.38676 −0.464714
\(409\) 24.3580 1.20443 0.602213 0.798335i \(-0.294286\pi\)
0.602213 + 0.798335i \(0.294286\pi\)
\(410\) −3.11846 −0.154010
\(411\) −6.67271 −0.329140
\(412\) 5.79109 0.285307
\(413\) −1.47644 −0.0726511
\(414\) −48.0230 −2.36020
\(415\) 3.75294 0.184225
\(416\) 14.5640 0.714059
\(417\) −63.4310 −3.10623
\(418\) 9.48964 0.464154
\(419\) 4.53561 0.221579 0.110789 0.993844i \(-0.464662\pi\)
0.110789 + 0.993844i \(0.464662\pi\)
\(420\) 0.422949 0.0206378
\(421\) −1.42660 −0.0695283 −0.0347642 0.999396i \(-0.511068\pi\)
−0.0347642 + 0.999396i \(0.511068\pi\)
\(422\) 36.7617 1.78953
\(423\) −41.2757 −2.00689
\(424\) 22.2669 1.08137
\(425\) 6.83919 0.331749
\(426\) −46.7752 −2.26627
\(427\) −11.9646 −0.579009
\(428\) 6.32970 0.305958
\(429\) 28.2202 1.36249
\(430\) −4.15474 −0.200359
\(431\) 26.6902 1.28562 0.642812 0.766024i \(-0.277768\pi\)
0.642812 + 0.766024i \(0.277768\pi\)
\(432\) −39.6852 −1.90936
\(433\) −4.65866 −0.223881 −0.111940 0.993715i \(-0.535707\pi\)
−0.111940 + 0.993715i \(0.535707\pi\)
\(434\) 11.3400 0.544339
\(435\) −6.88938 −0.330320
\(436\) −2.25643 −0.108063
\(437\) −14.8373 −0.709767
\(438\) 20.7414 0.991064
\(439\) 18.5623 0.885929 0.442964 0.896539i \(-0.353927\pi\)
0.442964 + 0.896539i \(0.353927\pi\)
\(440\) 1.17362 0.0559502
\(441\) 5.77943 0.275211
\(442\) 10.2518 0.487630
\(443\) 26.2295 1.24620 0.623101 0.782142i \(-0.285873\pi\)
0.623101 + 0.782142i \(0.285873\pi\)
\(444\) 16.3393 0.775428
\(445\) −3.21890 −0.152591
\(446\) 0.0669343 0.00316943
\(447\) −16.4473 −0.777928
\(448\) 4.57264 0.216037
\(449\) −11.5318 −0.544220 −0.272110 0.962266i \(-0.587721\pi\)
−0.272110 + 0.962266i \(0.587721\pi\)
\(450\) 45.7920 2.15865
\(451\) 16.1440 0.760192
\(452\) 3.35609 0.157857
\(453\) −5.18144 −0.243445
\(454\) −43.0715 −2.02145
\(455\) 1.14663 0.0537548
\(456\) −19.4181 −0.909337
\(457\) 25.5261 1.19406 0.597031 0.802218i \(-0.296347\pi\)
0.597031 + 0.802218i \(0.296347\pi\)
\(458\) −17.1564 −0.801664
\(459\) −11.4057 −0.532373
\(460\) 0.739241 0.0344673
\(461\) −7.68056 −0.357719 −0.178860 0.983875i \(-0.557241\pi\)
−0.178860 + 0.983875i \(0.557241\pi\)
\(462\) −9.81427 −0.456601
\(463\) −0.801721 −0.0372591 −0.0186296 0.999826i \(-0.505930\pi\)
−0.0186296 + 0.999826i \(0.505930\pi\)
\(464\) 45.0817 2.09286
\(465\) −5.20477 −0.241366
\(466\) −12.3095 −0.570227
\(467\) −31.8617 −1.47439 −0.737193 0.675682i \(-0.763849\pi\)
−0.737193 + 0.675682i \(0.763849\pi\)
\(468\) 15.3140 0.707890
\(469\) −14.5589 −0.672266
\(470\) 2.84793 0.131365
\(471\) 25.6519 1.18198
\(472\) −3.37727 −0.155452
\(473\) 21.5088 0.988974
\(474\) 9.80019 0.450138
\(475\) 14.1480 0.649157
\(476\) −0.795429 −0.0364584
\(477\) 56.2594 2.57594
\(478\) −7.84205 −0.358687
\(479\) 26.2469 1.19925 0.599627 0.800280i \(-0.295316\pi\)
