Properties

Label 889.2.a.c.1.12
Level $889$
Weight $2$
Character 889.1
Self dual yes
Analytic conductor $7.099$
Analytic rank $1$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(1,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.09870073969\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-1.45188\) of defining polynomial
Character \(\chi\) \(=\) 889.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.45188 q^{2} +0.155172 q^{3} +0.107956 q^{4} +0.584615 q^{5} +0.225291 q^{6} -1.00000 q^{7} -2.74702 q^{8} -2.97592 q^{9} +0.848791 q^{10} -5.41545 q^{11} +0.0167517 q^{12} -3.18339 q^{13} -1.45188 q^{14} +0.0907156 q^{15} -4.20426 q^{16} +5.06086 q^{17} -4.32068 q^{18} -5.11413 q^{19} +0.0631129 q^{20} -0.155172 q^{21} -7.86259 q^{22} +3.75579 q^{23} -0.426260 q^{24} -4.65823 q^{25} -4.62190 q^{26} -0.927293 q^{27} -0.107956 q^{28} +8.71861 q^{29} +0.131708 q^{30} +3.51720 q^{31} -0.610037 q^{32} -0.840324 q^{33} +7.34776 q^{34} -0.584615 q^{35} -0.321269 q^{36} -2.23456 q^{37} -7.42511 q^{38} -0.493971 q^{39} -1.60595 q^{40} -6.65414 q^{41} -0.225291 q^{42} -4.51015 q^{43} -0.584632 q^{44} -1.73977 q^{45} +5.45296 q^{46} +9.14467 q^{47} -0.652381 q^{48} +1.00000 q^{49} -6.76319 q^{50} +0.785302 q^{51} -0.343667 q^{52} +2.10337 q^{53} -1.34632 q^{54} -3.16596 q^{55} +2.74702 q^{56} -0.793568 q^{57} +12.6584 q^{58} -5.83902 q^{59} +0.00979332 q^{60} +14.0585 q^{61} +5.10655 q^{62} +2.97592 q^{63} +7.52281 q^{64} -1.86106 q^{65} -1.22005 q^{66} -3.86784 q^{67} +0.546352 q^{68} +0.582792 q^{69} -0.848791 q^{70} -12.1700 q^{71} +8.17492 q^{72} -11.2754 q^{73} -3.24431 q^{74} -0.722824 q^{75} -0.552103 q^{76} +5.41545 q^{77} -0.717187 q^{78} -3.62482 q^{79} -2.45787 q^{80} +8.78388 q^{81} -9.66101 q^{82} -14.1521 q^{83} -0.0167517 q^{84} +2.95866 q^{85} -6.54820 q^{86} +1.35288 q^{87} +14.8764 q^{88} -6.96813 q^{89} -2.52594 q^{90} +3.18339 q^{91} +0.405461 q^{92} +0.545769 q^{93} +13.2770 q^{94} -2.98980 q^{95} -0.0946604 q^{96} -15.9899 q^{97} +1.45188 q^{98} +16.1160 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{3} + 12 q^{4} - 9 q^{5} - 12 q^{6} - 16 q^{7} - 6 q^{8} + 14 q^{9} - 2 q^{10} - 22 q^{11} - 10 q^{12} - 4 q^{13} + 2 q^{14} - 14 q^{15} + 12 q^{16} - 18 q^{17} - 5 q^{18} - 15 q^{19}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45188 1.02663 0.513317 0.858199i \(-0.328416\pi\)
0.513317 + 0.858199i \(0.328416\pi\)
\(3\) 0.155172 0.0895883 0.0447942 0.998996i \(-0.485737\pi\)
0.0447942 + 0.998996i \(0.485737\pi\)
\(4\) 0.107956 0.0539781
\(5\) 0.584615 0.261448 0.130724 0.991419i \(-0.458270\pi\)
0.130724 + 0.991419i \(0.458270\pi\)
\(6\) 0.225291 0.0919745
\(7\) −1.00000 −0.377964
\(8\) −2.74702 −0.971219
\(9\) −2.97592 −0.991974
\(10\) 0.848791 0.268411
\(11\) −5.41545 −1.63282 −0.816410 0.577472i \(-0.804039\pi\)
−0.816410 + 0.577472i \(0.804039\pi\)
\(12\) 0.0167517 0.00483581
\(13\) −3.18339 −0.882913 −0.441457 0.897283i \(-0.645538\pi\)
−0.441457 + 0.897283i \(0.645538\pi\)
\(14\) −1.45188 −0.388031
\(15\) 0.0907156 0.0234227
\(16\) −4.20426 −1.05106
\(17\) 5.06086 1.22744 0.613720 0.789524i \(-0.289673\pi\)
0.613720 + 0.789524i \(0.289673\pi\)
\(18\) −4.32068 −1.01839
\(19\) −5.11413 −1.17326 −0.586631 0.809854i \(-0.699546\pi\)
−0.586631 + 0.809854i \(0.699546\pi\)
\(20\) 0.0631129 0.0141125
\(21\) −0.155172 −0.0338612
\(22\) −7.86259 −1.67631
\(23\) 3.75579 0.783137 0.391568 0.920149i \(-0.371933\pi\)
0.391568 + 0.920149i \(0.371933\pi\)
\(24\) −0.426260 −0.0870099
\(25\) −4.65823 −0.931645
\(26\) −4.62190 −0.906429
\(27\) −0.927293 −0.178458
\(28\) −0.107956 −0.0204018
\(29\) 8.71861 1.61901 0.809503 0.587116i \(-0.199737\pi\)
0.809503 + 0.587116i \(0.199737\pi\)
\(30\) 0.131708 0.0240465
\(31\) 3.51720 0.631707 0.315854 0.948808i \(-0.397709\pi\)
0.315854 + 0.948808i \(0.397709\pi\)
\(32\) −0.610037 −0.107840
\(33\) −0.840324 −0.146282
\(34\) 7.34776 1.26013
\(35\) −0.584615 −0.0988180
\(36\) −0.321269 −0.0535449
\(37\) −2.23456 −0.367359 −0.183680 0.982986i \(-0.558801\pi\)
−0.183680 + 0.982986i \(0.558801\pi\)
\(38\) −7.42511 −1.20451
\(39\) −0.493971 −0.0790987
\(40\) −1.60595 −0.253923
\(41\) −6.65414 −1.03920 −0.519601 0.854409i \(-0.673919\pi\)
−0.519601 + 0.854409i \(0.673919\pi\)
\(42\) −0.225291 −0.0347631
\(43\) −4.51015 −0.687791 −0.343896 0.939008i \(-0.611747\pi\)
−0.343896 + 0.939008i \(0.611747\pi\)
\(44\) −0.584632 −0.0881366
\(45\) −1.73977 −0.259349
\(46\) 5.45296 0.803995
\(47\) 9.14467 1.33389 0.666944 0.745108i \(-0.267602\pi\)
0.666944 + 0.745108i \(0.267602\pi\)
\(48\) −0.652381 −0.0941631
\(49\) 1.00000 0.142857
\(50\) −6.76319 −0.956459
\(51\) 0.785302 0.109964
\(52\) −0.343667 −0.0476580
\(53\) 2.10337 0.288920 0.144460 0.989511i \(-0.453855\pi\)
0.144460 + 0.989511i \(0.453855\pi\)
\(54\) −1.34632 −0.183211
\(55\) −3.16596 −0.426897
\(56\) 2.74702 0.367086
\(57\) −0.793568 −0.105111
\(58\) 12.6584 1.66213
\(59\) −5.83902 −0.760175 −0.380088 0.924950i \(-0.624106\pi\)
−0.380088 + 0.924950i \(0.624106\pi\)
\(60\) 0.00979332 0.00126431
\(61\) 14.0585 1.80001 0.900005 0.435879i \(-0.143562\pi\)
0.900005 + 0.435879i \(0.143562\pi\)
\(62\) 5.10655 0.648533
\(63\) 2.97592 0.374931
