Properties

Label 888.2.br.a.785.13
Level $888$
Weight $2$
Character 888.785
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 785.13
Character \(\chi\) \(=\) 888.785
Dual form 888.2.br.a.569.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.728108 + 1.57158i) q^{3} +(0.601400 + 2.24446i) q^{5} +(-0.786614 + 1.36246i) q^{7} +(-1.93972 - 2.28856i) q^{9} +0.738125 q^{11} +(-5.22905 + 1.40112i) q^{13} +(-3.96522 - 0.689058i) q^{15} +(6.88427 + 1.84463i) q^{17} +(-2.79810 + 0.749750i) q^{19} +(-1.56847 - 2.22824i) q^{21} +(-5.90122 + 5.90122i) q^{23} +(-0.345771 + 0.199631i) q^{25} +(5.00897 - 1.38210i) q^{27} +(-5.65819 - 5.65819i) q^{29} +(-1.19809 + 1.19809i) q^{31} +(-0.537434 + 1.16002i) q^{33} +(-3.53104 - 0.946139i) q^{35} +(4.55273 - 4.03393i) q^{37} +(1.60534 - 9.23803i) q^{39} +(4.27854 - 7.41065i) q^{41} +(-7.64204 - 7.64204i) q^{43} +(3.97002 - 5.72995i) q^{45} +10.6754i q^{47} +(2.26248 + 3.91872i) q^{49} +(-7.91148 + 9.47607i) q^{51} +(-4.00020 + 2.30952i) q^{53} +(0.443908 + 1.65669i) q^{55} +(0.859031 - 4.94334i) q^{57} +(2.81778 + 0.755023i) q^{59} +(-2.69213 - 10.0472i) q^{61} +(4.64387 - 0.842568i) q^{63} +(-6.28950 - 10.8937i) q^{65} +(-5.21175 - 3.00900i) q^{67} +(-4.97750 - 13.5710i) q^{69} +(-2.51092 - 1.44968i) q^{71} +14.9577i q^{73} +(-0.0619772 - 0.688760i) q^{75} +(-0.580619 + 1.00566i) q^{77} +(-1.59192 + 0.426553i) q^{79} +(-1.47499 + 8.87831i) q^{81} +(-12.2447 + 7.06950i) q^{83} +16.5608i q^{85} +(13.0121 - 4.77252i) q^{87} +(-3.62290 + 13.5208i) q^{89} +(2.20428 - 8.22649i) q^{91} +(-1.01055 - 2.75523i) q^{93} +(-3.36556 - 5.82932i) q^{95} +(0.824155 + 0.824155i) q^{97} +(-1.43175 - 1.68924i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.728108 + 1.57158i −0.420373 + 0.907351i
\(4\) 0 0
\(5\) 0.601400 + 2.24446i 0.268954 + 1.00375i 0.959785 + 0.280735i \(0.0905781\pi\)
−0.690831 + 0.723016i \(0.742755\pi\)
\(6\) 0 0
\(7\) −0.786614 + 1.36246i −0.297312 + 0.514960i −0.975520 0.219910i \(-0.929424\pi\)
0.678208 + 0.734870i \(0.262757\pi\)
\(8\) 0 0
\(9\) −1.93972 2.28856i −0.646573 0.762852i
\(10\) 0 0
\(11\) 0.738125 0.222553 0.111276 0.993789i \(-0.464506\pi\)
0.111276 + 0.993789i \(0.464506\pi\)
\(12\) 0 0
\(13\) −5.22905 + 1.40112i −1.45028 + 0.388601i −0.896120 0.443811i \(-0.853626\pi\)
−0.554158 + 0.832412i \(0.686960\pi\)
\(14\) 0 0
\(15\) −3.96522 0.689058i −1.02382 0.177914i
\(16\) 0 0
\(17\) 6.88427 + 1.84463i 1.66968 + 0.447389i 0.965024 0.262160i \(-0.0844348\pi\)
0.704656 + 0.709549i \(0.251101\pi\)
\(18\) 0 0
\(19\) −2.79810 + 0.749750i −0.641929 + 0.172004i −0.565077 0.825038i \(-0.691154\pi\)
−0.0768521 + 0.997043i \(0.524487\pi\)
\(20\) 0 0
\(21\) −1.56847 2.22824i −0.342267 0.486242i
\(22\) 0 0
\(23\) −5.90122 + 5.90122i −1.23049 + 1.23049i −0.266713 + 0.963776i \(0.585938\pi\)