0.599627 + 0.800280i \(0.295316\pi\)
\(480\) 2.32469 0.106107
\(481\) 44.2963 2.01974
\(482\) 34.1711 1.55645
\(483\) 15.3449 0.698218
\(484\) −3.87006 −0.175912
\(485\) −1.46324 −0.0664423
\(486\) 6.06033 0.274902
\(487\) 9.60895 0.435423 0.217712 0.976013i \(-0.430141\pi\)
0.217712 + 0.976013i \(0.430141\pi\)
\(488\) −27.3683 −1.23891
\(489\) −24.3014 −1.09895
\(490\) −0.398768 −0.0180145
\(491\) 5.73767 0.258938 0.129469 0.991584i \(-0.458673\pi\)
0.129469 + 0.991584i \(0.458673\pi\)
\(492\) 13.3083 0.599982
\(493\) 12.9567 0.583539
\(494\) 21.2077 0.954179
\(495\) 2.96527 0.133279
\(496\) 34.0582 1.52926
\(497\) 9.83898 0.441339
\(498\) −71.7878 −3.21689
\(499\) −17.7188 −0.793201 −0.396601 0.917991i \(-0.629810\pi\)
−0.396601 + 0.917991i \(0.629810\pi\)
\(500\) −1.41861 −0.0634423
\(501\) −16.8328 −0.752032
\(502\) 18.2600 0.814983
\(503\) 5.84637 0.260677 0.130338 0.991470i \(-0.458394\pi\)
0.130338 + 0.991470i \(0.458394\pi\)
\(504\) 13.2201 0.588869
\(505\) 3.05045 0.135743
\(506\) −17.1536 −0.762572
\(507\) 24.5482 1.09022
\(508\) −0.574339 −0.0254822
\(509\) −42.4028 −1.87947 −0.939736 0.341902i \(-0.888929\pi\)
−0.939736 + 0.341902i \(0.888929\pi\)
\(510\) 1.63639 0.0724605
\(511\) −4.36287 −0.193002
\(512\) 6.83350 0.302001
\(513\) −23.5947 −1.04173
\(514\) −6.70425 −0.295712
\(515\) 2.50599 0.110427
\(516\) 17.7307 0.780549
\(517\) −14.7435 −0.648419
\(518\) −15.4051 −0.676862
\(519\) −32.2050 −1.41364
\(520\) 2.62284 0.115019
\(521\) −43.4989 −1.90572 −0.952861 0.303408i \(-0.901875\pi\)
−0.952861 + 0.303408i \(0.901875\pi\)
\(522\) 86.7517 3.79702
\(523\) 14.8939 0.651264 0.325632 0.945497i \(-0.394423\pi\)
0.325632 + 0.945497i \(0.394423\pi\)
\(524\) 3.00597 0.131316
\(525\) −14.6320 −0.638594
\(526\) 31.9028 1.39103
\(527\) 9.78847 0.426393
\(528\) −29.4758 −1.28277
\(529\) 3.82022 0.166097
\(530\) −3.88177 −0.168613
\(531\) −8.53301 −0.370301
\(532\) −1.64548 −0.0713407
\(533\) 36.0791 1.56276
\(534\) 61.5725 2.66450
\(535\) 2.73907 0.118420
\(536\) −33.3025 −1.43845
\(537\) −60.7387 −2.62107
\(538\) 2.29437 0.0989173
\(539\) 2.06439 0.0889196
\(540\) 1.17556 0.0505880
\(541\) −14.6373 −0.629305 −0.314652 0.949207i \(-0.601888\pi\)
−0.314652 + 0.949207i \(0.601888\pi\)
\(542\) −45.3055 −1.94604
\(543\) 26.2767 1.12764
\(544\) −4.37198 −0.187447
\(545\) −0.976428 −0.0418256
\(546\) −21.9332 −0.938653
\(547\) 10.2687 0.439059 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(548\) −1.29341 −0.0552518
\(549\) −69.1487 −2.95120
\(550\) 16.3567 0.697453
\(551\) 26.8031 1.14185
\(552\) 35.1005 1.49398
\(553\) −2.06143 −0.0876609
\(554\) −18.5814 −0.789448
\(555\) 7.07053 0.300127
\(556\) −12.2952 −0.521433
\(557\) 16.1907 0.686023 0.343012 0.939331i \(-0.388553\pi\)
0.343012 + 0.939331i \(0.388553\pi\)