\(64\) 7.52281 0.940352
\(65\) −1.86106 −0.230836
\(66\) −1.22005 −0.150178
\(67\) −3.86784 −0.472532 −0.236266 0.971688i \(-0.575924\pi\)
−0.236266 + 0.971688i \(0.575924\pi\)
\(68\) 0.546352 0.0662549
\(69\) 0.582792 0.0701599
\(70\) −0.848791 −0.101450
\(71\) −12.1700 −1.44431 −0.722156 0.691731i \(-0.756849\pi\)
−0.722156 + 0.691731i \(0.756849\pi\)
\(72\) 8.17492 0.963423
\(73\) −11.2754 −1.31969 −0.659844 0.751402i \(-0.729378\pi\)
−0.659844 + 0.751402i \(0.729378\pi\)
\(74\) −3.24431 −0.377143
\(75\) −0.722824 −0.0834645
\(76\) −0.552103 −0.0633305
\(77\) 5.41545 0.617148
\(78\) −0.717187 −0.0812055
\(79\) −3.62482 −0.407824 −0.203912 0.978989i \(-0.565366\pi\)
−0.203912 + 0.978989i \(0.565366\pi\)
\(80\) −2.45787 −0.274799
\(81\) 8.78388 0.975986
\(82\) −9.66101 −1.06688
\(83\) −14.1521 −1.55339 −0.776695 0.629877i \(-0.783105\pi\)
−0.776695 + 0.629877i \(0.783105\pi\)
\(84\) −0.0167517 −0.00182776
\(85\) 2.95866 0.320911
\(86\) −6.54820 −0.706110
\(87\) 1.35288 0.145044
\(88\) 14.8764 1.58583
\(89\) −6.96813 −0.738621 −0.369310 0.929306i \(-0.620406\pi\)
−0.369310 + 0.929306i \(0.620406\pi\)
\(90\) −2.52594 −0.266257
\(91\) 3.18339 0.333710
\(92\) 0.405461 0.0422723
\(93\) 0.545769 0.0565936
\(94\) 13.2770 1.36941
\(95\) −2.98980 −0.306747
\(96\) −0.0946604 −0.00966124
\(97\) −15.9899 −1.62353 −0.811764 0.583985i \(-0.801493\pi\)
−0.811764 + 0.583985i \(0.801493\pi\)
\(98\) 1.45188 0.146662
\(99\) 16.1160 1.61972
\(100\) −0.502885 −0.0502885
\(101\) −10.4766 −1.04246 −0.521231 0.853416i \(-0.674527\pi\)
−0.521231 + 0.853416i \(0.674527\pi\)
\(102\) 1.14016 0.112893
\(103\) −16.7816 −1.65354 −0.826772 0.562537i \(-0.809826\pi\)
−0.826772 + 0.562537i \(0.809826\pi\)
\(104\) 8.74483 0.857502
\(105\) −0.0907156 −0.00885294
\(106\) 3.05384 0.296616
\(107\) 5.72707 0.553657 0.276828 0.960919i \(-0.410717\pi\)
0.276828 + 0.960919i \(0.410717\pi\)
\(108\) −0.100107 −0.00963281
\(109\) 17.7933 1.70429 0.852143 0.523309i \(-0.175303\pi\)
0.852143 + 0.523309i \(0.175303\pi\)
\(110\) −4.59659 −0.438267
\(111\) −0.346740 −0.0329111
\(112\) 4.20426 0.397265
\(113\) 8.78023 0.825974 0.412987 0.910737i \(-0.364485\pi\)
0.412987 + 0.910737i \(0.364485\pi\)
\(114\) −1.15217 −0.107910
\(115\) 2.19569 0.204749
\(116\) 0.941229 0.0873909
\(117\) 9.47351 0.875827
\(118\) −8.47755 −0.780422
\(119\) −5.06086 −0.463928
\(120\) −0.249198 −0.0227485
\(121\) 18.3271 1.66610
\(122\) 20.4113 1.84795
\(123\) −1.03253 −0.0931003
\(124\) 0.379704 0.0340984
\(125\) −5.64634 −0.505024
\(126\) 4.32068 0.384917
\(127\) −1.00000 −0.0887357
\(128\) 12.1423 1.07324
\(129\) −0.699847 −0.0616181
\(130\) −2.70203 −0.236984
\(131\) 1.64272 0.143525 0.0717625 0.997422i \(-0.477138\pi\)
0.0717625 + 0.997422i \(0.477138\pi\)
\(132\) −0.0907183 −0.00789601
\(133\) 5.11413 0.443451
\(134\) −5.61565 −0.485118
\(135\) −0.542110 −0.0466574
\(136\) −13.9023 −1.19211
\(137\) −19.4601 −1.66259 −0.831294 0.555833i \(-0.812399\pi\)
−0.831294 + 0.555833i \(0.812399\pi\)
\(138\) 0.846145 0.0720286
\(139\) −1.07654 −0.0913113 −0.0456556 0.998957i \(-0.514538\pi\)
−0.0456556 + 0.998957i \(0.514538\pi\)
\(140\) −0.0631129 −0.00533401
\(141\) 1.41899 0.119501
\(142\) −17.6694 −1.48278
\(143\) 17.2395 1.44164
\(144\) 12.5115 1.04263
\(145\) 5.09703 0.423285
\(146\) −16.3706 −1.35484
\(147\) 0.155172 0.0127983
\(148\) −0.241235 −0.0198294
\(149\) 16.0590 1.31561 0.657804 0.753189i \(-0.271486\pi\)
0.657804 + 0.753189i \(0.271486\pi\)
\(150\) −1.04945 −0.0856876
\(151\) −3.56737 −0.290308 −0.145154 0.989409i \(-0.546368\pi\)
−0.145154 + 0.989409i \(0.546368\pi\)
\(152\) 14.0486 1.13949
\(153\) −15.0607 −1.21759
\(154\) 7.86259 0.633585
\(155\) 2.05621 0.165159
\(156\) −0.0533273 −0.00426960
\(157\) 0.684661 0.0546419 0.0273210 0.999627i \(-0.491302\pi\)
0.0273210 + 0.999627i \(0.491302\pi\)
\(158\) −5.26281 −0.418686
\(159\) 0.326383 0.0258839
\(160\) −0.356637 −0.0281946
\(161\) −3.75579 −0.295998
\(162\) 12.7531 1.00198
\(163\) 20.5205 1.60729 0.803644 0.595110i \(-0.202892\pi\)
0.803644 + 0.595110i \(0.202892\pi\)
\(164\) −0.718356 −0.0560941
\(165\) −0.491266 −0.0382450
\(166\) −20.5471 −1.59476
\(167\) −3.47768 −0.269111 −0.134555 0.990906i \(-0.542961\pi\)
−0.134555 + 0.990906i \(0.542961\pi\)
\(168\) 0.426260 0.0328866
\(169\) −2.86604 −0.220465
\(170\) 4.29561 0.329459
\(171\) 15.2193 1.16385
\(172\) −0.486899 −0.0371257
\(173\) 10.7751 0.819217 0.409609 0.912261i \(-0.365665\pi\)
0.409609 + 0.912261i \(0.365665\pi\)
\(174\) 1.96422 0.148907
\(175\) 4.65823 0.352129
\(176\) 22.7680 1.71620
\(177\) −0.906049 −0.0681028
\(178\) −10.1169 −0.758293
\(179\) 19.4287 1.45217 0.726085 0.687605i \(-0.241338\pi\)
0.726085 + 0.687605i \(0.241338\pi\)
\(180\) −0.187819 −0.0139992
\(181\) 18.3686 1.36533 0.682664 0.730732i \(-0.260821\pi\)
0.682664 + 0.730732i \(0.260821\pi\)
\(182\) 4.62190 0.342598
\(183\) 2.18148 0.161260
\(184\) −10.3172 −0.760597
\(185\) −1.30636 −0.0960452
\(186\) 0.792391 0.0581010
\(187\) −27.4069 −2.00419
\(188\) 0.987225 0.0720008
\(189\) 0.927293 0.0674507
\(190\) −4.34083 −0.314917
\(191\) 3.24268 0.234632 0.117316 0.993095i \(-0.462571\pi\)
0.117316 + 0.993095i \(0.462571\pi\)
