Properties

Label 888.2.br.a.569.27
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.27
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.996973 + 1.41635i) q^{3} +(-0.601400 + 2.24446i) q^{5} +(-0.786614 - 1.36246i) q^{7} +(-1.01209 + 2.82412i) q^{9} -0.738125 q^{11} +(-5.22905 - 1.40112i) q^{13} +(-3.77851 + 1.38587i) q^{15} +(-6.88427 + 1.84463i) q^{17} +(-2.79810 - 0.749750i) q^{19} +(1.14548 - 2.47245i) q^{21} +(5.90122 + 5.90122i) q^{23} +(-0.345771 - 0.199631i) q^{25} +(-5.00897 + 1.38210i) q^{27} +(5.65819 - 5.65819i) q^{29} +(-1.19809 - 1.19809i) q^{31} +(-0.735890 - 1.04544i) q^{33} +(3.53104 - 0.946139i) q^{35} +(4.55273 + 4.03393i) q^{37} +(-3.22875 - 8.80304i) q^{39} +(-4.27854 - 7.41065i) q^{41} +(-7.64204 + 7.64204i) q^{43} +(-5.72995 - 3.97002i) q^{45} +10.6754i q^{47} +(2.26248 - 3.91872i) q^{49} +(-9.47607 - 7.91148i) q^{51} +(4.00020 + 2.30952i) q^{53} +(0.443908 - 1.65669i) q^{55} +(-1.72773 - 4.71057i) q^{57} +(-2.81778 + 0.755023i) q^{59} +(-2.69213 + 10.0472i) q^{61} +(4.64387 - 0.842568i) q^{63} +(6.28950 - 10.8937i) q^{65} +(-5.21175 + 3.00900i) q^{67} +(-2.47483 + 14.2415i) q^{69} +(2.51092 - 1.44968i) q^{71} -14.9577i q^{73} +(-0.0619772 - 0.688760i) q^{75} +(0.580619 + 1.00566i) q^{77} +(-1.59192 - 0.426553i) q^{79} +(-6.95135 - 5.71653i) q^{81} +(12.2447 + 7.06950i) q^{83} -16.5608i q^{85} +(13.6550 + 2.37291i) q^{87} +(3.62290 + 13.5208i) q^{89} +(2.20428 + 8.22649i) q^{91} +(0.502450 - 2.89138i) q^{93} +(3.36556 - 5.82932i) q^{95} +(0.824155 - 0.824155i) q^{97} +(0.747049 - 2.08456i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.996973 + 1.41635i 0.575603 + 0.817730i
\(4\) 0 0
\(5\) −0.601400 + 2.24446i −0.268954 + 1.00375i 0.690831 + 0.723016i \(0.257245\pi\)
−0.959785 + 0.280735i \(0.909422\pi\)
\(6\) 0 0
\(7\) −0.786614 1.36246i −0.297312 0.514960i 0.678208 0.734870i \(-0.262757\pi\)
−0.975520 + 0.219910i \(0.929424\pi\)
\(8\) 0 0
\(9\) −1.01209 + 2.82412i −0.337363 + 0.941375i
\(10\) 0 0
\(11\) −0.738125 −0.222553 −0.111276 0.993789i \(-0.535494\pi\)
−0.111276 + 0.993789i \(0.535494\pi\)
\(12\) 0 0
\(13\) −5.22905 1.40112i −1.45028 0.388601i −0.554158 0.832412i \(-0.686960\pi\)
−0.896120 + 0.443811i \(0.853626\pi\)
\(14\) 0 0
\(15\) −3.77851 + 1.38587i −0.975608 + 0.357830i
\(16\) 0 0
\(17\) −6.88427 + 1.84463i −1.66968 + 0.447389i −0.965024 0.262160i \(-0.915565\pi\)
−0.704656 + 0.709549i \(0.748899\pi\)
\(18\) 0 0
\(19\) −2.79810 0.749750i −0.641929 0.172004i −0.0768521 0.997043i \(-0.524487\pi\)
−0.565077 + 0.825038i \(0.691154\pi\)
\(20\) 0 0
\(21\) 1.14548 2.47245i 0.249964 0.539533i
\(22\) 0 0
\(23\) 5.90122 + 5.90122i 1.23049 + 1.23049i 0.963776 + 0.266713i \(0.0859376\pi\)
0.266713 + 0.963776i \(0.414062\pi\)
\(24\) 0 0
\(25\) −0.345771 0.199631i −0.0691542 0.0399262i
\(26\) 0 0
\(27\) −5.00897 + 1.38210i −0.963977 + 0.265986i
\(28\) 0 0
\(29\) 5.65819 5.65819i 1.05070 1.05070i 0.0520557 0.998644i \(-0.483423\pi\)
0.998644 0.0520557i \(-0.0165773\pi\)
\(30\) 0 0
\(31\) −1.19809 1.19809i −0.215183 0.215183i 0.591282 0.806465i \(-0.298622\pi\)
−0.806465 + 0.591282i \(0.798622\pi\)
\(32\) 0 0
\(33\) −0.735890 1.04544i −0.128102 0.181988i
\(34\) 0 0
\(35\) 3.53104 0.946139i 0.596855 0.159927i
\(36\) 0 0
\(37\) 4.55273 + 4.03393i 0.748465 + 0.663175i
\(38\) 0 0
\(39\) −3.22875 8.80304i −0.517013 1.40962i
\(40\) 0 0
\(41\) −4.27854 7.41065i −0.668196 1.15735i −0.978408 0.206682i \(-0.933733\pi\)
0.310212 0.950667i \(-0.399600\pi\)
\(42\) 0 0
\(43\) −7.64204 + 7.64204i −1.16540 + 1.16540i −0.182125 + 0.983275i \(0.558298\pi\)
−0.983275 + 0.182125i \(0.941702\pi\)
\(44\) 0 0
\(45\) −5.72995 3.97002i −0.854170 0.591815i
\(46\) 0 0
\(47\) 10.6754i 1.55717i 0.627540 + 0.778584i \(0.284062\pi\)
−0.627540 + 0.778584i \(0.715938\pi\)
\(48\) 0 0
\(49\) 2.26248 3.91872i 0.323211 0.559818i
\(50\) 0 0
\(51\) −9.47607 7.91148i −1.32692 1.10783i
\(52\) 0 0
\(53\) 4.00020 + 2.30952i 0.549470 + 0.317237i 0.748908 0.662674i \(-0.230578\pi\)
−0.199438 + 0.979910i \(0.563912\pi\)
\(54\) 0 0
\(55\) 0.443908 1.65669i 0.0598566 0.223388i
\(56\) 0 0
\(57\) −1.72773 4.71057i −0.228843 0.623931i
\(58\) 0 0
\(59\) −2.81778 + 0.755023i −0.366844 + 0.0982956i −0.437532 0.899203i \(-0.644147\pi\)
0.0706878 + 0.997498i \(0.477481\pi\)
\(60\) 0 0
\(61\) −2.69213 + 10.0472i −0.344692 + 1.28641i 0.548280 + 0.836295i \(0.315283\pi\)
−0.892972 + 0.450112i \(0.851384\pi\)
\(62\) 0 0
\(63\) 4.64387 0.842568i 0.585072 0.106154i
\(64\) 0 0
\(65\) 6.28950 10.8937i 0.780117 1.35120i
\(66\) 0 0
\(67\) −5.21175 + 3.00900i −0.636716 + 0.367608i −0.783348 0.621583i \(-0.786490\pi\)
0.146632 + 0.989191i \(0.453157\pi\)
\(68\) 0 0
\(69\) −2.47483 + 14.2415i −0.297935 + 1.71448i
\(70\) 0 0
\(71\) 2.51092 1.44968i 0.297991 0.172045i −0.343549 0.939135i \(-0.611629\pi\)
0.641540 + 0.767089i \(0.278296\pi\)
\(72\) 0 0
\(73\) 14.9577i 1.75067i −0.483517 0.875335i \(-0.660641\pi\)
0.483517 0.875335i \(-0.339359\pi\)
\(74\) 0 0
\(75\) −0.0619772 0.688760i −0.00715651 0.0795311i
\(76\) 0 0
\(77\) 0.580619 + 1.00566i 0.0661677 + 0.114606i
\(78\) 0 0
\(79\) −1.59192 0.426553i −0.179105 0.0479910i 0.168152 0.985761i \(-0.446220\pi\)
−0.347257 + 0.937770i \(0.612887\pi\)
\(80\) 0 0
\(81\) −6.95135 5.71653i −0.772372 0.635170i
\(82\) 0 0
\(83\) 12.2447 + 7.06950i 1.34403 + 0.775979i 0.987397 0.158264i \(-0.0505896\pi\)
0.356638 + 0.934243i \(0.383923\pi\)