\(558\) 65.5390 2.77449
\(559\) 48.0684 2.03308
\(560\) −1.19764 −0.0506096
\(561\) −8.47146 −0.357665
\(562\) 25.6422 1.08165
\(563\) 16.6969 0.703692 0.351846 0.936058i \(-0.385554\pi\)
0.351846 + 0.936058i \(0.385554\pi\)
\(564\) −12.1537 −0.511765
\(565\) 1.45229 0.0610983
\(566\) 13.8247 0.581097
\(567\) 7.06353 0.296640
\(568\) 22.5061 0.944333
\(569\) −13.1417 −0.550928 −0.275464 0.961311i \(-0.588832\pi\)
−0.275464 + 0.961311i \(0.588832\pi\)
\(570\) 3.38515 0.141788
\(571\) 5.86566 0.245470 0.122735 0.992439i \(-0.460833\pi\)
0.122735 + 0.992439i \(0.460833\pi\)
\(572\) 5.47010 0.228716
\(573\) −53.9903 −2.25548
\(574\) −12.5474 −0.523717
\(575\) −25.5742 −1.06652
\(576\) 26.4273 1.10114
\(577\) 32.8604 1.36800 0.683998 0.729484i \(-0.260240\pi\)
0.683998 + 0.729484i \(0.260240\pi\)
\(578\) 24.1986 1.00653
\(579\) 40.9273 1.70088
\(580\) −1.33541 −0.0554499
\(581\) 15.1003 0.626465
\(582\) 27.9895 1.16020
\(583\) 20.0956 0.832276
\(584\) −9.97980 −0.412967
\(585\) 6.62686 0.273987
\(586\) −8.45878 −0.349429
\(587\) −1.60407 −0.0662069 −0.0331035 0.999452i \(-0.510539\pi\)
−0.0331035 + 0.999452i \(0.510539\pi\)
\(588\) 1.70177 0.0701799
\(589\) 20.2491 0.834352
\(590\) 0.588758 0.0242388
\(591\) 24.0924 0.991029
\(592\) −46.2671 −1.90156
\(593\) −16.5682 −0.680376 −0.340188 0.940357i \(-0.610491\pi\)
−0.340188 + 0.940357i \(0.610491\pi\)
\(594\) −27.2781 −1.11923
\(595\) −0.344207 −0.0141111
\(596\) −3.18807 −0.130589
\(597\) −62.4197 −2.55467
\(598\) −38.3354 −1.56765
\(599\) 21.7895 0.890295 0.445147 0.895457i \(-0.353151\pi\)
0.445147 + 0.895457i \(0.353151\pi\)
\(600\) −33.4699 −1.36640
\(601\) 19.1184 0.779856 0.389928 0.920845i \(-0.372500\pi\)
0.389928 + 0.920845i \(0.372500\pi\)
\(602\) −16.7169 −0.681331
\(603\) −84.1420 −3.42653
\(604\) −1.00435 −0.0408665
\(605\) −1.67470 −0.0680862
\(606\) −58.3503 −2.37032
\(607\) 9.16116 0.371840 0.185920 0.982565i \(-0.440473\pi\)
0.185920 + 0.982565i \(0.440473\pi\)
\(608\) −9.04420 −0.366791
\(609\) −27.7200 −1.12327
\(610\) 4.77110 0.193176
\(611\) −32.9492 −1.33298
\(612\) −4.59712 −0.185828
\(613\) −19.8971 −0.803636 −0.401818 0.915720i \(-0.631621\pi\)
−0.401818 + 0.915720i \(0.631621\pi\)
\(614\) 7.81369 0.315335
\(615\) 5.75891 0.232222
\(616\) 4.72216 0.190261
\(617\) 10.7473 0.432672 0.216336 0.976319i \(-0.430589\pi\)
0.216336 + 0.976319i \(0.430589\pi\)
\(618\) −47.9356 −1.92825
\(619\) 30.7703 1.23676 0.618381 0.785878i \(-0.287789\pi\)
0.618381 + 0.785878i \(0.287789\pi\)
\(620\) −1.00887 −0.0405173
\(621\) 42.6501 1.71149
\(622\) −13.2943 −0.533054
\(623\) −12.9515 −0.518891
\(624\) −65.8732 −2.63704
\(625\) 24.0773 0.963091
\(626\) 47.8962 1.91432
\(627\) −17.5247 −0.699868
\(628\) 4.97227 0.198415
\(629\) −13.2974 −0.530200