\(192\) 1.16733 0.0842446
\(193\) −19.0343 −1.37012 −0.685059 0.728487i \(-0.740224\pi\)
−0.685059 + 0.728487i \(0.740224\pi\)
\(194\) −23.2154 −1.66677
\(195\) −0.288783 −0.0206802
\(196\) 0.107956 0.00771116
\(197\) −9.92678 −0.707254 −0.353627 0.935387i \(-0.615052\pi\)
−0.353627 + 0.935387i \(0.615052\pi\)
\(198\) 23.3984 1.66286
\(199\) 8.65223 0.613340 0.306670 0.951816i \(-0.400785\pi\)
0.306670 + 0.951816i \(0.400785\pi\)
\(200\) 12.7962 0.904831
\(201\) −0.600179 −0.0423334
\(202\) −15.2108 −1.07023
\(203\) −8.71861 −0.611927
\(204\) 0.0847782 0.00593566
\(205\) −3.89011 −0.271697
\(206\) −24.3649 −1.69759
\(207\) −11.1769 −0.776851
\(208\) 13.3838 0.927999
\(209\) 27.6953 1.91573
\(210\) −0.131708 −0.00908873
\(211\) −28.4387 −1.95780 −0.978901 0.204336i \(-0.934496\pi\)
−0.978901 + 0.204336i \(0.934496\pi\)
\(212\) 0.227072 0.0155954
\(213\) −1.88844 −0.129393
\(214\) 8.31502 0.568403
\(215\) −2.63670 −0.179822
\(216\) 2.54729 0.173321
\(217\) −3.51720 −0.238763
\(218\) 25.8337 1.74968
\(219\) −1.74963 −0.118229
\(220\) −0.341785 −0.0230431
\(221\) −16.1107 −1.08372
\(222\) −0.503425 −0.0337877
\(223\) 1.32183 0.0885163 0.0442581 0.999020i \(-0.485908\pi\)
0.0442581 + 0.999020i \(0.485908\pi\)
\(224\) 0.610037 0.0407598
\(225\) 13.8625 0.924168
\(226\) 12.7478 0.847974
\(227\) 3.52975 0.234277 0.117139 0.993116i \(-0.462628\pi\)
0.117139 + 0.993116i \(0.462628\pi\)
\(228\) −0.0856706 −0.00567368
\(229\) −13.5473 −0.895230 −0.447615 0.894226i \(-0.647726\pi\)
−0.447615 + 0.894226i \(0.647726\pi\)
\(230\) 3.18788 0.210203
\(231\) 0.840324 0.0552893
\(232\) −23.9502 −1.57241
\(233\) −9.26564 −0.607012 −0.303506 0.952829i \(-0.598157\pi\)
−0.303506 + 0.952829i \(0.598157\pi\)
\(234\) 13.7544 0.899154
\(235\) 5.34611 0.348742
\(236\) −0.630358 −0.0410328
\(237\) −0.562469 −0.0365363
\(238\) −7.34776 −0.476285
\(239\) 5.54274 0.358530 0.179265 0.983801i \(-0.442628\pi\)
0.179265 + 0.983801i \(0.442628\pi\)
\(240\) −0.381392 −0.0246187
\(241\) 18.1165 1.16699 0.583494 0.812117i \(-0.301685\pi\)
0.583494 + 0.812117i \(0.301685\pi\)
\(242\) 26.6088 1.71048
\(243\) 4.14489 0.265895
\(244\) 1.51771 0.0971612
\(245\) 0.584615 0.0373497
\(246\) −1.49911 −0.0955800
\(247\) 16.2803 1.03589
\(248\) −9.66182 −0.613526
\(249\) −2.19600 −0.139166
\(250\) −8.19782 −0.518475
\(251\) −16.8288 −1.06223 −0.531113 0.847301i \(-0.678226\pi\)
−0.531113 + 0.847301i \(0.678226\pi\)
\(252\) 0.321269 0.0202381
\(253\) −20.3393 −1.27872
\(254\) −1.45188 −0.0910991
\(255\) 0.459099 0.0287499
\(256\) 2.58354 0.161471
\(257\) −0.164440 −0.0102575 −0.00512876 0.999987i \(-0.501633\pi\)
−0.00512876 + 0.999987i \(0.501633\pi\)
\(258\) −1.01609 −0.0632592
\(259\) 2.23456 0.138849
\(260\) −0.200913 −0.0124601
\(261\) −25.9459 −1.60601
\(262\) 2.38503 0.147348
\(263\) −12.6341 −0.779053 −0.389527 0.921015i \(-0.627361\pi\)
−0.389527 + 0.921015i \(0.627361\pi\)
\(264\) 2.30839 0.142071
\(265\) 1.22966 0.0755376
\(266\) 7.42511 0.455263
\(267\) −1.08126 −0.0661718
\(268\) −0.417558 −0.0255064
\(269\) −5.50729 −0.335785 −0.167893 0.985805i \(-0.553696\pi\)
−0.167893 + 0.985805i \(0.553696\pi\)
\(270\) −0.787078 −0.0479001
\(271\) −28.0965 −1.70674 −0.853370 0.521305i \(-0.825445\pi\)
−0.853370 + 0.521305i \(0.825445\pi\)
\(272\) −21.2772 −1.29012
\(273\) 0.493971 0.0298965
\(274\) −28.2537 −1.70687
\(275\) 25.2264 1.52121
\(276\) 0.0629161 0.00378710
\(277\) 19.2463 1.15640 0.578198 0.815897i \(-0.303756\pi\)
0.578198 + 0.815897i \(0.303756\pi\)
\(278\) −1.56301 −0.0937433
\(279\) −10.4669 −0.626637
\(280\) 1.60595 0.0959739
\(281\) −10.0850 −0.601623 −0.300812 0.953684i \(-0.597258\pi\)
−0.300812 + 0.953684i \(0.597258\pi\)
\(282\) 2.06021 0.122684
\(283\) 28.0175 1.66546 0.832732 0.553676i \(-0.186775\pi\)
0.832732 + 0.553676i \(0.186775\pi\)
\(284\) −1.31383 −0.0779612
\(285\) −0.463932 −0.0274809
\(286\) 25.0297 1.48004
\(287\) 6.65414 0.392781
\(288\) 1.81542 0.106975
\(289\) 8.61231 0.506607
\(290\) 7.40028 0.434559
\(291\) −2.48118 −0.145449
\(292\) −1.21725 −0.0712343
\(293\) −24.0283 −1.40375 −0.701875 0.712300i \(-0.747654\pi\)
−0.701875 + 0.712300i \(0.747654\pi\)
\(294\) 0.225291 0.0131392
\(295\) −3.41358 −0.198746
\(296\) 6.13838 0.356786
\(297\) 5.02171 0.291389
\(298\) 23.3158 1.35065
\(299\) −11.9561 −0.691442
\(300\) −0.0780334 −0.00450526
\(301\) 4.51015 0.259961
\(302\) −5.17939 −0.298041
\(303\) −1.62567 −0.0933924
\(304\) 21.5011 1.23317
\(305\) 8.21883 0.470609
\(306\) −21.8664 −1.25002
\(307\) −16.4884 −0.941045 −0.470523 0.882388i \(-0.655935\pi\)
−0.470523 + 0.882388i \(0.655935\pi\)
\(308\) 0.584632 0.0333125
\(309\) −2.60403 −0.148138
\(310\) 2.98537 0.169557
\(311\) −30.3835 −1.72289 −0.861446 0.507849i \(-0.830441\pi\)
−0.861446 + 0.507849i \(0.830441\pi\)
\(312\) 1.35695 0.0768221
\(313\) 19.7235 1.11484 0.557420 0.830230i \(-0.311791\pi\)
0.557420 + 0.830230i \(0.311791\pi\)
\(314\) 0.994046 0.0560973
\(315\) 1.73977 0.0980249
\(316\) −0.391322 −0.0220136
\(317\) 22.1712 1.24526 0.622630 0.782516i \(-0.286064\pi\)
0.622630 + 0.782516i \(0.286064\pi\)
\(318\) 0.473870 0.0265733
\(319\) −47.2152 −2.64355
\(320\) 4.39795 0.245853
\(321\) 0.888679 0.0496012