\(84\) 0 0
\(85\) 16.5608i 1.79627i
\(86\) 0 0
\(87\) 13.6550 + 2.37291i 1.46397 + 0.254403i
\(88\) 0 0
\(89\) 3.62290 + 13.5208i 0.384027 + 1.43321i 0.839695 + 0.543058i \(0.182733\pi\)
−0.455669 + 0.890149i \(0.650600\pi\)
\(90\) 0 0
\(91\) 2.20428 + 8.22649i 0.231072 + 0.862371i
\(92\) 0 0
\(93\) 0.502450 2.89138i 0.0521017 0.299822i
\(94\) 0 0
\(95\) 3.36556 5.82932i 0.345299 0.598076i
\(96\) 0 0
\(97\) 0.824155 0.824155i 0.0836803 0.0836803i −0.664028 0.747708i \(-0.731154\pi\)
0.747708 + 0.664028i \(0.231154\pi\)
\(98\) 0 0
\(99\) 0.747049 2.08456i 0.0750812 0.209506i
\(100\) 0 0
\(101\) −3.91158 −0.389217 −0.194608 0.980881i \(-0.562344\pi\)
−0.194608 + 0.980881i \(0.562344\pi\)
\(102\) 0 0
\(103\) 3.04766 + 3.04766i 0.300295 + 0.300295i 0.841129 0.540834i \(-0.181891\pi\)
−0.540834 + 0.841129i \(0.681891\pi\)
\(104\) 0 0
\(105\) 4.86042 + 4.05791i 0.474328 + 0.396012i
\(106\) 0 0
\(107\) −9.26572 + 5.34957i −0.895751 + 0.517162i −0.875819 0.482639i \(-0.839678\pi\)
−0.0199320 + 0.999801i \(0.506345\pi\)
\(108\) 0 0
\(109\) 1.28071 + 4.77966i 0.122669 + 0.457809i 0.999746 0.0225422i \(-0.00717600\pi\)
−0.877076 + 0.480351i \(0.840509\pi\)
\(110\) 0 0
\(111\) −1.17451 + 10.4700i −0.111479 + 0.993767i
\(112\) 0 0
\(113\) −2.34298 8.74411i −0.220409 0.822577i −0.984192 0.177104i \(-0.943327\pi\)
0.763783 0.645473i \(-0.223340\pi\)
\(114\) 0 0
\(115\) −16.7940 + 9.69603i −1.56605 + 0.904159i
\(116\) 0 0
\(117\) 9.24921 13.3494i 0.855090 1.23416i
\(118\) 0 0
\(119\) 7.92849 + 7.92849i 0.726804 + 0.726804i
\(120\) 0 0
\(121\) −10.4552 −0.950470
\(122\) 0 0
\(123\) 6.23048 13.4481i 0.561783 1.21258i
\(124\) 0 0
\(125\) −7.55927 + 7.55927i −0.676121 + 0.676121i
\(126\) 0 0
\(127\) 1.03336 1.78984i 0.0916963 0.158823i −0.816529 0.577305i \(-0.804104\pi\)
0.908225 + 0.418482i \(0.137438\pi\)
\(128\) 0 0
\(129\) −18.4427 3.20489i −1.62379 0.282175i
\(130\) 0 0
\(131\) 2.66749 + 9.95520i 0.233060 + 0.869790i 0.979014 + 0.203793i \(0.0653270\pi\)
−0.745954 + 0.665997i \(0.768006\pi\)
\(132\) 0 0
\(133\) 1.17953 + 4.40206i 0.102278 + 0.381707i
\(134\) 0 0
\(135\) −0.0896718 12.0736i −0.00771772 1.03913i
\(136\) 0 0
\(137\) 4.40430i 0.376285i 0.982142 + 0.188142i \(0.0602466\pi\)
−0.982142 + 0.188142i \(0.939753\pi\)
\(138\) 0 0
\(139\) 13.9351 + 8.04542i 1.18196 + 0.682404i 0.956467 0.291842i \(-0.0942680\pi\)
0.225491 + 0.974245i \(0.427601\pi\)
\(140\) 0 0
\(141\) −15.1201 + 10.6431i −1.27334 + 0.896310i
\(142\) 0 0
\(143\) 3.85969 + 1.03420i 0.322764 + 0.0864843i
\(144\) 0 0
\(145\) 9.29672 + 16.1024i 0.772051 + 1.33723i
\(146\) 0 0
\(147\) 7.80591 0.702406i 0.643821 0.0579334i
\(148\) 0 0
\(149\) 5.92774i 0.485620i 0.970074 + 0.242810i \(0.0780691\pi\)
−0.970074 + 0.242810i \(0.921931\pi\)
\(150\) 0 0
\(151\) 13.3541 7.71000i 1.08674 0.627431i 0.154035 0.988065i \(-0.450773\pi\)
0.932707 + 0.360635i \(0.117440\pi\)
\(152\) 0 0
\(153\) 1.75802 21.3090i 0.142128 1.72273i
\(154\) 0 0
\(155\) 3.40959 1.96853i 0.273865 0.158116i
\(156\) 0 0
\(157\) 1.04147 1.80388i 0.0831185 0.143965i −0.821469 0.570253i \(-0.806845\pi\)
0.904588 + 0.426287i \(0.140179\pi\)
\(158\) 0 0
\(159\) 0.717010 + 7.96821i 0.0568626 + 0.631920i
\(160\) 0 0
\(161\) 3.39817 12.6821i 0.267813 0.999492i
\(162\) 0 0
\(163\) 12.4157 3.32678i 0.972475 0.260574i 0.262602 0.964904i \(-0.415419\pi\)
0.709872 + 0.704330i \(0.248753\pi\)
\(164\) 0 0
\(165\) 2.78901 1.02294i 0.217124 0.0796361i
\(166\) 0 0
\(167\) −1.49582 + 5.58247i −0.115750 + 0.431984i −0.999342 0.0362731i \(-0.988451\pi\)
0.883592 + 0.468258i \(0.155118\pi\)
\(168\) 0 0
\(169\) 14.1215 + 8.15306i 1.08627 + 0.627159i
\(170\) 0 0
\(171\) 4.94932 7.14338i 0.378484 0.546268i
\(172\) 0 0
\(173\) −3.09539 + 5.36137i −0.235338 + 0.407618i −0.959371 0.282148i \(-0.908953\pi\)
0.724033 + 0.689766i \(0.242286\pi\)
\(174\) 0 0
\(175\) 0.628130i 0.0474822i
\(176\) 0 0
\(177\) −3.87863 3.23823i −0.291536 0.243400i
\(178\) 0 0
\(179\) −7.06290 + 7.06290i −0.527906 + 0.527906i −0.919947 0.392042i \(-0.871769\pi\)
0.392042 + 0.919947i \(0.371769\pi\)
\(180\) 0 0
\(181\) −7.74084 13.4075i −0.575372 0.996574i −0.996001 0.0893411i \(-0.971524\pi\)
0.420629 0.907233i \(-0.361809\pi\)
\(182\) 0 0
\(183\) −16.9143 + 6.20375i −1.25034 + 0.458594i
\(184\) 0 0
\(185\) −11.7920 + 7.79240i −0.866965 + 0.572908i
\(186\) 0 0
\(187\) 5.08145 1.36157i 0.371592 0.0995679i
\(188\) 0 0
\(189\) 5.82318 + 5.73732i 0.423574 + 0.417329i
\(190\) 0 0
\(191\) 5.21860 + 5.21860i 0.377605 + 0.377605i 0.870237 0.492633i \(-0.163965\pi\)
−0.492633 + 0.870237i \(0.663965\pi\)
\(192\) 0 0
\(193\) 11.6023 11.6023i 0.835153 0.835153i −0.153064 0.988216i \(-0.548914\pi\)
0.988216 + 0.153064i \(0.0489140\pi\)
\(194\) 0 0
\(195\) 21.6998 1.95263i 1.55396 0.139831i
\(196\) 0 0
\(197\) 14.7499 + 8.51587i 1.05089 + 0.606730i 0.922898 0.385045i \(-0.125814\pi\)
0.127990 + 0.991775i \(0.459147\pi\)
\(198\) 0 0
\(199\) −16.9980 16.9980i −1.20495 1.20495i −0.972641 0.232312i \(-0.925371\pi\)
−0.232312 0.972641i \(-0.574629\pi\)
\(200\) 0 0
\(201\) −9.45777 4.38176i −0.667100 0.309065i
\(202\) 0 0
\(203\) −12.1598 3.25822i −0.853454 0.228682i
\(204\) 0 0
\(205\) 19.2060 5.14623i 1.34140 0.359428i
\(206\) 0 0
\(207\) −22.6383 + 10.6932i −1.57347 + 0.743229i
\(208\) 0 0
\(209\) 2.06535 + 0.553409i 0.142863 + 0.0382801i
\(210\) 0 0