\(630\) −2.30465 −0.0918194
\(631\) 30.5498 1.21617 0.608085 0.793872i \(-0.291938\pi\)
0.608085 + 0.793872i \(0.291938\pi\)
\(632\) −4.71539 −0.187568
\(633\) −67.8884 −2.69832
\(634\) −24.6695 −0.979750
\(635\) −0.248535 −0.00986280
\(636\) 16.5658 0.656875
\(637\) 4.61355 0.182796
\(638\) 30.9874 1.22680
\(639\) 56.8637 2.24949
\(640\) −3.39256 −0.134103
\(641\) −14.6914 −0.580276 −0.290138 0.956985i \(-0.593701\pi\)
−0.290138 + 0.956985i \(0.593701\pi\)
\(642\) −52.3940 −2.06783
\(643\) −10.9887 −0.433353 −0.216677 0.976243i \(-0.569522\pi\)
−0.216677 + 0.976243i \(0.569522\pi\)
\(644\) 2.97440 0.117208
\(645\) 7.67262 0.302109
\(646\) −6.36636 −0.250481
\(647\) 1.94049 0.0762884 0.0381442 0.999272i \(-0.487855\pi\)
0.0381442 + 0.999272i \(0.487855\pi\)
\(648\) 16.1574 0.634722
\(649\) −3.04796 −0.119643
\(650\) 36.5544 1.43378
\(651\) −20.9418 −0.820775
\(652\) −4.71048 −0.184477
\(653\) −30.5882 −1.19701 −0.598504 0.801119i \(-0.704238\pi\)
−0.598504 + 0.801119i \(0.704238\pi\)
\(654\) 18.6775 0.730349
\(655\) 1.30078 0.0508257
\(656\) −37.6843 −1.47132
\(657\) −25.2149 −0.983728
\(658\) 11.4589 0.446713
\(659\) 6.09333 0.237363 0.118681 0.992932i \(-0.462133\pi\)
0.118681 + 0.992932i \(0.462133\pi\)
\(660\) 0.873132 0.0339866
\(661\) 31.6109 1.22952 0.614761 0.788714i \(-0.289253\pi\)
0.614761 + 0.788714i \(0.289253\pi\)
\(662\) 50.5804 1.96586
\(663\) −18.9322 −0.735267
\(664\) 34.5409 1.34045
\(665\) −0.712053 −0.0276122
\(666\) −89.0328 −3.44995
\(667\) −48.4497 −1.87598
\(668\) −3.26280 −0.126241
\(669\) −0.123609 −0.00477899
\(670\) 5.80561 0.224290
\(671\) −24.6997 −0.953520
\(672\) 9.35359 0.360823
\(673\) −45.7773 −1.76458 −0.882292 0.470702i \(-0.844001\pi\)
−0.882292 + 0.470702i \(0.844001\pi\)
\(674\) 15.0962 0.581484
\(675\) −40.6687 −1.56534
\(676\) 4.75833 0.183013
\(677\) −39.1821 −1.50589 −0.752944 0.658084i \(-0.771367\pi\)
−0.752944 + 0.658084i \(0.771367\pi\)
\(678\) −27.7800 −1.06688
\(679\) −5.88747 −0.225940
\(680\) −0.787353 −0.0301936
\(681\) 79.5409 3.04801
\(682\) 23.4103 0.896426
\(683\) −31.2759 −1.19674 −0.598369 0.801221i \(-0.704184\pi\)
−0.598369 + 0.801221i \(0.704184\pi\)
\(684\) −9.50995 −0.363622
\(685\) −0.559701 −0.0213851
\(686\) −1.60447 −0.0612591
\(687\) 31.6830 1.20878
\(688\) −50.2069 −1.91412
\(689\) 44.9103 1.71094
\(690\) −6.11905 −0.232948
\(691\) −0.988316 −0.0375973 −0.0187986 0.999823i \(-0.505984\pi\)
−0.0187986 + 0.999823i \(0.505984\pi\)
\(692\) −6.24250 −0.237304
\(693\) 11.9310 0.453221
\(694\) −29.6476 −1.12541
\(695\) −5.32053 −0.201819
\(696\) −63.4078 −2.40346
\(697\) −10.8306 −0.410239
\(698\) −8.48707 −0.321240
\(699\) 22.7322 0.859810
\(700\) −2.83622 −0.107199
\(701\) 10.9677 0.414244 0.207122 0.978315i \(-0.433590\pi\)
0.207122 + 0.978315i \(0.433590\pi\)