−0.963776 + 0.266713i \(0.914062\pi\)
\(24\) 0 0
\(25\) −0.345771 + 0.199631i −0.0691542 + 0.0399262i
\(26\) 0 0
\(27\) 5.00897 1.38210i 0.963977 0.265986i
\(28\) 0 0
\(29\) −5.65819 5.65819i −1.05070 1.05070i −0.998644 0.0520557i \(-0.983423\pi\)
−0.0520557 0.998644i \(-0.516577\pi\)
\(30\) 0 0
\(31\) −1.19809 + 1.19809i −0.215183 + 0.215183i −0.806465 0.591282i \(-0.798622\pi\)
0.591282 + 0.806465i \(0.298622\pi\)
\(32\) 0 0
\(33\) −0.537434 + 1.16002i −0.0935553 + 0.201934i
\(34\) 0 0
\(35\) −3.53104 0.946139i −0.596855 0.159927i
\(36\) 0 0
\(37\) 4.55273 4.03393i 0.748465 0.663175i
\(38\) 0 0
\(39\) 1.60534 9.23803i 0.257061 1.47927i
\(40\) 0 0
\(41\) 4.27854 7.41065i 0.668196 1.15735i −0.310212 0.950667i \(-0.600400\pi\)
0.978408 0.206682i \(-0.0662666\pi\)
\(42\) 0 0
\(43\) −7.64204 7.64204i −1.16540 1.16540i −0.983275 0.182125i \(-0.941702\pi\)
−0.182125 0.983275i \(-0.558298\pi\)
\(44\) 0 0
\(45\) 3.97002 5.72995i 0.591815 0.854170i
\(46\) 0 0
\(47\) 10.6754i 1.55717i 0.627540 + 0.778584i \(0.284062\pi\)
−0.627540 + 0.778584i \(0.715938\pi\)
\(48\) 0 0
\(49\) 2.26248 + 3.91872i 0.323211 + 0.559818i
\(50\) 0 0
\(51\) −7.91148 + 9.47607i −1.10783 + 1.32692i
\(52\) 0 0
\(53\) −4.00020 + 2.30952i −0.549470 + 0.317237i −0.748908 0.662674i \(-0.769422\pi\)
0.199438 + 0.979910i \(0.436088\pi\)
\(54\) 0 0
\(55\) 0.443908 + 1.65669i 0.0598566 + 0.223388i
\(56\) 0 0
\(57\) 0.859031 4.94334i 0.113781 0.654761i
\(58\) 0 0
\(59\) 2.81778 + 0.755023i 0.366844 + 0.0982956i 0.437532 0.899203i \(-0.355853\pi\)
−0.0706878 + 0.997498i \(0.522519\pi\)
\(60\) 0 0
\(61\) −2.69213 10.0472i −0.344692 1.28641i −0.892972 0.450112i \(-0.851384\pi\)
0.548280 0.836295i \(-0.315283\pi\)
\(62\) 0 0
\(63\) 4.64387 0.842568i 0.585072 0.106154i
\(64\) 0 0
\(65\) −6.28950 10.8937i −0.780117 1.35120i
\(66\) 0 0
\(67\) −5.21175 3.00900i −0.636716 0.367608i 0.146632 0.989191i \(-0.453157\pi\)
−0.783348 + 0.621583i \(0.786490\pi\)
\(68\) 0 0
\(69\) −4.97750 13.5710i −0.599221 1.63375i
\(70\) 0 0
\(71\) −2.51092 1.44968i −0.297991 0.172045i 0.343549 0.939135i \(-0.388371\pi\)
−0.641540 + 0.767089i \(0.721704\pi\)
\(72\) 0 0
\(73\) 14.9577i 1.75067i 0.483517 + 0.875335i \(0.339359\pi\)
−0.483517 + 0.875335i \(0.660641\pi\)
\(74\) 0 0
\(75\) −0.0619772 0.688760i −0.00715651 0.0795311i
\(76\) 0 0
\(77\) −0.580619 + 1.00566i −0.0661677 + 0.114606i
\(78\) 0 0
\(79\) −1.59192 + 0.426553i −0.179105 + 0.0479910i −0.347257 0.937770i \(-0.612887\pi\)
0.168152 + 0.985761i \(0.446220\pi\)
\(80\) 0 0
\(81\) −1.47499 + 8.87831i −0.163888 + 0.986479i
\(82\) 0 0
\(83\) −12.2447 + 7.06950i −1.34403 + 0.775979i −0.987397 0.158264i \(-0.949410\pi\)
−0.356638 + 0.934243i \(0.616077\pi\)
\(84\) 0 0
\(85\) 16.5608i 1.79627i
\(86\) 0 0
\(87\) 13.0121 4.77252i 1.39504 0.511668i