\(322\) −5.45296 −0.303882
\(323\) −25.8819 −1.44011
\(324\) 0.948274 0.0526819
\(325\) 14.8289 0.822562
\(326\) 29.7933 1.65010
\(327\) 2.76101 0.152684
\(328\) 18.2790 1.00929
\(329\) −9.14467 −0.504162
\(330\) −0.713260 −0.0392637
\(331\) −5.62100 −0.308958 −0.154479 0.987996i \(-0.549370\pi\)
−0.154479 + 0.987996i \(0.549370\pi\)
\(332\) −1.52780 −0.0838491
\(333\) 6.64987 0.364411
\(334\) −5.04917 −0.276278
\(335\) −2.26120 −0.123543
\(336\) 0.652381 0.0355903
\(337\) 8.56317 0.466465 0.233233 0.972421i \(-0.425070\pi\)
0.233233 + 0.972421i \(0.425070\pi\)
\(338\) −4.16115 −0.226337
\(339\) 1.36244 0.0739977
\(340\) 0.319405 0.0173222
\(341\) −19.0472 −1.03146
\(342\) 22.0965 1.19484
\(343\) −1.00000 −0.0539949
\(344\) 12.3895 0.667996
\(345\) 0.340709 0.0183432
\(346\) 15.6442 0.841037
\(347\) −0.292076 −0.0156795 −0.00783973 0.999969i \(-0.502495\pi\)
−0.00783973 + 0.999969i \(0.502495\pi\)
\(348\) 0.146052 0.00782920
\(349\) 1.71700 0.0919090 0.0459545 0.998944i \(-0.485367\pi\)
0.0459545 + 0.998944i \(0.485367\pi\)
\(350\) 6.76319 0.361507
\(351\) 2.95193 0.157563
\(352\) 3.30363 0.176084
\(353\) 2.50642 0.133403 0.0667016 0.997773i \(-0.478752\pi\)
0.0667016 + 0.997773i \(0.478752\pi\)
\(354\) −1.31548 −0.0699167
\(355\) −7.11476 −0.377612
\(356\) −0.752254 −0.0398694
\(357\) −0.785302 −0.0415626
\(358\) 28.2081 1.49085
\(359\) −30.7410 −1.62245 −0.811224 0.584736i \(-0.801198\pi\)
−0.811224 + 0.584736i \(0.801198\pi\)
\(360\) 4.77918 0.251885
\(361\) 7.15435 0.376545
\(362\) 26.6690 1.40169
\(363\) 2.84385 0.149263
\(364\) 0.343667 0.0180130
\(365\) −6.59178 −0.345030
\(366\) 3.16725 0.165555
\(367\) 0.365574 0.0190828 0.00954140 0.999954i \(-0.496963\pi\)
0.00954140 + 0.999954i \(0.496963\pi\)
\(368\) −15.7903 −0.823127
\(369\) 19.8022 1.03086
\(370\) −1.89667 −0.0986033
\(371\) −2.10337 −0.109202
\(372\) 0.0589192 0.00305482
\(373\) 28.3498 1.46790 0.733950 0.679204i \(-0.237675\pi\)
0.733950 + 0.679204i \(0.237675\pi\)
\(374\) −39.7915 −2.05757
\(375\) −0.876152 −0.0452443
\(376\) −25.1206 −1.29550
\(377\) −27.7547 −1.42944
\(378\) 1.34632 0.0692472
\(379\) 25.0643 1.28747 0.643734 0.765250i \(-0.277384\pi\)
0.643734 + 0.765250i \(0.277384\pi\)
\(380\) −0.322767 −0.0165576
\(381\) −0.155172 −0.00794968
\(382\) 4.70799 0.240882
\(383\) −11.0735 −0.565828 −0.282914 0.959145i \(-0.591301\pi\)
−0.282914 + 0.959145i \(0.591301\pi\)
\(384\) 1.88414 0.0961496
\(385\) 3.16596 0.161352
\(386\) −27.6355 −1.40661
\(387\) 13.4219 0.682271
\(388\) −1.72621 −0.0876350
\(389\) −6.67744 −0.338560 −0.169280 0.985568i \(-0.554144\pi\)
−0.169280 + 0.985568i \(0.554144\pi\)
\(390\) −0.419278 −0.0212310
\(391\) 19.0075 0.961253
\(392\) −2.74702 −0.138746
\(393\) 0.254903 0.0128582
\(394\) −14.4125 −0.726091
\(395\) −2.11913 −0.106625
\(396\) 1.73982 0.0874292
\(397\) 23.2489 1.16683 0.583414 0.812175i \(-0.301717\pi\)
0.583414 + 0.812175i \(0.301717\pi\)
\(398\) 12.5620 0.629676
\(399\) 0.793568 0.0397281
\(400\) 19.5844 0.979219
\(401\) −12.7702 −0.637712 −0.318856 0.947803i \(-0.603299\pi\)
−0.318856 + 0.947803i \(0.603299\pi\)
\(402\) −0.871389 −0.0434609
\(403\) −11.1966 −0.557743
\(404\) −1.13102 −0.0562701
\(405\) 5.13519 0.255169
\(406\) −12.6584 −0.628225
\(407\) 12.1011 0.599831
\(408\) −2.15724 −0.106799
\(409\) 2.99975 0.148328 0.0741641 0.997246i \(-0.476371\pi\)
0.0741641 + 0.997246i \(0.476371\pi\)
\(410\) −5.64797 −0.278933
\(411\) −3.01965 −0.148949
\(412\) −1.81168 −0.0892553
\(413\) 5.83902 0.287319
\(414\) −16.2276 −0.797542
\(415\) −8.27351 −0.406131
\(416\) 1.94199 0.0952137
\(417\) −0.167049 −0.00818043
\(418\) 40.2103 1.96675
\(419\) −16.0099 −0.782134 −0.391067 0.920362i \(-0.627894\pi\)
−0.391067 + 0.920362i \(0.627894\pi\)
\(420\) −0.00979332 −0.000477865 0
\(421\) −17.0046 −0.828751 −0.414376 0.910106i \(-0.636000\pi\)
−0.414376 + 0.910106i \(0.636000\pi\)
\(422\) −41.2896 −2.00995
\(423\) −27.2138 −1.32318
\(424\) −5.77801 −0.280605
\(425\) −23.5746 −1.14354
\(426\) −2.74178 −0.132840
\(427\) −14.0585 −0.680340
\(428\) 0.618273 0.0298854
\(429\) 2.67508 0.129154
\(430\) −3.82817 −0.184611
\(431\) 36.2193 1.74462 0.872311 0.488951i \(-0.162620\pi\)
0.872311 + 0.488951i \(0.162620\pi\)
\(432\) 3.89858 0.187570
\(433\) −23.3247 −1.12091 −0.560457 0.828184i \(-0.689374\pi\)
−0.560457 + 0.828184i \(0.689374\pi\)
\(434\) −5.10655 −0.245122
\(435\) 0.790914 0.0379214
\(436\) 1.92089 0.0919942
\(437\) −19.2076 −0.918825
\(438\) −2.54025 −0.121378
\(439\) 31.0060 1.47984 0.739919 0.672696i \(-0.234864\pi\)
0.739919 + 0.672696i \(0.234864\pi\)
\(440\) 8.69695 0.414611
\(441\) −2.97592 −0.141711
\(442\) −23.3908 −1.11259
\(443\) −1.04527 −0.0496622 −0.0248311 0.999692i \(-0.507905\pi\)
−0.0248311 + 0.999692i \(0.507905\pi\)
\(444\) −0.0374327 −0.00177648
\(445\) −4.07368 −0.193111
\(446\) 1.91914 0.0908739
\(447\) 2.49191 0.117863
\(448\) −7.52281 −0.355420
\(449\) 30.8628 1.45651 0.728253 0.685309i \(-0.240333\pi\)
0.728253 + 0.685309i \(0.240333\pi\)
\(450\) 20.1267 0.948782
\(451\) 36.0352 1.69683
\(452\) 0.947880 0.0445845
\(453\) −0.553554 −0.0260083
\(454\) 5.12477 0.240517
\(455\) 1.86106 0.0872477
\(456\) 2.17995 0.102085