\(211\) −0.208227 −0.0143350 −0.00716748 0.999974i \(-0.502281\pi\)
−0.00716748 + 0.999974i \(0.502281\pi\)
\(212\) 0 0
\(213\) 4.55657 + 2.11105i 0.312211 + 0.144647i
\(214\) 0 0
\(215\) −12.5563 21.7482i −0.856333 1.48321i
\(216\) 0 0
\(217\) −0.689910 + 2.57478i −0.0468341 + 0.174787i
\(218\) 0 0
\(219\) 21.1854 14.9125i 1.43157 1.00769i
\(220\) 0 0
\(221\) 38.5828 2.59536
\(222\) 0 0
\(223\) 26.8429 1.79753 0.898767 0.438428i \(-0.144464\pi\)
0.898767 + 0.438428i \(0.144464\pi\)
\(224\) 0 0
\(225\) 0.913734 0.774456i 0.0609156 0.0516304i
\(226\) 0 0
\(227\) 1.90289 7.10169i 0.126299 0.471356i −0.873583 0.486675i \(-0.838210\pi\)
0.999883 + 0.0153191i \(0.00487640\pi\)
\(228\) 0 0
\(229\) −5.67009 9.82088i −0.374690 0.648982i 0.615591 0.788066i \(-0.288918\pi\)
−0.990281 + 0.139084i \(0.955584\pi\)
\(230\) 0 0
\(231\) −0.845507 + 1.82498i −0.0556303 + 0.120075i
\(232\) 0 0
\(233\) −24.3925 −1.59801 −0.799004 0.601325i \(-0.794640\pi\)
−0.799004 + 0.601325i \(0.794640\pi\)
\(234\) 0 0
\(235\) −23.9605 6.42019i −1.56301 0.418807i
\(236\) 0 0
\(237\) −0.982952 2.67998i −0.0638496 0.174083i
\(238\) 0 0
\(239\) 12.1207 3.24773i 0.784022 0.210078i 0.155465 0.987841i \(-0.450312\pi\)
0.628557 + 0.777763i \(0.283646\pi\)
\(240\) 0 0
\(241\) 2.41369 + 0.646746i 0.155479 + 0.0416606i 0.335719 0.941962i \(-0.391021\pi\)
−0.180240 + 0.983623i \(0.557687\pi\)
\(242\) 0 0
\(243\) 1.16630 15.5448i 0.0748182 0.997197i
\(244\) 0 0
\(245\) 7.43475 + 7.43475i 0.474989 + 0.474989i
\(246\) 0 0
\(247\) 13.5809 + 7.84096i 0.864135 + 0.498908i
\(248\) 0 0
\(249\) 2.19479 + 24.3909i 0.139089 + 1.54571i
\(250\) 0 0
\(251\) −10.8542 + 10.8542i −0.685113 + 0.685113i −0.961148 0.276035i \(-0.910980\pi\)
0.276035 + 0.961148i \(0.410980\pi\)
\(252\) 0 0
\(253\) −4.35584 4.35584i −0.273849 0.273849i
\(254\) 0 0
\(255\) 23.4559 16.5107i 1.46886 1.03394i
\(256\) 0 0
\(257\) 19.4702 5.21701i 1.21451 0.325428i 0.405983 0.913881i \(-0.366929\pi\)
0.808532 + 0.588452i \(0.200263\pi\)
\(258\) 0 0
\(259\) 1.91481 9.37605i 0.118981 0.582599i
\(260\) 0 0
\(261\) 10.2528 + 21.7060i 0.634635 + 1.34357i
\(262\) 0 0
\(263\) 7.97220 + 13.8083i 0.491587 + 0.851454i 0.999953 0.00968732i \(-0.00308362\pi\)
−0.508366 + 0.861141i \(0.669750\pi\)
\(264\) 0 0
\(265\) −7.58933 + 7.58933i −0.466209 + 0.466209i
\(266\) 0 0
\(267\) −15.5383 + 18.6112i −0.950929 + 1.13899i
\(268\) 0 0
\(269\) 8.39048i 0.511577i 0.966733 + 0.255788i \(0.0823350\pi\)
−0.966733 + 0.255788i \(0.917665\pi\)
\(270\) 0 0
\(271\) −10.4866 + 18.1634i −0.637017 + 1.10335i 0.349066 + 0.937098i \(0.386499\pi\)
−0.986084 + 0.166249i \(0.946835\pi\)
\(272\) 0 0
\(273\) −9.45398 + 11.3236i −0.572181 + 0.685337i
\(274\) 0 0
\(275\) 0.255222 + 0.147353i 0.0153905 + 0.00888570i
\(276\) 0 0
\(277\) −1.77283 + 6.61627i −0.106519 + 0.397533i −0.998513 0.0545133i \(-0.982639\pi\)
0.891994 + 0.452047i \(0.149306\pi\)
\(278\) 0 0
\(279\) 4.59613 2.17098i 0.275163 0.129973i
\(280\) 0 0
\(281\) −0.511629 + 0.137091i −0.0305213 + 0.00817815i −0.274047 0.961716i \(-0.588363\pi\)
0.243526 + 0.969894i \(0.421696\pi\)
\(282\) 0 0
\(283\) −4.37955 + 16.3447i −0.260337 + 0.971593i 0.704705 + 0.709500i \(0.251079\pi\)
−0.965043 + 0.262092i \(0.915587\pi\)
\(284\) 0 0
\(285\) 11.6117 1.04487i 0.687819 0.0618926i
\(286\) 0 0
\(287\) −6.73112 + 11.6586i −0.397326 + 0.688188i
\(288\) 0 0
\(289\) 29.2680 16.8979i 1.72165 0.993995i
\(290\) 0 0
\(291\) 1.98895 + 0.345631i 0.116594 + 0.0202613i
\(292\) 0 0
\(293\) −1.48615 + 0.858026i −0.0868215 + 0.0501264i −0.542782 0.839873i \(-0.682629\pi\)
0.455961 + 0.890000i \(0.349296\pi\)
\(294\) 0 0
\(295\) 6.77846i 0.394657i
\(296\) 0 0
\(297\) 3.69725 1.02016i 0.214536 0.0591959i
\(298\) 0 0
\(299\) −22.5895 39.1261i −1.30638 2.26272i
\(300\) 0 0
\(301\) 16.4233 + 4.40061i 0.946622 + 0.253647i
\(302\) 0 0
\(303\) −3.89974 5.54016i −0.224034 0.318274i
\(304\) 0 0
\(305\) −20.9313 12.0847i −1.19853 0.691969i
\(306\) 0 0
\(307\) 1.10309i 0.0629568i 0.999504 + 0.0314784i \(0.0100215\pi\)
−0.999504 + 0.0314784i \(0.989978\pi\)
\(308\) 0 0
\(309\) −1.27812 + 7.35499i −0.0727095 + 0.418411i
\(310\) 0 0
\(311\) −6.46091 24.1124i −0.366364 1.36729i −0.865562 0.500802i \(-0.833038\pi\)
0.499198 0.866488i \(-0.333628\pi\)
\(312\) 0 0
\(313\) 1.74599 + 6.51613i 0.0986892 + 0.368313i 0.997553 0.0699151i \(-0.0222728\pi\)
−0.898864 + 0.438228i \(0.855606\pi\)
\(314\) 0 0
\(315\) −0.901715 + 10.9297i −0.0508059 + 0.615817i
\(316\) 0 0
\(317\) 1.30334 2.25745i 0.0732029 0.126791i −0.827100 0.562054i \(-0.810011\pi\)
0.900303 + 0.435263i \(0.143345\pi\)
\(318\) 0 0
\(319\) −4.17645 + 4.17645i −0.233836 + 0.233836i
\(320\) 0 0
\(321\) −16.8145 7.79013i −0.938496 0.434802i
\(322\) 0 0
\(323\) 20.6459 1.14877
\(324\) 0 0
\(325\) 1.52835 + 1.52835i 0.0847775 + 0.0847775i
\(326\) 0 0
\(327\) −5.49284 + 6.57912i −0.303755 + 0.363826i
\(328\) 0 0
\(329\) 14.5448 8.39742i 0.801879 0.462965i
\(330\) 0 0
\(331\) −2.04670 7.63839i −0.112497 0.419844i 0.886591 0.462555i \(-0.153067\pi\)
−0.999087 + 0.0427110i \(0.986401\pi\)
\(332\) 0 0
\(333\) −16.0001 + 8.77478i −0.876800 + 0.480855i
\(334\) 0 0
\(335\) −3.61923 13.5071i −0.197740 0.737974i
\(336\) 0 0
\(337\) 1.60325 0.925638i 0.0873347 0.0504227i −0.455697 0.890135i \(-0.650610\pi\)
0.543031 + 0.839712i \(0.317276\pi\)
\(338\) 0 0
\(339\) 10.0488 12.0361i 0.545777 0.653712i
\(340\) 0 0
