Properties

Label 2-889-1.1-c1-0-60
Degree $2$
Conductor $889$
Sign $-1$
Analytic cond. $7.09870$
Root an. cond. $2.66433$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.45·2-s + 0.155·3-s + 0.107·4-s + 0.584·5-s + 0.225·6-s − 7-s − 2.74·8-s − 2.97·9-s + 0.848·10-s − 5.41·11-s + 0.0167·12-s − 3.18·13-s − 1.45·14-s + 0.0907·15-s − 4.20·16-s + 5.06·17-s − 4.32·18-s − 5.11·19-s + 0.0631·20-s − 0.155·21-s − 7.86·22-s + 3.75·23-s − 0.426·24-s − 4.65·25-s − 4.62·26-s − 0.927·27-s − 0.107·28-s + ⋯
L(s)  = 1  + 1.02·2-s + 0.0895·3-s + 0.0539·4-s + 0.261·5-s + 0.0919·6-s − 0.377·7-s − 0.971·8-s − 0.991·9-s + 0.268·10-s − 1.63·11-s + 0.00483·12-s − 0.882·13-s − 0.388·14-s + 0.0234·15-s − 1.05·16-s + 1.22·17-s − 1.01·18-s − 1.17·19-s + 0.0141·20-s − 0.0338·21-s − 1.67·22-s + 0.783·23-s − 0.0870·24-s − 0.931·25-s − 0.906·26-s − 0.178·27-s − 0.0204·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 889 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 889 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(889\)    =    \(7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(7.09870\)
Root analytic conductor: \(2.66433\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 889,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
127 \( 1 + T \)
good2 \( 1 - 1.45T + 2T^{2} \)
3 \( 1 - 0.155T + 3T^{2} \)
5 \( 1 - 0.584T + 5T^{2} \)
11 \( 1 + 5.41T + 11T^{2} \)
13 \( 1 + 3.18T + 13T^{2} \)
17 \( 1 - 5.06T + 17T^{2} \)
19 \( 1 + 5.11T + 19T^{2} \)
23 \( 1 - 3.75T + 23T^{2} \)
29 \( 1 - 8.71T + 29T^{2} \)
31 \( 1 - 3.51T + 31T^{2} \)
37 \( 1 + 2.23T + 37T^{2} \)
41 \( 1 + 6.65T + 41T^{2} \)
43 \( 1 + 4.51T + 43T^{2} \)
47 \( 1 - 9.14T + 47T^{2} \)
53 \( 1 - 2.10T + 53T^{2} \)
59 \( 1 + 5.83T + 59T^{2} \)
61 \( 1 - 14.0T + 61T^{2} \)
67 \( 1 + 3.86T + 67T^{2} \)
71 \( 1 + 12.1T + 71T^{2} \)
73 \( 1 + 11.2T + 73T^{2} \)
79 \( 1 + 3.62T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 + 6.96T + 89T^{2} \)
97 \( 1 + 15.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.935129185807366791305079732545, −8.732482818164619983233314098155, −8.119809130374060825670681691044, −6.93800706833010363097386083568, −5.81912522741435831481534443720, −5.34765531535829622638189359548, −4.44225639594743816107132773342, −3.07681642225262103861095867090, −2.58725520200058019940310248264, 0, 2.58725520200058019940310248264, 3.07681642225262103861095867090, 4.44225639594743816107132773342, 5.34765531535829622638189359548, 5.81912522741435831481534443720, 6.93800706833010363097386083568, 8.119809130374060825670681691044, 8.732482818164619983233314098155, 9.935129185807366791305079732545

Graph of the $Z$-function along the critical line