\(457\) −3.39633 −0.158874 −0.0794369 0.996840i \(-0.525312\pi\)
−0.0794369 + 0.996840i \(0.525312\pi\)
\(458\) −19.6690 −0.919074
\(459\) −4.69290 −0.219046
\(460\) 0.237039 0.0110520
\(461\) −10.3660 −0.482792 −0.241396 0.970427i \(-0.577605\pi\)
−0.241396 + 0.970427i \(0.577605\pi\)
\(462\) 1.22005 0.0567619
\(463\) −23.6359 −1.09846 −0.549228 0.835673i \(-0.685078\pi\)
−0.549228 + 0.835673i \(0.685078\pi\)
\(464\) −36.6553 −1.70168
\(465\) 0.319065 0.0147963
\(466\) −13.4526 −0.623180
\(467\) −19.0928 −0.883510 −0.441755 0.897136i \(-0.645644\pi\)
−0.441755 + 0.897136i \(0.645644\pi\)
\(468\) 1.02273 0.0472755
\(469\) 3.86784 0.178600
\(470\) 7.76192 0.358031
\(471\) 0.106240 0.00489528
\(472\) 16.0399 0.738296
\(473\) 24.4245 1.12304
\(474\) −0.816638 −0.0375094
\(475\) 23.8228 1.09306
\(476\) −0.546352 −0.0250420
\(477\) −6.25947 −0.286601
\(478\) 8.04739 0.368079
\(479\) −13.9575 −0.637733 −0.318867 0.947800i \(-0.603302\pi\)
−0.318867 + 0.947800i \(0.603302\pi\)
\(480\) −0.0553399 −0.00252591
\(481\) 7.11347 0.324346
\(482\) 26.3030 1.19807
\(483\) −0.582792 −0.0265180
\(484\) 1.97853 0.0899331
\(485\) −9.34794 −0.424468
\(486\) 6.01788 0.272977
\(487\) 17.8690 0.809722 0.404861 0.914378i \(-0.367320\pi\)
0.404861 + 0.914378i \(0.367320\pi\)
\(488\) −38.6191 −1.74820
\(489\) 3.18420 0.143994
\(490\) 0.848791 0.0383445
\(491\) 1.53715 0.0693706 0.0346853 0.999398i \(-0.488957\pi\)
0.0346853 + 0.999398i \(0.488957\pi\)
\(492\) −0.111468 −0.00502538
\(493\) 44.1237 1.98723
\(494\) 23.6370 1.06348
\(495\) 9.42164 0.423471
\(496\) −14.7872 −0.663965
\(497\) 12.1700 0.545898
\(498\) −3.18833 −0.142872
\(499\) −35.1272 −1.57251 −0.786255 0.617902i \(-0.787983\pi\)
−0.786255 + 0.617902i \(0.787983\pi\)
\(500\) −0.609558 −0.0272603
\(501\) −0.539637 −0.0241092
\(502\) −24.4334 −1.09052
\(503\) 23.3017 1.03897 0.519486 0.854479i \(-0.326123\pi\)
0.519486 + 0.854479i \(0.326123\pi\)
\(504\) −8.17492 −0.364140
\(505\) −6.12479 −0.272549
\(506\) −29.5303 −1.31278
\(507\) −0.444728 −0.0197511
\(508\) −0.107956 −0.00478978
\(509\) 40.7781 1.80746 0.903730 0.428104i \(-0.140818\pi\)
0.903730 + 0.428104i \(0.140818\pi\)
\(510\) 0.666557 0.0295156
\(511\) 11.2754 0.498796
\(512\) −20.5336 −0.907466
\(513\) 4.74230 0.209378
\(514\) −0.238748 −0.0105307
\(515\) −9.81080 −0.432316
\(516\) −0.0755529 −0.00332603
\(517\) −49.5225 −2.17800
\(518\) 3.24431 0.142547
\(519\) 1.67199 0.0733923
\(520\) 5.11236 0.224192
\(521\) 6.66265 0.291896 0.145948 0.989292i \(-0.453377\pi\)
0.145948 + 0.989292i \(0.453377\pi\)
\(522\) −37.6703 −1.64879
\(523\) −24.2779 −1.06160 −0.530799 0.847497i \(-0.678108\pi\)
−0.530799 + 0.847497i \(0.678108\pi\)
\(524\) 0.177342 0.00774721
\(525\) 0.722824 0.0315466
\(526\) −18.3432 −0.799803
\(527\) 17.8001 0.775382
\(528\) 3.53294 0.153751
\(529\) −8.89402 −0.386696
\(530\) 1.78532 0.0775495
\(531\) 17.3765 0.754074
\(532\) 0.552103 0.0239367
\(533\) 21.1827 0.917524
\(534\) −1.56985 −0.0679342
\(535\) 3.34813 0.144752
\(536\) 10.6250 0.458932
\(537\) 3.01478 0.130097
\(538\) −7.99592 −0.344729
\(539\) −5.41545 −0.233260
\(540\) −0.0585241 −0.00251848
\(541\) 28.1614 1.21075 0.605377 0.795939i \(-0.293023\pi\)
0.605377 + 0.795939i \(0.293023\pi\)
\(542\) −40.7927 −1.75220
\(543\) 2.85029 0.122317
\(544\) −3.08731 −0.132367
\(545\) 10.4022 0.445582
\(546\) 0.717187 0.0306928
\(547\) −31.8313 −1.36101 −0.680503 0.732745i \(-0.738239\pi\)
−0.680503 + 0.732745i \(0.738239\pi\)
\(548\) −2.10084 −0.0897434
\(549\) −41.8371 −1.78556
\(550\) 36.6257 1.56173
\(551\) −44.5881 −1.89952
\(552\) −1.60094 −0.0681406
\(553\) 3.62482 0.154143
\(554\) 27.9433 1.18720
\(555\) −0.202709 −0.00860453
\(556\) −0.116220 −0.00492881
\(557\) −23.7141 −1.00480 −0.502399 0.864636i \(-0.667549\pi\)
−0.502399 + 0.864636i \(0.667549\pi\)
\(558\) −15.1967 −0.643327
\(559\) 14.3576 0.607260
\(560\) 2.45787 0.103864
\(561\) −4.25276 −0.179552
\(562\) −14.6423 −0.617647
\(563\) 6.95606 0.293163 0.146582 0.989199i \(-0.453173\pi\)
0.146582 + 0.989199i \(0.453173\pi\)
\(564\) 0.153189 0.00645043
\(565\) 5.13305 0.215949
\(566\) 40.6780 1.70982
\(567\) −8.78388 −0.368888
\(568\) 33.4312 1.40274
\(569\) −14.2834 −0.598790 −0.299395 0.954129i \(-0.596785\pi\)
−0.299395 + 0.954129i \(0.596785\pi\)
\(570\) −0.673573 −0.0282129
\(571\) −4.94964 −0.207136 −0.103568 0.994622i \(-0.533026\pi\)
−0.103568 + 0.994622i \(0.533026\pi\)
\(572\) 1.86111 0.0778169
\(573\) 0.503172 0.0210203
\(574\) 9.66101 0.403243
\(575\) −17.4953 −0.729606
\(576\) −22.3873 −0.932805
\(577\) 4.53775 0.188909 0.0944546 0.995529i \(-0.469889\pi\)
0.0944546 + 0.995529i \(0.469889\pi\)
\(578\) 12.5040 0.520100
\(579\) −2.95358 −0.122747
\(580\) 0.550256 0.0228482
\(581\) 14.1521 0.587126
\(582\) −3.60237 −0.149323
\(583\) −11.3907 −0.471755
\(584\) 30.9738 1.28171
\(585\) 5.53836 0.228983
\(586\) −34.8863 −1.44114
\(587\) 0.284682 0.0117501 0.00587505 0.999983i \(-0.498130\pi\)
0.00587505 + 0.999983i \(0.498130\pi\)
\(588\) 0.0167517 0.000690830 0
\(589\) −17.9874 −0.741159
\(590\) −4.95611 −0.204040
\(591\) −1.54035 −0.0633617
\(592\) 9.39466 0.386118
\(593\) −11.4352 −0.469589 −0.234795 0.972045i \(-0.575442\pi\)