\(341\) 0.884340 + 0.884340i 0.0478897 + 0.0478897i
\(342\) 0 0
\(343\) −18.1314 −0.979003
\(344\) 0 0
\(345\) −30.4761 14.1195i −1.64078 0.760169i
\(346\) 0 0
\(347\) −7.93266 + 7.93266i −0.425848 + 0.425848i −0.887211 0.461364i \(-0.847360\pi\)
0.461364 + 0.887211i \(0.347360\pi\)
\(348\) 0 0
\(349\) 10.9449 18.9571i 0.585866 1.01475i −0.408901 0.912579i \(-0.634088\pi\)
0.994767 0.102171i \(-0.0325787\pi\)
\(350\) 0 0
\(351\) 28.1287 0.208914i 1.50140 0.0111510i
\(352\) 0 0
\(353\) 3.38668 + 12.6392i 0.180255 + 0.672719i 0.995597 + 0.0937398i \(0.0298822\pi\)
−0.815342 + 0.578979i \(0.803451\pi\)
\(354\) 0 0
\(355\) 1.74368 + 6.50749i 0.0925447 + 0.345382i
\(356\) 0 0
\(357\) −3.32502 + 19.1340i −0.175979 + 1.01268i
\(358\) 0 0
\(359\) 11.5880i 0.611590i −0.952097 0.305795i \(-0.901078\pi\)
0.952097 0.305795i \(-0.0989222\pi\)
\(360\) 0 0
\(361\) −9.18722 5.30424i −0.483538 0.279171i
\(362\) 0 0
\(363\) −10.4235 14.8082i −0.547093 0.777228i
\(364\) 0 0
\(365\) 33.5720 + 8.99558i 1.75724 + 0.470850i
\(366\) 0 0
\(367\) 5.41597 + 9.38074i 0.282711 + 0.489671i 0.972052 0.234767i \(-0.0754328\pi\)
−0.689340 + 0.724438i \(0.742099\pi\)
\(368\) 0 0
\(369\) 25.2589 4.58289i 1.31492 0.238576i
\(370\) 0 0
\(371\) 7.26680i 0.377273i
\(372\) 0 0
\(373\) 20.0111 11.5534i 1.03614 0.598214i 0.117401 0.993085i \(-0.462544\pi\)
0.918737 + 0.394870i \(0.129211\pi\)
\(374\) 0 0
\(375\) −18.2429 3.17018i −0.942062 0.163707i
\(376\) 0 0
\(377\) −37.5148 + 21.6592i −1.93211 + 1.11550i
\(378\) 0 0
\(379\) −9.70115 + 16.8029i −0.498314 + 0.863106i −0.999998 0.00194516i \(-0.999381\pi\)
0.501684 + 0.865051i \(0.332714\pi\)
\(380\) 0 0
\(381\) 3.56527 0.320817i 0.182655 0.0164359i
\(382\) 0 0
\(383\) 3.55621 13.2720i 0.181714 0.678166i −0.813596 0.581430i \(-0.802493\pi\)
0.995310 0.0967353i \(-0.0308400\pi\)
\(384\) 0 0
\(385\) −2.60635 + 0.698369i −0.132832 + 0.0355922i
\(386\) 0 0
\(387\) −13.8476 29.3165i −0.703915 1.49024i
\(388\) 0 0
\(389\) −0.882991 + 3.29537i −0.0447694 + 0.167082i −0.984691 0.174308i \(-0.944231\pi\)
0.939922 + 0.341390i \(0.110898\pi\)
\(390\) 0 0
\(391\) −51.5112 29.7400i −2.60503 1.50402i
\(392\) 0 0
\(393\) −11.4406 + 13.7032i −0.577103 + 0.691233i
\(394\) 0 0
\(395\) 1.91476 3.31646i 0.0963421 0.166869i
\(396\) 0 0
\(397\) 17.7233i 0.889506i −0.895653 0.444753i \(-0.853291\pi\)
0.895653 0.444753i \(-0.146709\pi\)
\(398\) 0 0
\(399\) −5.05889 + 6.05935i −0.253261 + 0.303347i
\(400\) 0 0
\(401\) −3.96835 + 3.96835i −0.198170 + 0.198170i −0.799215 0.601045i \(-0.794751\pi\)
0.601045 + 0.799215i \(0.294751\pi\)
\(402\) 0 0
\(403\) 4.58621 + 7.94354i 0.228455 + 0.395696i
\(404\) 0 0
\(405\) 17.0110 12.1641i 0.845286 0.604437i
\(406\) 0 0
\(407\) −3.36048 2.97755i −0.166573 0.147592i
\(408\) 0 0
\(409\) −22.8004 + 6.10934i −1.12741 + 0.302087i −0.773877 0.633336i \(-0.781685\pi\)
−0.353529 + 0.935424i \(0.615018\pi\)
\(410\) 0 0
\(411\) −6.23803 + 4.39097i −0.307699 + 0.216590i
\(412\) 0 0
\(413\) 3.24519 + 3.24519i 0.159685 + 0.159685i
\(414\) 0 0
\(415\) −23.2312 + 23.2312i −1.14037 + 1.14037i
\(416\) 0 0
\(417\) 2.49777 + 27.7580i 0.122316 + 1.35932i
\(418\) 0 0
\(419\) −9.13532 5.27428i −0.446289 0.257665i 0.259972 0.965616i \(-0.416287\pi\)
−0.706262 + 0.707951i \(0.749620\pi\)
\(420\) 0 0
\(421\) −1.74417 1.74417i −0.0850059 0.0850059i 0.663325 0.748331i \(-0.269145\pi\)
−0.748331 + 0.663325i \(0.769145\pi\)
\(422\) 0 0
\(423\) −30.1487 10.8045i −1.46588 0.525331i
\(424\) 0 0
\(425\) 2.74863 + 0.736493i 0.133328 + 0.0357251i
\(426\) 0 0
\(427\) 15.8065 4.23533i 0.764929 0.204962i
\(428\) 0 0
\(429\) 2.38322 + 6.49774i 0.115063 + 0.313714i
\(430\) 0 0
\(431\) −21.5800 5.78234i −1.03947 0.278525i −0.301577 0.953442i \(-0.597513\pi\)
−0.737894 + 0.674916i \(0.764180\pi\)
\(432\) 0 0
\(433\) −12.1314 −0.582996 −0.291498 0.956571i \(-0.594154\pi\)
−0.291498 + 0.956571i \(0.594154\pi\)
\(434\) 0 0
\(435\) −13.5380 + 29.2211i −0.649099 + 1.40104i
\(436\) 0 0
\(437\) −12.0878 20.9367i −0.578237 1.00154i
\(438\) 0 0
\(439\) −9.09223 + 33.9327i −0.433949 + 1.61952i 0.309621 + 0.950860i \(0.399798\pi\)
−0.743570 + 0.668658i \(0.766869\pi\)
\(440\) 0 0
\(441\) 8.77713 + 10.3556i 0.417959 + 0.493125i
\(442\) 0 0
\(443\) 22.8962 1.08783 0.543916 0.839139i \(-0.316941\pi\)
0.543916 + 0.839139i \(0.316941\pi\)
\(444\) 0 0
\(445\) −32.5258 −1.54187
\(446\) 0 0
\(447\) −8.39576 + 5.90980i −0.397106 + 0.279524i
\(448\) 0 0
\(449\) −0.735701 + 2.74567i −0.0347199 + 0.129576i −0.981111 0.193448i \(-0.938033\pi\)
0.946391 + 0.323024i \(0.104700\pi\)
\(450\) 0 0
\(451\) 3.15810 + 5.46999i 0.148709 + 0.257572i
\(452\) 0 0
\(453\) 24.2337 + 11.2274i 1.13860 + 0.527510i
\(454\) 0 0
\(455\) −19.7896 −0.927753
\(456\) 0 0
\(457\) −32.7026 8.76263i −1.52976 0.409899i −0.606821 0.794839i \(-0.707555\pi\)
−0.922941 + 0.384940i \(0.874222\pi\)
\(458\) 0 0
\(459\) 31.9336 18.7545i 1.49053 0.875384i
\(460\) 0 0
\(461\) −34.9168 + 9.35594i −1.62624 + 0.435749i −0.952826 0.303517i \(-0.901839\pi\)
−0.673413 + 0.739267i \(0.735172\pi\)
\(462\) 0 0
\(463\) 10.7494 + 2.88030i 0.499568 + 0.133859i 0.499799 0.866141i \(-0.333407\pi\)
−0.000231714 1.00000i \(0.500074\pi\)
\(464\) 0 0
\(465\) 6.18739 + 2.86660i 0.286933 + 0.132935i
\(466\) 0 0
\(467\) 4.40877 + 4.40877i 0.204013 + 0.204013i 0.801717 0.597704i \(-0.203920\pi\)
−0.597704 + 0.801717i \(0.703920\pi\)