\(702\) −60.9618 −2.30085
\(703\) −27.5079 −1.03748
\(704\) 9.43972 0.355773
\(705\) −5.25931 −0.198077
\(706\) 23.1096 0.869740
\(707\) 12.2737 0.461602
\(708\) −2.51257 −0.0944282
\(709\) 46.4954 1.74617 0.873086 0.487567i \(-0.162116\pi\)
0.873086 + 0.487567i \(0.162116\pi\)
\(710\) −3.92347 −0.147245
\(711\) −11.9139 −0.446806
\(712\) −29.6258 −1.11027
\(713\) −36.6027 −1.37078
\(714\) 6.58414 0.246405
\(715\) 2.36709 0.0885241
\(716\) −11.7734 −0.439991
\(717\) 14.4820 0.540842
\(718\) −10.9620 −0.409096
\(719\) −23.9536 −0.893319 −0.446660 0.894704i \(-0.647386\pi\)
−0.446660 + 0.894704i \(0.647386\pi\)
\(720\) −6.92169 −0.257956
\(721\) 10.0831 0.375513
\(722\) 17.3151 0.644401
\(723\) −63.1044 −2.34688
\(724\) 5.09337 0.189294
\(725\) 46.1989 1.71578
\(726\) 32.0343 1.18891
\(727\) 11.2434 0.416995 0.208498 0.978023i \(-0.433143\pi\)
0.208498 + 0.978023i \(0.433143\pi\)
\(728\) 10.5532 0.391128
\(729\) −32.3823 −1.19934
\(730\) 1.73977 0.0643919
\(731\) −14.4297 −0.533701
\(732\) −20.3611 −0.752566
\(733\) 3.07023 0.113402 0.0567008 0.998391i \(-0.481942\pi\)
0.0567008 + 0.998391i \(0.481942\pi\)
\(734\) 57.9345 2.13840
\(735\) 0.736411 0.0271629
\(736\) 16.3484 0.602612
\(737\) −30.0552 −1.10710
\(738\) −72.5167 −2.66938
\(739\) 0.267916 0.00985545 0.00492772 0.999988i \(-0.498431\pi\)
0.00492772 + 0.999988i \(0.498431\pi\)
\(740\) 1.37053 0.0503815
\(741\) −39.1646 −1.43875
\(742\) −15.6186 −0.573378
\(743\) 14.7553 0.541320 0.270660 0.962675i \(-0.412758\pi\)
0.270660 + 0.962675i \(0.412758\pi\)
\(744\) −47.9032 −1.75621
\(745\) −1.37958 −0.0505439
\(746\) 22.3996 0.820107
\(747\) 87.2709 3.19308
\(748\) −1.64208 −0.0600402
\(749\) 11.0209 0.402693
\(750\) 11.7425 0.428777
\(751\) 31.8578 1.16251 0.581253 0.813723i \(-0.302563\pi\)
0.581253 + 0.813723i \(0.302563\pi\)
\(752\) 34.4151 1.25499
\(753\) −33.7210 −1.22886
\(754\) 69.2514 2.52199
\(755\) −0.434615 −0.0158173
\(756\) 4.72995 0.172027
\(757\) 44.9482 1.63367 0.816835 0.576872i \(-0.195727\pi\)
0.816835 + 0.576872i \(0.195727\pi\)
\(758\) −27.6034 −1.00260
\(759\) 31.6779 1.14983
\(760\) −1.62878 −0.0590819
\(761\) 2.11329 0.0766067 0.0383033 0.999266i \(-0.487805\pi\)
0.0383033 + 0.999266i \(0.487805\pi\)
\(762\) 4.75407 0.172222
\(763\) −3.92874 −0.142230
\(764\) −10.4653 −0.378620
\(765\) −1.98932 −0.0719241
\(766\) 5.07294 0.183293
\(767\) −6.81165 −0.245955
\(768\) 37.7968 1.36387
\(769\) −45.5871 −1.64391 −0.821956 0.569550i \(-0.807117\pi\)
−0.821956 + 0.569550i \(0.807117\pi\)
\(770\) −0.823212 −0.0296665
\(771\) 12.3808 0.445885
\(772\) 7.93319 0.285522
\(773\) 26.2249 0.943244 0.471622 0.881801i \(-0.343669\pi\)
0.471622 + 0.881801i \(0.343669\pi\)
\(774\) −96.6144 −3.47273
\(775\) 34.9022 1.25372
\(776\) −13.4672 −0.483445
\(777\) 28.4489 1.02060