−0.234795 + 0.972045i \(0.575442\pi\)
\(594\) 7.29092 0.299150
\(595\) −2.95866 −0.121293
\(596\) 1.73367 0.0710140
\(597\) 1.34258 0.0549482
\(598\) −17.3589 −0.709858
\(599\) 11.9250 0.487241 0.243620 0.969871i \(-0.421665\pi\)
0.243620 + 0.969871i \(0.421665\pi\)
\(600\) 1.98561 0.0810623
\(601\) 29.4693 1.20208 0.601039 0.799220i \(-0.294754\pi\)
0.601039 + 0.799220i \(0.294754\pi\)
\(602\) 6.54820 0.266885
\(603\) 11.5104 0.468740
\(604\) −0.385120 −0.0156703
\(605\) 10.7143 0.435599
\(606\) −2.36028 −0.0958799
\(607\) −7.54814 −0.306369 −0.153185 0.988198i \(-0.548953\pi\)
−0.153185 + 0.988198i \(0.548953\pi\)
\(608\) 3.11981 0.126525
\(609\) −1.35288 −0.0548215
\(610\) 11.9328 0.483143
\(611\) −29.1110 −1.17771
\(612\) −1.62590 −0.0657231
\(613\) 42.7869 1.72815 0.864074 0.503365i \(-0.167905\pi\)
0.864074 + 0.503365i \(0.167905\pi\)
\(614\) −23.9393 −0.966110
\(615\) −0.603634 −0.0243409
\(616\) −14.8764 −0.599386
\(617\) 22.1822 0.893020 0.446510 0.894779i \(-0.352667\pi\)
0.446510 + 0.894779i \(0.352667\pi\)
\(618\) −3.78075 −0.152084
\(619\) 8.41815 0.338354 0.169177 0.985586i \(-0.445889\pi\)
0.169177 + 0.985586i \(0.445889\pi\)
\(620\) 0.221980 0.00891495
\(621\) −3.48272 −0.139757
\(622\) −44.1133 −1.76878
\(623\) 6.96813 0.279172
\(624\) 2.07678 0.0831379
\(625\) 19.9902 0.799608
\(626\) 28.6362 1.14453
\(627\) 4.29753 0.171627
\(628\) 0.0739135 0.00294947
\(629\) −11.3088 −0.450911
\(630\) 2.52594 0.100636
\(631\) −42.9906 −1.71143 −0.855715 0.517448i \(-0.826882\pi\)
−0.855715 + 0.517448i \(0.826882\pi\)
\(632\) 9.95746 0.396087
\(633\) −4.41288 −0.175396
\(634\) 32.1900 1.27843
\(635\) −0.584615 −0.0231997
\(636\) 0.0352351 0.00139716
\(637\) −3.18339 −0.126130
\(638\) −68.5509 −2.71395
\(639\) 36.2169 1.43272
\(640\) 7.09857 0.280596
\(641\) −21.6825 −0.856407 −0.428203 0.903682i \(-0.640853\pi\)
−0.428203 + 0.903682i \(0.640853\pi\)
\(642\) 1.29025 0.0509223
\(643\) 7.73727 0.305128 0.152564 0.988294i \(-0.451247\pi\)
0.152564 + 0.988294i \(0.451247\pi\)
\(644\) −0.405461 −0.0159774
\(645\) −0.409141 −0.0161099
\(646\) −37.5774 −1.47846
\(647\) −20.9296 −0.822827 −0.411414 0.911449i \(-0.634965\pi\)
−0.411414 + 0.911449i \(0.634965\pi\)
\(648\) −24.1295 −0.947896
\(649\) 31.6209 1.24123
\(650\) 21.5298 0.844470
\(651\) −0.545769 −0.0213904
\(652\) 2.21531 0.0867584
\(653\) 4.52343 0.177015 0.0885077 0.996075i \(-0.471790\pi\)
0.0885077 + 0.996075i \(0.471790\pi\)
\(654\) 4.00865 0.156751
\(655\) 0.960358 0.0375243
\(656\) 27.9757 1.09227
\(657\) 33.5548 1.30910
\(658\) −13.2770 −0.517590
\(659\) −11.5665 −0.450567 −0.225283 0.974293i \(-0.572331\pi\)
−0.225283 + 0.974293i \(0.572331\pi\)
\(660\) −0.0530353 −0.00206439
\(661\) −0.556631 −0.0216504 −0.0108252 0.999941i \(-0.503446\pi\)
−0.0108252 + 0.999941i \(0.503446\pi\)
\(662\) −8.16101 −0.317187
\(663\) −2.49992 −0.0970889
\(664\) 38.8760 1.50868
\(665\) 2.98980 0.115939
\(666\) 9.65482 0.374117
\(667\) 32.7453 1.26790
\(668\) −0.375437 −0.0145261
\(669\) 0.205110 0.00793003
\(670\) −3.28299 −0.126833
\(671\) −76.1333 −2.93909
\(672\) 0.0946604 0.00365161
\(673\) −23.9745 −0.924150 −0.462075 0.886841i \(-0.652895\pi\)
−0.462075 + 0.886841i \(0.652895\pi\)
\(674\) 12.4327 0.478889
\(675\) 4.31954 0.166259
\(676\) −0.309407 −0.0119003
\(677\) −51.7020 −1.98707 −0.993535 0.113524i \(-0.963786\pi\)
−0.993535 + 0.113524i \(0.963786\pi\)
\(678\) 1.97810 0.0759685
\(679\) 15.9899 0.613636
\(680\) −8.12749 −0.311675
\(681\) 0.547716 0.0209885
\(682\) −27.6543 −1.05894
\(683\) 29.9749 1.14696 0.573479 0.819220i \(-0.305594\pi\)
0.573479 + 0.819220i \(0.305594\pi\)
\(684\) 1.64301 0.0628222
\(685\) −11.3767 −0.434680
\(686\) −1.45188 −0.0554330
\(687\) −2.10215 −0.0802021
\(688\) 18.9618 0.722913
\(689\) −6.69585 −0.255091
\(690\) 0.494669 0.0188317
\(691\) −39.1395 −1.48894 −0.744468 0.667658i \(-0.767297\pi\)
−0.744468 + 0.667658i \(0.767297\pi\)
\(692\) 1.16324 0.0442198
\(693\) −16.1160 −0.612195
\(694\) −0.424059 −0.0160971
\(695\) −0.629364 −0.0238731
\(696\) −3.71639 −0.140869
\(697\) −33.6757 −1.27556
\(698\) 2.49288 0.0943570
\(699\) −1.43776 −0.0543812
\(700\) 0.502885 0.0190073
\(701\) 29.4425 1.11203 0.556013 0.831173i \(-0.312330\pi\)
0.556013 + 0.831173i \(0.312330\pi\)
\(702\) 4.28585 0.161759
\(703\) 11.4278 0.431009
\(704\) −40.7394 −1.53543
\(705\) 0.829565 0.0312432
\(706\) 3.63902 0.136956
\(707\) 10.4766 0.394014
\(708\) −0.0978137 −0.00367606
\(709\) 19.0173 0.714210 0.357105 0.934064i \(-0.383764\pi\)
0.357105 + 0.934064i \(0.383764\pi\)
\(710\) −10.3298 −0.387669
\(711\) 10.7872 0.404551
\(712\) 19.1416 0.717362
\(713\) 13.2099 0.494713
\(714\) −1.14016 −0.0426696
\(715\) 10.0785 0.376913
\(716\) 2.09745 0.0783854
\(717\) 0.860076 0.0321201
\(718\) −44.6322 −1.66566
\(719\) 0.197837 0.00737807 0.00368903 0.999993i \(-0.498826\pi\)
0.00368903 + 0.999993i \(0.498826\pi\)
\(720\) 7.31444 0.272593
\(721\) 16.7816 0.624981
\(722\) 10.3873 0.386574
\(723\) 2.81117 0.104549
\(724\) 1.98301 0.0736978
\(725\) −40.6133 −1.50834
\(726\) 4.12893 0.153239
\(727\) 34.0943 1.26449 0.632244 0.774769i \(-0.282134\pi\)
0.632244 + 0.774769i \(0.282134\pi\)
\(728\) −8.74483 −0.324105