\(468\) 0 0
\(469\) 8.19927 + 4.73385i 0.378607 + 0.218589i
\(470\) 0 0
\(471\) 3.59325 0.323334i 0.165568 0.0148984i
\(472\) 0 0
\(473\) 5.64078 5.64078i 0.259363 0.259363i
\(474\) 0 0
\(475\) 0.817830 + 0.817830i 0.0375246 + 0.0375246i
\(476\) 0 0
\(477\) −10.5709 + 8.95963i −0.484010 + 0.410233i
\(478\) 0 0
\(479\) 27.7943 7.44746i 1.26995 0.340283i 0.439941 0.898027i \(-0.354999\pi\)
0.830014 + 0.557743i \(0.188333\pi\)
\(480\) 0 0
\(481\) −18.1545 27.4726i −0.827772 1.25264i
\(482\) 0 0
\(483\) 21.3502 7.83075i 0.971468 0.356311i
\(484\) 0 0
\(485\) 1.35413 + 2.34543i 0.0614880 + 0.106500i
\(486\) 0 0
\(487\) 19.1433 19.1433i 0.867467 0.867467i −0.124724 0.992191i \(-0.539805\pi\)
0.992191 + 0.124724i \(0.0398046\pi\)
\(488\) 0 0
\(489\) 17.0900 + 14.2683i 0.772838 + 0.645234i
\(490\) 0 0
\(491\) 26.1251i 1.17901i 0.807766 + 0.589504i \(0.200677\pi\)
−0.807766 + 0.589504i \(0.799323\pi\)
\(492\) 0 0
\(493\) −28.5152 + 49.3898i −1.28426 + 2.22440i
\(494\) 0 0
\(495\) 4.22942 + 2.93037i 0.190098 + 0.131710i
\(496\) 0 0
\(497\) −3.95025 2.28068i −0.177193 0.102302i
\(498\) 0 0
\(499\) 0.0835255 0.311722i 0.00373912 0.0139546i −0.964031 0.265790i \(-0.914367\pi\)
0.967770 + 0.251835i \(0.0810340\pi\)
\(500\) 0 0
\(501\) −9.39802 + 3.44697i −0.419872 + 0.153999i
\(502\) 0 0
\(503\) 3.07410 0.823702i 0.137067 0.0367271i −0.189633 0.981855i \(-0.560730\pi\)
0.326700 + 0.945128i \(0.394063\pi\)
\(504\) 0 0
\(505\) 2.35242 8.77937i 0.104682 0.390677i
\(506\) 0 0
\(507\) 2.53119 + 28.1294i 0.112414 + 1.24927i
\(508\) 0 0
\(509\) −0.869109 + 1.50534i −0.0385226 + 0.0667231i −0.884644 0.466267i \(-0.845598\pi\)
0.846121 + 0.532990i \(0.178932\pi\)
\(510\) 0 0
\(511\) −20.3792 + 11.7660i −0.901525 + 0.520495i
\(512\) 0 0
\(513\) 15.0519 0.111792i 0.664556 0.00493572i
\(514\) 0 0
\(515\) −8.67321 + 5.00748i −0.382187 + 0.220656i
\(516\) 0 0
\(517\) 7.87978i 0.346552i
\(518\) 0 0
\(519\) −10.6796 + 0.960991i −0.468782 + 0.0421828i
\(520\) 0 0
\(521\) −16.3152 28.2588i −0.714783 1.23804i −0.963043 0.269347i \(-0.913192\pi\)
0.248260 0.968693i \(-0.420141\pi\)
\(522\) 0 0
\(523\) 8.61180 + 2.30753i 0.376568 + 0.100901i 0.442138 0.896947i \(-0.354220\pi\)
−0.0655704 + 0.997848i \(0.520887\pi\)
\(524\) 0 0
\(525\) −0.889652 + 0.626229i −0.0388276 + 0.0273309i
\(526\) 0 0
\(527\) 10.4580 + 6.03793i 0.455558 + 0.263017i
\(528\) 0 0
\(529\) 46.6488i 2.02821i
\(530\) 0 0
\(531\) 0.719572 8.72192i 0.0312268 0.378499i
\(532\) 0 0
\(533\) 11.9895 + 44.7454i 0.519323 + 1.93814i
\(534\) 0 0
\(535\) −6.43446 24.0137i −0.278186 1.03820i
\(536\) 0 0
\(537\) −17.0450 2.96201i −0.735548 0.127820i
\(538\) 0 0
\(539\) −1.66999 + 2.89251i −0.0719316 + 0.124589i
\(540\) 0 0
\(541\) −25.0556 + 25.0556i −1.07722 + 1.07722i −0.0804666 + 0.996757i \(0.525641\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(542\) 0 0
\(543\) 11.2723 24.3307i 0.483742 1.04413i
\(544\) 0 0
\(545\) −11.4980 −0.492518
\(546\) 0 0
\(547\) −14.9873 14.9873i −0.640813 0.640813i 0.309943 0.950755i \(-0.399690\pi\)
−0.950755 + 0.309943i \(0.899690\pi\)
\(548\) 0 0
\(549\) −25.6497 17.7715i −1.09470 0.758470i
\(550\) 0 0
\(551\) −20.0744 + 11.5900i −0.855200 + 0.493750i
\(552\) 0 0
\(553\) 0.671066 + 2.50445i 0.0285366 + 0.106500i
\(554\) 0 0
\(555\) −22.7931 8.93278i −0.967512 0.379175i
\(556\) 0 0
\(557\) −0.774505 2.89049i −0.0328168 0.122474i 0.947574 0.319535i \(-0.103527\pi\)
−0.980391 + 0.197061i \(0.936860\pi\)
\(558\) 0 0
\(559\) 50.6681 29.2532i 2.14303 1.23728i
\(560\) 0 0
\(561\) 6.99453 + 5.83966i 0.295309 + 0.246550i
\(562\) 0 0
\(563\) −10.5667 10.5667i −0.445333 0.445333i 0.448467 0.893799i \(-0.351970\pi\)
−0.893799 + 0.448467i \(0.851970\pi\)
\(564\) 0 0
\(565\) 21.0348 0.884942
\(566\) 0 0
\(567\) −2.32049 + 13.9676i −0.0974516 + 0.586584i
\(568\) 0 0
\(569\) 20.3507 20.3507i 0.853144 0.853144i −0.137375 0.990519i \(-0.543867\pi\)
0.990519 + 0.137375i \(0.0438666\pi\)
\(570\) 0 0
\(571\) −4.11144 + 7.12122i −0.172058 + 0.298014i −0.939139 0.343537i \(-0.888375\pi\)
0.767081 + 0.641550i \(0.221708\pi\)
\(572\) 0 0
\(573\) −2.18856 + 12.5942i −0.0914283 + 0.526129i
\(574\) 0 0
\(575\) −0.862405 3.21854i −0.0359648 0.134222i
\(576\) 0 0
\(577\) 7.90121 + 29.4877i 0.328932 + 1.22759i 0.910300 + 0.413949i \(0.135851\pi\)
−0.581368 + 0.813640i \(0.697482\pi\)
\(578\) 0 0
\(579\) 28.0001 + 4.86573i 1.16364 + 0.202213i
\(580\) 0 0
\(581\) 22.2439i 0.922832i
\(582\) 0 0
\(583\) −2.95265 1.70471i −0.122286 0.0706020i
\(584\) 0 0
\(585\) 24.3997 + 28.7878i 1.00880 + 1.19023i
\(586\) 0 0
\(587\) −8.10721 2.17232i −0.334620 0.0896612i 0.0875968 0.996156i \(-0.472081\pi\)
−0.422217 + 0.906495i \(0.638748\pi\)
\(588\) 0 0
\(589\) 2.45411 + 4.25065i 0.101120 + 0.175145i
\(590\) 0 0
\(591\) 2.64382 + 29.3811i 0.108752 + 1.20858i
\(592\) 0 0
\(593\) 19.5338i 0.802155i −0.916044 0.401078i \(-0.868636\pi\)
0.916044 0.401078i \(-0.131364\pi\)
\(594\) 0 0
\(595\) −22.5633 + 13.0270i −0.925007 + 0.534053i
\(596\) 0 0
\(597\) 7.12854 41.0215i 0.291752 1.67890i
\(598\) 0 0
\(599\) −0.169109 + 0.0976351i −0.00690960 + 0.00398926i −0.503451 0.864024i \(-0.667936\pi\)
0.496541 + 0.868013i \(0.334603\pi\)
\(600\) 0 0
\(601\) 17.8418 30.9029i 0.727782 1.26055i −0.230037 0.973182i \(-0.573885\pi\)
0.957819 0.287373i \(-0.0927818\pi\)
\(602\) 0 0
\(603\) −3.22304 17.7640i −0.131252 0.723406i
\(604\) 0 0