\(778\) −5.78617 −0.207444
\(779\) −22.4050 −0.802742
\(780\) 1.95130 0.0698677
\(781\) 20.3115 0.726803
\(782\) 11.5079 0.411523
\(783\) −77.0458 −2.75339
\(784\) −4.81881 −0.172100
\(785\) 2.15166 0.0767961
\(786\) −24.8819 −0.887507
\(787\) 26.9352 0.960137 0.480069 0.877231i \(-0.340612\pi\)
0.480069 + 0.877231i \(0.340612\pi\)
\(788\) 4.66998 0.166361
\(789\) −58.9155 −2.09745
\(790\) 0.822031 0.0292466
\(791\) 5.84341 0.207768
\(792\) 27.2914 0.969758
\(793\) −55.1994 −1.96019
\(794\) 2.18171 0.0774260
\(795\) 7.16853 0.254242
\(796\) −12.0992 −0.428845
\(797\) −9.96337 −0.352921 −0.176460 0.984308i \(-0.556465\pi\)
−0.176460 + 0.984308i \(0.556465\pi\)
\(798\) 13.6204 0.482158
\(799\) 9.89104 0.349920
\(800\) −15.5889 −0.551152
\(801\) −74.8524 −2.64478
\(802\) −29.3084 −1.03492
\(803\) −9.00668 −0.317839
\(804\) −24.7759 −0.873778
\(805\) 1.28712 0.0453649
\(806\) 52.3179 1.84282
\(807\) −4.23705 −0.149151
\(808\) 28.0754 0.987690
\(809\) −12.3868 −0.435495 −0.217747 0.976005i \(-0.569871\pi\)
−0.217747 + 0.976005i \(0.569871\pi\)
\(810\) −2.81671 −0.0989689
\(811\) 45.3995 1.59419 0.797096 0.603853i \(-0.206368\pi\)
0.797096 + 0.603853i \(0.206368\pi\)
\(812\) −5.37314 −0.188560
\(813\) 83.6665 2.93431
\(814\) −31.8022 −1.11467
\(815\) −2.03838 −0.0714013
\(816\) 19.7745 0.692247
\(817\) −29.8503 −1.04433
\(818\) −39.0818 −1.36646
\(819\) 26.6637 0.931706
\(820\) 1.11628 0.0389823
\(821\) 36.9896 1.29095 0.645474 0.763782i \(-0.276660\pi\)
0.645474 + 0.763782i \(0.276660\pi\)
\(822\) 10.7062 0.373421
\(823\) −4.32363 −0.150712 −0.0753561 0.997157i \(-0.524009\pi\)
−0.0753561 + 0.997157i \(0.524009\pi\)
\(824\) 23.0644 0.803486
\(825\) −30.2062 −1.05165
\(826\) 2.36892 0.0824252
\(827\) 1.50024 0.0521684 0.0260842 0.999660i \(-0.491696\pi\)
0.0260842 + 0.999660i \(0.491696\pi\)
\(828\) 17.1903 0.597405
\(829\) −39.3301 −1.36599 −0.682995 0.730423i \(-0.739323\pi\)
−0.682995 + 0.730423i \(0.739323\pi\)
\(830\) −6.02150 −0.209009
\(831\) 34.3146 1.19036
\(832\) 21.0961 0.731377
\(833\) −1.38495 −0.0479856
\(834\) 101.773 3.52412
\(835\) −1.41192 −0.0488614
\(836\) −3.39692 −0.117485
\(837\) −58.2064 −2.01191
\(838\) −7.27727 −0.251389
\(839\) −3.56845 −0.123197 −0.0615983 0.998101i \(-0.519620\pi\)
−0.0615983 + 0.998101i \(0.519620\pi\)
\(840\) 1.68449 0.0581206
\(841\) 58.5225 2.01802
\(842\) 2.28895 0.0788823
\(843\) −47.3540 −1.63096
\(844\) −13.1592 −0.452959
\(845\) 2.05908 0.0708345
\(846\) 66.2257 2.27689
\(847\) −6.73829 −0.231530
\(848\) −46.9083 −1.61084
\(849\) −25.5304 −0.876200
\(850\) −10.9733 −0.376381
\(851\) 49.7237 1.70451
\(852\) 16.7437 0.573629
\(853\) 23.6630 0.810205 0.405102 0.914271i \(-0.367236\pi\)
0.405102 + 0.914271i \(0.367236\pi\)
\(854\) 19.1969 0.656906
\(855\) −4.11526 −0.140739