\(729\) −25.7085 −0.952165
\(730\) −9.57048 −0.354219
\(731\) −22.8252 −0.844222
\(732\) 0.235505 0.00870451
\(733\) −2.86047 −0.105654 −0.0528270 0.998604i \(-0.516823\pi\)
−0.0528270 + 0.998604i \(0.516823\pi\)
\(734\) 0.530769 0.0195911
\(735\) 0.0907156 0.00334610
\(736\) −2.29117 −0.0844538
\(737\) 20.9461 0.771560
\(738\) 28.7504 1.05832
\(739\) 20.3860 0.749912 0.374956 0.927043i \(-0.377658\pi\)
0.374956 + 0.927043i \(0.377658\pi\)
\(740\) −0.141029 −0.00518434
\(741\) 2.52623 0.0928035
\(742\) −3.05384 −0.112110
\(743\) −20.0394 −0.735174 −0.367587 0.929989i \(-0.619816\pi\)
−0.367587 + 0.929989i \(0.619816\pi\)
\(744\) −1.49924 −0.0549648
\(745\) 9.38835 0.343963
\(746\) 41.1606 1.50700
\(747\) 42.1154 1.54092
\(748\) −2.95874 −0.108182
\(749\) −5.72707 −0.209263
\(750\) −1.27207 −0.0464494
\(751\) −1.06573 −0.0388890 −0.0194445 0.999811i \(-0.506190\pi\)
−0.0194445 + 0.999811i \(0.506190\pi\)
\(752\) −38.4466 −1.40200
\(753\) −2.61135 −0.0951630
\(754\) −40.2965 −1.46751
\(755\) −2.08554 −0.0759005
\(756\) 0.100107 0.00364086
\(757\) 37.0228 1.34562 0.672808 0.739817i \(-0.265088\pi\)
0.672808 + 0.739817i \(0.265088\pi\)
\(758\) 36.3904 1.32176
\(759\) −3.15608 −0.114559
\(760\) 8.21304 0.297918
\(761\) 3.94528 0.143016 0.0715081 0.997440i \(-0.477219\pi\)
0.0715081 + 0.997440i \(0.477219\pi\)
\(762\) −0.225291 −0.00816141
\(763\) −17.7933 −0.644159
\(764\) 0.350068 0.0126650
\(765\) −8.80473 −0.318336
\(766\) −16.0773 −0.580898
\(767\) 18.5879 0.671169
\(768\) 0.400891 0.0144659
\(769\) −22.9790 −0.828644 −0.414322 0.910130i \(-0.635981\pi\)
−0.414322 + 0.910130i \(0.635981\pi\)
\(770\) 4.59659 0.165650
\(771\) −0.0255165 −0.000918953 0
\(772\) −2.05487 −0.0739565
\(773\) −15.6983 −0.564627 −0.282314 0.959322i \(-0.591102\pi\)
−0.282314 + 0.959322i \(0.591102\pi\)
\(774\) 19.4869 0.700443
\(775\) −16.3839 −0.588527
\(776\) 43.9246 1.57680
\(777\) 0.346740 0.0124392
\(778\) −9.69485 −0.347577
\(779\) 34.0301 1.21926
\(780\) −0.0311759 −0.00111628
\(781\) 65.9060 2.35830
\(782\) 27.5967 0.986855
\(783\) −8.08471 −0.288924
\(784\) −4.20426 −0.150152
\(785\) 0.400263 0.0142860
\(786\) 0.370089 0.0132006
\(787\) −19.5950 −0.698485 −0.349242 0.937032i \(-0.613561\pi\)
−0.349242 + 0.937032i \(0.613561\pi\)
\(788\) −1.07166 −0.0381762
\(789\) −1.96046 −0.0697941
\(790\) −3.07672 −0.109465
\(791\) −8.78023 −0.312189
\(792\) −44.2709 −1.57310
\(793\) −44.7538 −1.58925
\(794\) 33.7546 1.19791
\(795\) 0.190809 0.00676729
\(796\) 0.934063 0.0331070
\(797\) 32.2337 1.14178 0.570888 0.821028i \(-0.306599\pi\)
0.570888 + 0.821028i \(0.306599\pi\)
\(798\) 1.15217 0.0407862
\(799\) 46.2799 1.63727
\(800\) 2.84169 0.100469
\(801\) 20.7366 0.732692
\(802\) −18.5407 −0.654697
\(803\) 61.0615 2.15482
\(804\) −0.0647931 −0.00228508
\(805\) −2.19569 −0.0773880
\(806\) −16.2561 −0.572598
\(807\) −0.854575 −0.0300825
\(808\) 28.7795 1.01246
\(809\) 50.1803 1.76424 0.882122 0.471021i \(-0.156114\pi\)
0.882122 + 0.471021i \(0.156114\pi\)
\(810\) 7.45568 0.261966
\(811\) −32.2851 −1.13368 −0.566841 0.823827i \(-0.691835\pi\)
−0.566841 + 0.823827i \(0.691835\pi\)
\(812\) −0.941229 −0.0330306
\(813\) −4.35978 −0.152904
\(814\) 17.5694 0.615808
\(815\) 11.9966 0.420222
\(816\) −3.30161 −0.115579
\(817\) 23.0655 0.806960
\(818\) 4.35528 0.152279
\(819\) −9.47351 −0.331031
\(820\) −0.419961 −0.0146657
\(821\) −2.84821 −0.0994032 −0.0497016 0.998764i \(-0.515827\pi\)
−0.0497016 + 0.998764i \(0.515827\pi\)
\(822\) −4.38418 −0.152916
\(823\) −20.4935 −0.714358 −0.357179 0.934036i \(-0.616261\pi\)
−0.357179 + 0.934036i \(0.616261\pi\)
\(824\) 46.0995 1.60595
\(825\) 3.91442 0.136283
\(826\) 8.47755 0.294972
\(827\) 12.8868 0.448117 0.224059 0.974576i \(-0.428069\pi\)
0.224059 + 0.974576i \(0.428069\pi\)
\(828\) −1.20662 −0.0419330
\(829\) 9.04317 0.314082 0.157041 0.987592i \(-0.449804\pi\)
0.157041 + 0.987592i \(0.449804\pi\)
\(830\) −12.0121 −0.416948
\(831\) 2.98647 0.103600
\(832\) −23.9480 −0.830249
\(833\) 5.06086 0.175348
\(834\) −0.242535 −0.00839831
\(835\) −2.03310 −0.0703584
\(836\) 2.98989 0.103407
\(837\) −3.26147 −0.112733
\(838\) −23.2444 −0.802965
\(839\) 14.0717 0.485807 0.242904 0.970050i \(-0.421900\pi\)
0.242904 + 0.970050i \(0.421900\pi\)
\(840\) 0.249198 0.00859814
\(841\) 47.0142 1.62118
\(842\) −24.6886 −0.850825
\(843\) −1.56491 −0.0538984
\(844\) −3.07014 −0.105678
\(845\) −1.67553 −0.0576400
\(846\) −39.5112 −1.35842
\(847\) −18.3271 −0.629728
\(848\) −8.84312 −0.303674
\(849\) 4.34751 0.149206
\(850\) −34.2275 −1.17399
\(851\) −8.39254 −0.287693
\(852\) −0.203868 −0.00698442
\(853\) −36.9212 −1.26416 −0.632080 0.774903i \(-0.717799\pi\)
−0.632080 + 0.774903i \(0.717799\pi\)
\(854\) −20.4113 −0.698461
\(855\) 8.89741 0.304285
\(856\) −15.7324 −0.537722
\(857\) −26.3947 −0.901626 −0.450813 0.892619i \(-0.648866\pi\)
−0.450813 + 0.892619i \(0.648866\pi\)
\(858\) 3.88389 0.132594
\(859\) 53.7029 1.83232 0.916160 0.400813i \(-0.131272\pi\)
0.916160 + 0.400813i \(0.131272\pi\)
\(860\) −0.284648 −0.00970643
\(861\) 1.03253 0.0351886
\(862\) 52.5861 1.79109
\(863\) 4.39848 0.149726 0.0748630 0.997194i \(-0.476148\pi\)
0.0748630 + 0.997194i \(0.476148\pi\)