\(605\) 6.28774 23.4662i 0.255633 0.954035i
\(606\) 0 0
\(607\) 10.1421 2.71757i 0.411656 0.110303i −0.0470466 0.998893i \(-0.514981\pi\)
0.458703 + 0.888590i \(0.348314\pi\)
\(608\) 0 0
\(609\) −7.50826 20.4709i −0.304250 0.829525i
\(610\) 0 0
\(611\) 14.9575 55.8223i 0.605117 2.25833i
\(612\) 0 0
\(613\) −8.61416 4.97339i −0.347923 0.200873i 0.315847 0.948810i \(-0.397711\pi\)
−0.663770 + 0.747937i \(0.731045\pi\)
\(614\) 0 0
\(615\) 26.4367 + 22.0717i 1.06603 + 0.890018i
\(616\) 0 0
\(617\) −5.84248 + 10.1195i −0.235210 + 0.407395i −0.959334 0.282275i \(-0.908911\pi\)
0.724124 + 0.689670i \(0.242244\pi\)
\(618\) 0 0
\(619\) 1.66106i 0.0667635i −0.999443 0.0333818i \(-0.989372\pi\)
0.999443 0.0333818i \(-0.0106277\pi\)
\(620\) 0 0
\(621\) −37.7151 21.4029i −1.51346 0.858871i
\(622\) 0 0
\(623\) 15.5717 15.5717i 0.623868 0.623868i
\(624\) 0 0
\(625\) −13.4185 23.2414i −0.536738 0.929658i
\(626\) 0 0
\(627\) 1.27528 + 3.47699i 0.0509297 + 0.138858i
\(628\) 0 0
\(629\) −38.7834 19.3726i −1.54639 0.772434i
\(630\) 0 0
\(631\) 17.1356 4.59146i 0.682156 0.182783i 0.0989317 0.995094i \(-0.468457\pi\)
0.583224 + 0.812311i \(0.301791\pi\)
\(632\) 0 0
\(633\) −0.207597 0.294922i −0.00825124 0.0117221i
\(634\) 0 0
\(635\) 3.39575 + 3.39575i 0.134756 + 0.134756i
\(636\) 0 0
\(637\) −17.3212 + 17.3212i −0.686291 + 0.686291i
\(638\) 0 0
\(639\) 1.55280 + 8.55836i 0.0614278 + 0.338563i
\(640\) 0 0
\(641\) −8.40159 4.85066i −0.331843 0.191590i 0.324816 0.945777i \(-0.394698\pi\)
−0.656659 + 0.754188i \(0.728031\pi\)
\(642\) 0 0
\(643\) 20.6922 + 20.6922i 0.816021 + 0.816021i 0.985529 0.169508i \(-0.0542178\pi\)
−0.169508 + 0.985529i \(0.554218\pi\)
\(644\) 0 0
\(645\) 18.2847 39.4664i 0.719959 1.55399i
\(646\) 0 0
\(647\) −45.9218 12.3047i −1.80537 0.483748i −0.810576 0.585633i \(-0.800846\pi\)
−0.994796 + 0.101885i \(0.967513\pi\)
\(648\) 0 0
\(649\) 2.07988 0.557301i 0.0816422 0.0218760i
\(650\) 0 0
\(651\) −4.33461 + 1.58983i −0.169887 + 0.0623104i
\(652\) 0 0
\(653\) 16.1422 + 4.32530i 0.631694 + 0.169262i 0.560438 0.828196i \(-0.310633\pi\)
0.0712560 + 0.997458i \(0.477299\pi\)
\(654\) 0 0
\(655\) −23.9482 −0.935735
\(656\) 0 0
\(657\) 42.2425 + 15.1386i 1.64804 + 0.590612i
\(658\) 0 0
\(659\) −11.3024 19.5764i −0.440280 0.762587i 0.557430 0.830224i \(-0.311787\pi\)
−0.997710 + 0.0676367i \(0.978454\pi\)
\(660\) 0 0
\(661\) −0.890448 + 3.32320i −0.0346344 + 0.129257i −0.981079 0.193610i \(-0.937980\pi\)
0.946444 + 0.322868i \(0.104647\pi\)
\(662\) 0 0
\(663\) 38.4660 + 54.6466i 1.49389 + 2.12230i
\(664\) 0 0
\(665\) −10.5896 −0.410647
\(666\) 0 0
\(667\) 66.7805 2.58575
\(668\) 0 0
\(669\) 26.7616 + 38.0189i 1.03466 + 1.46990i
\(670\) 0 0
\(671\) 1.98713 7.41605i 0.0767121 0.286294i
\(672\) 0 0
\(673\) −15.4794 26.8111i −0.596686 1.03349i −0.993307 0.115508i \(-0.963150\pi\)
0.396621 0.917983i \(-0.370183\pi\)
\(674\) 0 0
\(675\) 2.00787 + 0.522055i 0.0772829 + 0.0200939i
\(676\) 0 0
\(677\) −0.490033 −0.0188335 −0.00941674 0.999956i \(-0.502997\pi\)
−0.00941674 + 0.999956i \(0.502997\pi\)
\(678\) 0 0
\(679\) −1.77117 0.474583i −0.0679712 0.0182128i
\(680\) 0 0
\(681\) 11.9556 4.38503i 0.458140 0.168035i
\(682\) 0 0
\(683\) −22.1468 + 5.93422i −0.847424 + 0.227067i −0.656301 0.754499i \(-0.727880\pi\)
−0.191123 + 0.981566i \(0.561213\pi\)
\(684\) 0 0
\(685\) −9.88525 2.64875i −0.377696 0.101203i
\(686\) 0 0
\(687\) 8.25687 17.8220i 0.315019 0.679951i
\(688\) 0 0
\(689\) −17.6814 17.6814i −0.673606 0.673606i
\(690\) 0 0
\(691\) −15.9187 9.19065i −0.605575 0.349629i 0.165657 0.986184i \(-0.447026\pi\)
−0.771232 + 0.636555i \(0.780359\pi\)
\(692\) 0 0
\(693\) −3.42775 + 0.621920i −0.130210 + 0.0236248i
\(694\) 0 0
\(695\) −26.4381 + 26.4381i −1.00286 + 1.00286i
\(696\) 0 0
\(697\) 43.1246 + 43.1246i 1.63346 + 1.63346i
\(698\) 0 0
\(699\) −24.3187 34.5484i −0.919818 1.30674i
\(700\) 0 0
\(701\) 14.0705 3.77019i 0.531437 0.142398i 0.0168851 0.999857i \(-0.494625\pi\)
0.514552 + 0.857459i \(0.327958\pi\)
\(702\) 0 0
\(703\) −9.71458 14.7008i −0.366392 0.554450i
\(704\) 0 0
\(705\) −14.7947 40.3372i −0.557201 1.51918i
\(706\) 0 0
\(707\) 3.07690 + 5.32935i 0.115719 + 0.200431i
\(708\) 0 0
\(709\) 26.7224 26.7224i 1.00358 1.00358i 0.00358773 0.999994i \(-0.498858\pi\)
0.999994 0.00358773i \(-0.00114201\pi\)
\(710\) 0 0
\(711\) 2.81581 4.06407i 0.105601 0.152414i
\(712\) 0 0
\(713\) 14.1404i 0.529561i
\(714\) 0 0
\(715\) −4.64244 + 8.04094i −0.173617 + 0.300714i
\(716\) 0 0
\(717\) 16.6839 + 13.9292i 0.623072 + 0.520197i
\(718\) 0 0
\(719\) 37.3478 + 21.5628i 1.39284 + 0.804156i 0.993629 0.112704i \(-0.0359512\pi\)
0.399210 + 0.916860i \(0.369285\pi\)
\(720\) 0 0
\(721\) 1.75497 6.54964i 0.0653585 0.243921i
\(722\) 0 0
\(723\) 1.49037 + 4.06342i 0.0554273 + 0.151120i
\(724\) 0 0
\(725\) −3.08599 + 0.826889i −0.114611 + 0.0307099i
\(726\) 0 0
\(727\) 3.82417 14.2720i 0.141830 0.529318i −0.858046 0.513573i \(-0.828321\pi\)
0.999876 0.0157449i \(-0.00501196\pi\)
\(728\) 0 0
\(729\) 23.1796 13.8458i 0.858503 0.512808i
\(730\) 0 0
\(731\) 38.5131 66.7066i 1.42446 2.46723i
\(732\) 0 0
\(733\) −9.28224 + 5.35911i −0.342847 + 0.197943i −0.661530 0.749918i \(-0.730093\pi\)
0.318683 + 0.947861i \(0.396759\pi\)
\(734\) 0 0
\(735\) −3.11796 + 17.9424i −0.115008 + 0.661817i
\(736\) 0 0
\(737\) 3.84692 2.22102i 0.141703 0.0818123i
\(738\) 0 0