\(856\) 25.2095 0.861644
\(857\) −31.5762 −1.07862 −0.539311 0.842107i \(-0.681315\pi\)
−0.539311 + 0.842107i \(0.681315\pi\)
\(858\) −45.2787 −1.54579
\(859\) 27.0910 0.924333 0.462167 0.886793i \(-0.347072\pi\)
0.462167 + 0.886793i \(0.347072\pi\)
\(860\) 1.48723 0.0507142
\(861\) 23.1714 0.789681
\(862\) −42.8238 −1.45858
\(863\) 25.8856 0.881157 0.440579 0.897714i \(-0.354773\pi\)
0.440579 + 0.897714i \(0.354773\pi\)
\(864\) 25.9977 0.884458
\(865\) −2.70133 −0.0918479
\(866\) 7.47470 0.254001
\(867\) −44.6879 −1.51768
\(868\) −4.05929 −0.137781
\(869\) −4.25560 −0.144361
\(870\) 11.0538 0.374760
\(871\) −67.1681 −2.27591
\(872\) −8.98675 −0.304330
\(873\) −34.0262 −1.15161
\(874\) 23.8061 0.805255
\(875\) −2.47000 −0.0835011
\(876\) −7.42461 −0.250854
\(877\) 32.1756 1.08649 0.543246 0.839574i \(-0.317195\pi\)
0.543246 + 0.839574i \(0.317195\pi\)
\(878\) −29.7827 −1.00512
\(879\) 15.6210 0.526882
\(880\) −2.47240 −0.0833446
\(881\) −14.9202 −0.502673 −0.251337 0.967900i \(-0.580870\pi\)
−0.251337 + 0.967900i \(0.580870\pi\)
\(882\) −9.27295 −0.312236
\(883\) −37.8634 −1.27420 −0.637102 0.770780i \(-0.719867\pi\)
−0.637102 + 0.770780i \(0.719867\pi\)
\(884\) −3.66975 −0.123427
\(885\) −1.08727 −0.0365482
\(886\) −42.0846 −1.41386
\(887\) −3.91895 −0.131585 −0.0657927 0.997833i \(-0.520958\pi\)
−0.0657927 + 0.997833i \(0.520958\pi\)
\(888\) 65.0750 2.18378
\(889\) −1.00000 −0.0335389
\(890\) 5.16464 0.173119
\(891\) 14.5819 0.488511
\(892\) −0.0239598 −0.000802234 0
\(893\) 20.4613 0.684713
\(894\) 26.3892 0.882587
\(895\) −5.09471 −0.170297
\(896\) −13.6503 −0.456023
\(897\) 70.7946 2.36376
\(898\) 18.5025 0.617437
\(899\) 66.1213 2.20527
\(900\) −16.3917 −0.546390
\(901\) −13.4817 −0.449139
\(902\) −25.9027 −0.862465
\(903\) 30.8714 1.02734
\(904\) 13.3664 0.444561
\(905\) 2.20407 0.0732656
\(906\) 8.31349 0.276197
\(907\) −2.40898 −0.0799890 −0.0399945 0.999200i \(-0.512734\pi\)
−0.0399945 + 0.999200i \(0.512734\pi\)
\(908\) 15.4179 0.511661
\(909\) 70.9353 2.35277
\(910\) −1.83974 −0.0609866
\(911\) −2.93744 −0.0973218 −0.0486609 0.998815i \(-0.515495\pi\)
−0.0486609 + 0.998815i \(0.515495\pi\)
\(912\) 40.9071 1.35457
\(913\) 31.1728 1.03167
\(914\) −40.9560 −1.35470
\(915\) −8.81088 −0.291279
\(916\) 6.14130 0.202914
\(917\) 5.23380 0.172835
\(918\) 18.3002 0.603996
\(919\) 26.8776 0.886609 0.443304 0.896371i \(-0.353806\pi\)
0.443304 + 0.896371i \(0.353806\pi\)
\(920\) 2.94420 0.0970674
\(921\) −14.4297 −0.475474
\(922\) 12.3233 0.405845
\(923\) 45.3927 1.49412
\(924\) 3.51312 0.115573
\(925\) −47.4136 −1.55895
\(926\) 1.28634 0.0422718
\(927\) 58.2744 1.91398
\(928\) −29.5328 −0.969463
\(929\) −51.6928 −1.69599 −0.847993 0.530007i \(-0.822189\pi\)
−0.847993 + 0.530007i \(0.822189\pi\)
\(930\) 8.35093 0.273838