\(864\) 0.565683 0.0192449
\(865\) 6.29930 0.214183
\(866\) −33.8647 −1.15077
\(867\) 1.33639 0.0453860
\(868\) −0.379704 −0.0128880
\(869\) 19.6301 0.665904
\(870\) 1.14831 0.0389315
\(871\) 12.3128 0.417205
\(872\) −48.8785 −1.65523
\(873\) 47.5847 1.61050
\(874\) −27.8872 −0.943297
\(875\) 5.64634 0.190881
\(876\) −0.188883 −0.00638177
\(877\) 27.9653 0.944321 0.472161 0.881513i \(-0.343474\pi\)
0.472161 + 0.881513i \(0.343474\pi\)
\(878\) 45.0171 1.51925
\(879\) −3.72852 −0.125760
\(880\) 13.3105 0.448697
\(881\) −31.8646 −1.07355 −0.536773 0.843727i \(-0.680357\pi\)
−0.536773 + 0.843727i \(0.680357\pi\)
\(882\) −4.32068 −0.145485
\(883\) 22.9214 0.771367 0.385684 0.922631i \(-0.373966\pi\)
0.385684 + 0.922631i \(0.373966\pi\)
\(884\) −1.73925 −0.0584973
\(885\) −0.529690 −0.0178053
\(886\) −1.51760 −0.0509849
\(887\) 52.3948 1.75924 0.879622 0.475673i \(-0.157796\pi\)
0.879622 + 0.475673i \(0.157796\pi\)
\(888\) 0.952502 0.0319639
\(889\) 1.00000 0.0335389
\(890\) −5.91449 −0.198254
\(891\) −47.5687 −1.59361
\(892\) 0.142700 0.00477794
\(893\) −46.7671 −1.56500
\(894\) 3.61795 0.121002
\(895\) 11.3583 0.379666
\(896\) −12.1423 −0.405646
\(897\) −1.85525 −0.0619451
\(898\) 44.8091 1.49530
\(899\) 30.6651 1.02274
\(900\) 1.49655 0.0498848
\(901\) 10.6449 0.354632
\(902\) 52.3187 1.74202
\(903\) 0.699847 0.0232894
\(904\) −24.1195 −0.802201
\(905\) 10.7386 0.356962
\(906\) −0.803695 −0.0267010
\(907\) 8.25274 0.274028 0.137014 0.990569i \(-0.456250\pi\)
0.137014 + 0.990569i \(0.456250\pi\)
\(908\) 0.381058 0.0126459
\(909\) 31.1776 1.03409
\(910\) 2.70203 0.0895715
\(911\) −41.0478 −1.35998 −0.679988 0.733223i \(-0.738015\pi\)
−0.679988 + 0.733223i \(0.738015\pi\)
\(912\) 3.33636 0.110478
\(913\) 76.6398 2.53641
\(914\) −4.93107 −0.163105
\(915\) 1.27533 0.0421611
\(916\) −1.46251 −0.0483228
\(917\) −1.64272 −0.0542473
\(918\) −6.81353 −0.224880
\(919\) 18.6013 0.613601 0.306801 0.951774i \(-0.400741\pi\)
0.306801 + 0.951774i \(0.400741\pi\)
\(920\) −6.03162 −0.198856
\(921\) −2.55854 −0.0843067
\(922\) −15.0502 −0.495651
\(923\) 38.7418 1.27520
\(924\) 0.0907183 0.00298441
\(925\) 10.4091 0.342248
\(926\) −34.3166 −1.12771
\(927\) 49.9409 1.64027
\(928\) −5.31868 −0.174594
\(929\) 24.4625 0.802588 0.401294 0.915949i \(-0.368561\pi\)
0.401294 + 0.915949i \(0.368561\pi\)
\(930\) 0.463244 0.0151904
\(931\) −5.11413 −0.167609
\(932\) −1.00028 −0.0327654
\(933\) −4.71466 −0.154351
\(934\) −27.7205 −0.907042
\(935\) −16.0225 −0.523990
\(936\) −26.0239 −0.850619
\(937\) 52.8188 1.72552 0.862758 0.505617i \(-0.168735\pi\)
0.862758 + 0.505617i \(0.168735\pi\)
\(938\) 5.61565 0.183357
\(939\) 3.06053 0.0998767
\(940\) 0.577146 0.0188244
\(941\) −7.92118 −0.258223 −0.129111 0.991630i \(-0.541213\pi\)
−0.129111 + 0.991630i \(0.541213\pi\)
\(942\) 0.154248 0.00502566
\(943\) −24.9916 −0.813837
\(944\) 24.5487 0.798993
\(945\) 0.542110 0.0176348
\(946\) 35.4614 1.15295
\(947\) −56.1375 −1.82422 −0.912111 0.409943i \(-0.865549\pi\)
−0.912111 + 0.409943i \(0.865549\pi\)
\(948\) −0.0607221 −0.00197216
\(949\) 35.8941 1.16517
\(950\) 34.5878 1.12218
\(951\) 3.44034 0.111561
\(952\) 13.9023 0.450576
\(953\) −1.73578 −0.0562273 −0.0281137 0.999605i \(-0.508950\pi\)
−0.0281137 + 0.999605i \(0.508950\pi\)
\(954\) −9.08800 −0.294235
\(955\) 1.89572 0.0613441
\(956\) 0.598373 0.0193528
\(957\) −7.32646 −0.236831
\(958\) −20.2646 −0.654719
\(959\) 19.4601 0.628399
\(960\) 0.682437 0.0220256
\(961\) −18.6293 −0.600946
\(962\) 10.3279 0.332985
\(963\) −17.0433 −0.549213
\(964\) 1.95579 0.0629918
\(965\) −11.1277 −0.358215
\(966\) −0.846145 −0.0272243
\(967\) −26.7443 −0.860038 −0.430019 0.902820i \(-0.641493\pi\)
−0.430019 + 0.902820i \(0.641493\pi\)
\(968\) −50.3450 −1.61815
\(969\) −4.01614 −0.129017
\(970\) −13.5721 −0.435773
\(971\) −33.1012 −1.06227 −0.531134 0.847288i \(-0.678234\pi\)
−0.531134 + 0.847288i \(0.678234\pi\)
\(972\) 0.447467 0.0143525
\(973\) 1.07654 0.0345124
\(974\) 25.9437 0.831288
\(975\) 2.30103 0.0736919
\(976\) −59.1057 −1.89193
\(977\) 7.19435 0.230168 0.115084 0.993356i \(-0.463286\pi\)
0.115084 + 0.993356i \(0.463286\pi\)
\(978\) 4.62307 0.147829
\(979\) 37.7356 1.20603
\(980\) 0.0631129 0.00201607
\(981\) −52.9514 −1.69061
\(982\) 2.23176 0.0712182
\(983\) −22.7413 −0.725334 −0.362667 0.931919i \(-0.618134\pi\)
−0.362667 + 0.931919i \(0.618134\pi\)
\(984\) 2.83639 0.0904208
\(985\) −5.80335 −0.184910
\(986\) 64.0623 2.04016
\(987\) −1.41899 −0.0451671
\(988\) 1.75756 0.0559153
\(989\) −16.9392 −0.538635
\(990\) 13.6791 0.434750
\(991\) 50.6822 1.60997 0.804987 0.593292i \(-0.202172\pi\)
0.804987 + 0.593292i \(0.202172\pi\)
\(992\) −2.14562 −0.0681236
\(993\) −0.872219 −0.0276790
\(994\) 17.6694 0.560438
\(995\) 5.05823 0.160357
\(996\) −0.237072 −0.00751190
\(997\) −14.1678 −0.448700 −0.224350 0.974509i \(-0.572026\pi\)
−0.224350 + 0.974509i \(0.572026\pi\)
\(998\) −51.0005 −1.61439
\(999\) 2.07209 0.0655580
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.a.c.1.12 16
3.2 odd 2 8001.2.a.t.1.5 16
7.6 odd 2 6223.2.a.k.1.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.12 16 1.1 even 1 trivial
6223.2.a.k.1.12 16 7.6 odd 2
8001.2.a.t.1.5 16 3.2 odd 2