\(739\) 10.1714i 0.374162i 0.982345 + 0.187081i \(0.0599026\pi\)
−0.982345 + 0.187081i \(0.940097\pi\)
\(740\) 0 0
\(741\) 2.43429 + 27.0526i 0.0894261 + 0.993802i
\(742\) 0 0
\(743\) 6.19620 + 10.7321i 0.227317 + 0.393724i 0.957012 0.290049i \(-0.0936714\pi\)
−0.729695 + 0.683772i \(0.760338\pi\)
\(744\) 0 0
\(745\) −13.3046 3.56495i −0.487441 0.130609i
\(746\) 0 0
\(747\) −32.3579 + 27.4257i −1.18391 + 1.00345i
\(748\) 0 0
\(749\) 14.5771 + 8.41609i 0.532636 + 0.307517i
\(750\) 0 0
\(751\) 11.1169i 0.405660i −0.979214 0.202830i \(-0.934986\pi\)
0.979214 0.202830i \(-0.0650138\pi\)
\(752\) 0 0
\(753\) −26.1948 4.55201i −0.954590 0.165884i
\(754\) 0 0
\(755\) 9.27359 + 34.6095i 0.337500 + 1.25957i
\(756\) 0 0
\(757\) 6.85426 + 25.5805i 0.249122 + 0.929738i 0.971266 + 0.237995i \(0.0764902\pi\)
−0.722144 + 0.691743i \(0.756843\pi\)
\(758\) 0 0
\(759\) 1.82673 10.5120i 0.0663062 0.381563i
\(760\) 0 0
\(761\) 11.2680 19.5167i 0.408463 0.707479i −0.586255 0.810127i \(-0.699398\pi\)
0.994718 + 0.102648i \(0.0327315\pi\)
\(762\) 0 0
\(763\) 5.50466 5.50466i 0.199282 0.199282i
\(764\) 0 0
\(765\) 46.7697 + 16.7610i 1.69096 + 0.605996i
\(766\) 0 0
\(767\) 15.7922 0.570224
\(768\) 0 0
\(769\) 32.3631 + 32.3631i 1.16704 + 1.16704i 0.982899 + 0.184145i \(0.0589516\pi\)
0.184145 + 0.982899i \(0.441048\pi\)
\(770\) 0 0
\(771\) 26.8003 + 22.3753i 0.965190 + 0.805827i
\(772\) 0 0
\(773\) −17.1782 + 9.91786i −0.617858 + 0.356721i −0.776035 0.630690i \(-0.782772\pi\)
0.158177 + 0.987411i \(0.449438\pi\)
\(774\) 0 0
\(775\) 0.175089 + 0.653441i 0.00628938 + 0.0234723i
\(776\) 0 0
\(777\) 15.1888 6.63562i 0.544894 0.238052i
\(778\) 0 0
\(779\) 6.41567 + 23.9436i 0.229865 + 0.857869i
\(780\) 0 0
\(781\) −1.85337 + 1.07005i −0.0663189 + 0.0382892i
\(782\) 0 0
\(783\) −20.5215 + 36.1619i −0.733379 + 1.29232i
\(784\) 0 0
\(785\) 3.42239 + 3.42239i 0.122150 + 0.122150i
\(786\) 0 0
\(787\) 43.0619 1.53499 0.767495 0.641055i \(-0.221503\pi\)
0.767495 + 0.641055i \(0.221503\pi\)
\(788\) 0 0
\(789\) −11.6092 + 25.0579i −0.413300 + 0.892084i
\(790\) 0 0
\(791\) −10.0704 + 10.0704i −0.358064 + 0.358064i
\(792\) 0 0
\(793\) 28.1546 48.7651i 0.999797 1.73170i
\(794\) 0 0
\(795\) −18.3155 3.18279i −0.649584 0.112882i
\(796\) 0 0
\(797\) −8.79885 32.8377i −0.311671 1.16317i −0.927049 0.374940i \(-0.877663\pi\)
0.615378 0.788232i \(-0.289003\pi\)
\(798\) 0 0
\(799\) −19.6922 73.4924i −0.696661 2.59997i
\(800\) 0 0
\(801\) −41.8512 3.45279i −1.47874 0.121998i
\(802\) 0 0
\(803\) 11.0407i 0.389617i
\(804\) 0 0
\(805\) 26.4208 + 15.2541i 0.931211 + 0.537635i
\(806\) 0 0
\(807\) −11.8839 + 8.36508i −0.418331 + 0.294465i
\(808\) 0 0
\(809\) −21.9561 5.88311i −0.771934 0.206839i −0.148708 0.988881i \(-0.547512\pi\)
−0.623226 + 0.782042i \(0.714178\pi\)
\(810\) 0 0
\(811\) −14.5931 25.2761i −0.512434 0.887562i −0.999896 0.0144181i \(-0.995410\pi\)
0.487462 0.873144i \(-0.337923\pi\)
\(812\) 0 0
\(813\) −36.1806 + 3.25567i −1.26891 + 0.114181i
\(814\) 0 0
\(815\) 29.8673i 1.04621i
\(816\) 0 0
\(817\) 27.1129 15.6536i 0.948559 0.547651i
\(818\) 0 0
\(819\) −25.4636 2.10078i −0.889769 0.0734073i
\(820\) 0 0
\(821\) 22.9968 13.2772i 0.802595 0.463378i −0.0417829 0.999127i \(-0.513304\pi\)
0.844378 + 0.535748i \(0.179970\pi\)
\(822\) 0 0
\(823\) −14.1533 + 24.5143i −0.493354 + 0.854514i −0.999971 0.00765756i \(-0.997562\pi\)
0.506617 + 0.862171i \(0.330896\pi\)
\(824\) 0 0
\(825\) 0.0457469 + 0.508390i 0.00159270 + 0.0176999i
\(826\) 0 0
\(827\) −6.54668 + 24.4325i −0.227650 + 0.849602i 0.753675 + 0.657247i \(0.228279\pi\)
−0.981325 + 0.192355i \(0.938387\pi\)
\(828\) 0 0
\(829\) 40.4430 10.8367i 1.40464 0.376373i 0.524633 0.851328i \(-0.324203\pi\)
0.880010 + 0.474956i \(0.157536\pi\)
\(830\) 0 0
\(831\) −11.1384 + 4.08531i −0.386387 + 0.141718i
\(832\) 0 0
\(833\) −8.34688 + 31.1510i −0.289202 + 1.07932i
\(834\) 0 0
\(835\) −11.6300 6.71459i −0.402473 0.232368i
\(836\) 0 0
\(837\) 7.65708 + 4.34531i 0.264667 + 0.150196i
\(838\) 0 0
\(839\) 4.99925 8.65896i 0.172593 0.298941i −0.766732 0.641967i \(-0.778119\pi\)
0.939326 + 0.343026i \(0.111452\pi\)
\(840\) 0 0
\(841\) 35.0303i 1.20794i
\(842\) 0 0
\(843\) −0.704249 0.587970i −0.0242556 0.0202508i
\(844\) 0 0
\(845\) −26.7919 + 26.7919i −0.921668 + 0.921668i
\(846\) 0 0
\(847\) 8.22419 + 14.2447i 0.282586 + 0.489454i
\(848\) 0 0
\(849\) −27.5161 + 10.0923i −0.944351 + 0.346366i
\(850\) 0 0
\(851\) 3.06154 + 50.6718i 0.104948 + 1.73701i
\(852\) 0 0
\(853\) −3.06823 + 0.822129i −0.105054 + 0.0281492i −0.310963 0.950422i \(-0.600652\pi\)
0.205909 + 0.978571i \(0.433985\pi\)
\(854\) 0 0
\(855\) 13.0565 + 15.4046i 0.446522 + 0.526825i
\(856\) 0 0
\(857\) −1.38018 1.38018i −0.0471460 0.0471460i 0.683141 0.730287i \(-0.260614\pi\)
−0.730287 + 0.683141i \(0.760614\pi\)
\(858\) 0 0
\(859\) −37.4233 + 37.4233i −1.27687 + 1.27687i −0.334453 + 0.942412i \(0.608552\pi\)
−0.942412 + 0.334453i \(0.891448\pi\)
\(860\) 0 0
\(861\) −23.2235 + 2.08974i −0.791453 + 0.0712180i
\(862\) 0 0
\(863\) −31.6227 18.2574i −1.07645 0.621489i −0.146513 0.989209i \(-0.546805\pi\)
−0.929937 + 0.367720i \(0.880139\pi\)
\(864\) 0 0
\(865\) −10.1718 10.1718i −0.345851 0.345851i
\(866\) 0 0
\(867\) 53.1128 + 24.6070i 1.80380 + 0.835698i
\(868\) 0 0
\(869\) 1.17504 + 0.314850i 0.0398603 + 0.0106805i
\(870\) 0 0
\(871\) 31.4685 8.43195i 1.06627 0.285706i
\(872\) 0 0