\(931\) −2.86500 −0.0938967
\(932\) 4.40632 0.144334
\(933\) 24.5509 0.803759
\(934\) 51.1214 1.67274
\(935\) −0.710579 −0.0232384
\(936\) 60.9916 1.99357
\(937\) −45.0224 −1.47082 −0.735410 0.677623i \(-0.763010\pi\)
−0.735410 + 0.677623i \(0.763010\pi\)
\(938\) 23.3593 0.762710
\(939\) −88.4507 −2.88648
\(940\) −1.01945 −0.0332506
\(941\) 7.32770 0.238876 0.119438 0.992842i \(-0.461891\pi\)
0.119438 + 0.992842i \(0.461891\pi\)
\(942\) −41.1579 −1.34100
\(943\) 40.4996 1.31885
\(944\) 7.11471 0.231564
\(945\) 2.04680 0.0665825
\(946\) −34.5103 −1.12203
\(947\) 42.2672 1.37350 0.686749 0.726894i \(-0.259037\pi\)
0.686749 + 0.726894i \(0.259037\pi\)
\(948\) −3.50808 −0.113937
\(949\) −20.1284 −0.653394
\(950\) −22.7002 −0.736491
\(951\) 45.5575 1.47730
\(952\) −3.16798 −0.102675
\(953\) 52.4838 1.70012 0.850059 0.526688i \(-0.176566\pi\)
0.850059 + 0.526688i \(0.176566\pi\)
\(954\) −90.2668 −2.92249
\(955\) −4.52865 −0.146544
\(956\) 2.80714 0.0907895
\(957\) −57.2249 −1.84982
\(958\) −42.1126 −1.36060
\(959\) −2.25200 −0.0727210
\(960\) 3.36734 0.108681
\(961\) 18.9532 0.611394
\(962\) −71.0723 −2.29146
\(963\) 63.6943 2.05252
\(964\) −12.2319 −0.393963
\(965\) 3.43295 0.110510
\(966\) −24.6205 −0.792152
\(967\) 27.7940 0.893796 0.446898 0.894585i \(-0.352529\pi\)
0.446898 + 0.894585i \(0.352529\pi\)
\(968\) −15.4134 −0.495406
\(969\) 11.7569 0.377685
\(970\) 2.34773 0.0753811
\(971\) 51.6768 1.65839 0.829194 0.558961i \(-0.188800\pi\)
0.829194 + 0.558961i \(0.188800\pi\)
\(972\) −2.16936 −0.0695822
\(973\) −21.4076 −0.686296
\(974\) −15.4173 −0.494003
\(975\) −67.5056 −2.16191
\(976\) 57.6553 1.84550
\(977\) 51.0146 1.63210 0.816050 0.577981i \(-0.196159\pi\)
0.816050 + 0.577981i \(0.196159\pi\)
\(978\) 38.9909 1.24679
\(979\) −26.7370 −0.854518
\(980\) 0.142743 0.00455976
\(981\) −22.7059 −0.724943
\(982\) −9.20595 −0.293774
\(983\) −49.2089 −1.56952 −0.784761 0.619799i \(-0.787214\pi\)
−0.784761 + 0.619799i \(0.787214\pi\)
\(984\) 53.0032 1.68968
\(985\) 2.02085 0.0643896
\(986\) −20.7886 −0.662045
\(987\) −21.1613 −0.673571
\(988\) −7.59152 −0.241518
\(989\) 53.9579 1.71576
\(990\) −4.75770 −0.151210
\(991\) 20.6408 0.655677 0.327839 0.944734i \(-0.393680\pi\)
0.327839 + 0.944734i \(0.393680\pi\)
\(992\) −22.3114 −0.708388
\(993\) −93.4076 −2.96420
\(994\) −15.7864 −0.500714
\(995\) −5.23571 −0.165983
\(996\) 25.6972 0.814247
\(997\) 48.8298 1.54645 0.773227 0.634129i \(-0.218641\pi\)
0.773227 + 0.634129i \(0.218641\pi\)
\(998\) 28.4293 0.899914
\(999\) 79.0717 2.50172
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.a.d.1.5 20
3.2 odd 2 8001.2.a.w.1.16 20
7.6 odd 2 6223.2.a.l.1.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.d.1.5 20 1.1 even 1 trivial
6223.2.a.l.1.5 20 7.6 odd 2
8001.2.a.w.1.16 20 3.2 odd 2