\(873\) 1.49340 + 3.16164i 0.0505438 + 0.107005i
\(874\) 0 0
\(875\) 16.2454 + 4.35294i 0.549194 + 0.147156i
\(876\) 0 0
\(877\) 53.5958 1.80980 0.904900 0.425623i \(-0.139945\pi\)
0.904900 + 0.425623i \(0.139945\pi\)
\(878\) 0 0
\(879\) −2.69691 1.24947i −0.0909646 0.0421436i
\(880\) 0 0
\(881\) 18.3911 + 31.8543i 0.619611 + 1.07320i 0.989557 + 0.144145i \(0.0460431\pi\)
−0.369945 + 0.929054i \(0.620624\pi\)
\(882\) 0 0
\(883\) −10.8500 + 40.4928i −0.365132 + 1.36269i 0.502110 + 0.864804i \(0.332557\pi\)
−0.867242 + 0.497887i \(0.834109\pi\)
\(884\) 0 0
\(885\) 9.60066 6.75794i 0.322723 0.227166i
\(886\) 0 0
\(887\) 1.05111 0.0352928 0.0176464 0.999844i \(-0.494383\pi\)
0.0176464 + 0.999844i \(0.494383\pi\)
\(888\) 0 0
\(889\) −3.25144 −0.109050
\(890\) 0 0
\(891\) 5.13096 + 4.21951i 0.171894 + 0.141359i
\(892\) 0 0
\(893\) 8.00388 29.8709i 0.267840 0.999592i
\(894\) 0 0
\(895\) −11.6047 20.1000i −0.387903 0.671868i
\(896\) 0 0
\(897\) 32.8951 71.0022i 1.09834 2.37070i
\(898\) 0 0
\(899\) −13.5580 −0.452186
\(900\) 0 0
\(901\) −31.7987 8.52043i −1.05937 0.283857i
\(902\) 0 0
\(903\) 10.1408 + 27.6484i 0.337464 + 0.920081i
\(904\) 0 0
\(905\) 34.7479 9.31068i 1.15506 0.309498i
\(906\) 0 0
\(907\) 39.6867 + 10.6340i 1.31777 + 0.353096i 0.848143 0.529767i \(-0.177720\pi\)
0.469631 + 0.882863i \(0.344387\pi\)
\(908\) 0 0
\(909\) 3.95887 11.0468i 0.131307 0.366399i
\(910\) 0 0
\(911\) 33.4058 + 33.4058i 1.10678 + 1.10678i 0.993571 + 0.113214i \(0.0361146\pi\)
0.113214 + 0.993571i \(0.463885\pi\)
\(912\) 0 0
\(913\) −9.03815 5.21818i −0.299119 0.172696i
\(914\) 0 0
\(915\) −3.75181 41.6942i −0.124031 1.37837i
\(916\) 0 0
\(917\) 11.4652 11.4652i 0.378616 0.378616i
\(918\) 0 0
\(919\) 28.9777 + 28.9777i 0.955887 + 0.955887i 0.999067 0.0431807i \(-0.0137491\pi\)
−0.0431807 + 0.999067i \(0.513749\pi\)
\(920\) 0 0
\(921\) −1.56236 + 1.09975i −0.0514816 + 0.0362381i
\(922\) 0 0
\(923\) −15.1609 + 4.06235i −0.499028 + 0.133714i
\(924\) 0 0
\(925\) −0.768905 2.30369i −0.0252814 0.0757447i
\(926\) 0 0
\(927\) −11.6915 + 5.52247i −0.383999 + 0.181382i
\(928\) 0 0
\(929\) 6.53422 + 11.3176i 0.214381 + 0.371319i 0.953081 0.302716i \(-0.0978933\pi\)
−0.738700 + 0.674034i \(0.764560\pi\)
\(930\) 0 0
\(931\) −9.26871 + 9.26871i −0.303770 + 0.303770i
\(932\) 0 0
\(933\) 27.7103 33.1903i 0.907193 1.08660i
\(934\) 0 0
\(935\) 12.2239i 0.399765i
\(936\) 0 0
\(937\) −1.56828 + 2.71634i −0.0512334 + 0.0887388i −0.890505 0.454974i \(-0.849649\pi\)
0.839271 + 0.543713i \(0.182982\pi\)
\(938\) 0 0
\(939\) −7.48840 + 8.96933i −0.244375 + 0.292703i
\(940\) 0 0
\(941\) 0.104995 + 0.0606190i 0.00342275 + 0.00197612i 0.501710 0.865036i \(-0.332704\pi\)
−0.498288 + 0.867012i \(0.666038\pi\)
\(942\) 0 0
\(943\) 18.4833 68.9805i 0.601898 2.24631i
\(944\) 0 0
\(945\) −16.3792 + 9.61944i −0.532816 + 0.312921i
\(946\) 0 0
\(947\) 32.9832 8.83783i 1.07181 0.287191i 0.320574 0.947224i \(-0.396124\pi\)
0.751237 + 0.660033i \(0.229458\pi\)
\(948\) 0 0
\(949\) −20.9576 + 78.2148i −0.680312 + 2.53896i
\(950\) 0 0
\(951\) 4.49673 0.404633i 0.145817 0.0131211i
\(952\) 0 0
\(953\) 8.51043 14.7405i 0.275680 0.477492i −0.694626 0.719371i \(-0.744430\pi\)
0.970306 + 0.241879i \(0.0777637\pi\)
\(954\) 0 0
\(955\) −14.8514 + 8.57445i −0.480580 + 0.277463i
\(956\) 0 0
\(957\) −10.0791 1.75150i −0.325812 0.0566181i
\(958\) 0 0
\(959\) 6.00066 3.46448i 0.193771 0.111874i
\(960\) 0 0
\(961\) 28.1292i 0.907392i
\(962\) 0 0
\(963\) −5.73010 31.5818i −0.184650 1.01771i
\(964\) 0 0
\(965\) 19.0632 + 33.0185i 0.613667 + 1.06290i
\(966\) 0 0
\(967\) 25.2639 + 6.76943i 0.812431 + 0.217690i 0.641035 0.767512i \(-0.278505\pi\)
0.171396 + 0.985202i \(0.445172\pi\)
\(968\) 0 0
\(969\) 20.5834 + 29.2418i 0.661235 + 0.939383i
\(970\) 0 0
\(971\) −38.6025 22.2872i −1.23881 0.715229i −0.269961 0.962871i \(-0.587011\pi\)
−0.968851 + 0.247642i \(0.920344\pi\)
\(972\) 0 0
\(973\) 25.3146i 0.811548i
\(974\) 0 0
\(975\) −0.640953 + 3.68840i −0.0205269 + 0.118123i
\(976\) 0 0
\(977\) 2.21376 + 8.26186i 0.0708244 + 0.264320i 0.992254 0.124225i \(-0.0396444\pi\)
−0.921430 + 0.388545i \(0.872978\pi\)
\(978\) 0 0
\(979\) −2.67415 9.98007i −0.0854663 0.318964i
\(980\) 0 0
\(981\) −14.7946 1.22057i −0.472354 0.0389699i
\(982\) 0 0
\(983\) −19.4970 + 33.7698i −0.621858 + 1.07709i 0.367282 + 0.930110i \(0.380288\pi\)
−0.989140 + 0.146979i \(0.953045\pi\)
\(984\) 0 0
\(985\) −27.9841 + 27.9841i −0.891647 + 0.891647i
\(986\) 0 0
\(987\) 26.3944 + 12.2285i 0.840144 + 0.389236i
\(988\) 0 0
\(989\) −90.1947 −2.86803
\(990\) 0 0
\(991\) 10.4846 + 10.4846i 0.333056 + 0.333056i 0.853746 0.520690i \(-0.174325\pi\)
−0.520690 + 0.853746i \(0.674325\pi\)
\(992\) 0 0
\(993\) 8.77812 10.5141i 0.278565 0.333655i
\(994\) 0 0
\(995\) 48.3737 27.9286i 1.53355 0.885395i
\(996\) 0 0
\(997\) 6.82342 + 25.4654i 0.216100 + 0.806496i 0.985776 + 0.168062i \(0.0537508\pi\)
−0.769677 + 0.638434i \(0.779583\pi\)
\(998\) 0 0
\(999\) −28.3798 13.9135i −0.897898 0.440204i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.27 yes 152
3.2 odd 2 inner 888.2.br.a.569.13 152
37.8 odd 12 inner 888.2.br.a.785.13 yes 152
111.8 even 12 inner 888.2.br.a.785.27 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.13 152 3.2 odd 2 inner
888.2.br.a.569.27 yes 152 1.1 even 1 trivial
888.2.br.a.785.13 yes 152 37.8 odd 12 inner
888.2.br.a.785.27 yes 152 111.8 even 12 inner