\(88\) 0 0
\(89\) −3.62290 + 13.5208i −0.384027 + 1.43321i 0.455669 + 0.890149i \(0.349400\pi\)
−0.839695 + 0.543058i \(0.817267\pi\)
\(90\) 0 0
\(91\) 2.20428 8.22649i 0.231072 0.862371i
\(92\) 0 0
\(93\) −1.01055 2.75523i −0.104790 0.285704i
\(94\) 0 0
\(95\) −3.36556 5.82932i −0.345299 0.598076i
\(96\) 0 0
\(97\) 0.824155 + 0.824155i 0.0836803 + 0.0836803i 0.747708 0.664028i \(-0.231154\pi\)
−0.664028 + 0.747708i \(0.731154\pi\)
\(98\) 0 0
\(99\) −1.43175 1.68924i −0.143897 0.169775i
\(100\) 0 0
\(101\) 3.91158 0.389217 0.194608 0.980881i \(-0.437656\pi\)
0.194608 + 0.980881i \(0.437656\pi\)
\(102\) 0 0
\(103\) 3.04766 3.04766i 0.300295 0.300295i −0.540834 0.841129i \(-0.681891\pi\)
0.841129 + 0.540834i \(0.181891\pi\)
\(104\) 0 0
\(105\) 4.05791 4.86042i 0.396012 0.474328i
\(106\) 0 0
\(107\) 9.26572 + 5.34957i 0.895751 + 0.517162i 0.875819 0.482639i \(-0.160322\pi\)
0.0199320 + 0.999801i \(0.493655\pi\)
\(108\) 0 0
\(109\) 1.28071 4.77966i 0.122669 0.457809i −0.877076 0.480351i \(-0.840509\pi\)
0.999746 + 0.0225422i \(0.00717600\pi\)
\(110\) 0 0
\(111\) 3.02476 + 10.0921i 0.287098 + 0.957901i
\(112\) 0 0
\(113\) 2.34298 8.74411i 0.220409 0.822577i −0.763783 0.645473i \(-0.776660\pi\)
0.984192 0.177104i \(-0.0566729\pi\)
\(114\) 0 0
\(115\) −16.7940 9.69603i −1.56605 0.904159i
\(116\) 0 0
\(117\) 13.3494 + 9.24921i 1.23416 + 0.855090i
\(118\) 0 0
\(119\) −7.92849 + 7.92849i −0.726804 + 0.726804i
\(120\) 0 0
\(121\) −10.4552 −0.950470
\(122\) 0 0
\(123\) 8.53118 + 12.1198i 0.769231 + 1.09281i
\(124\) 0 0
\(125\) 7.55927 + 7.55927i 0.676121 + 0.676121i
\(126\) 0 0
\(127\) 1.03336 + 1.78984i 0.0916963 + 0.158823i 0.908225 0.418482i \(-0.137438\pi\)
−0.816529 + 0.577305i \(0.804104\pi\)
\(128\) 0 0
\(129\) 17.5743 6.44584i 1.54733 0.567525i
\(130\) 0 0
\(131\) −2.66749 + 9.95520i −0.233060 + 0.869790i 0.745954 + 0.665997i \(0.231994\pi\)
−0.979014 + 0.203793i \(0.934673\pi\)
\(132\) 0 0
\(133\) 1.17953 4.40206i 0.102278 0.381707i
\(134\) 0 0
\(135\) 6.11446 + 10.4112i 0.526249 + 0.896055i
\(136\) 0 0
\(137\) 4.40430i 0.376285i 0.982142 + 0.188142i \(0.0602466\pi\)
−0.982142 + 0.188142i \(0.939753\pi\)
\(138\) 0 0
\(139\) 13.9351 8.04542i 1.18196 0.682404i 0.225491 0.974245i \(-0.427601\pi\)
0.956467 + 0.291842i \(0.0942680\pi\)
\(140\) 0 0
\(141\) −16.7772 7.77285i −1.41290 0.654592i
\(142\) 0 0
\(143\) −3.85969 + 1.03420i −0.322764 + 0.0864843i
\(144\) 0 0
\(145\) 9.29672 16.1024i 0.772051 1.33723i
\(146\) 0 0
\(147\) −7.80591 + 0.702406i −0.643821 + 0.0579334i
\(148\) 0 0
\(149\) 5.92774i 0.485620i 0.970074 + 0.242810i \(0.0780691\pi\)
−0.970074 + 0.242810i \(0.921931\pi\)
\(150\) 0 0
\(151\) 13.3541 + 7.71000i 1.08674 + 0.627431i 0.932707 0.360635i \(-0.117440\pi\)
0.154035 + 0.988065i \(0.450773\pi\)
\(152\) 0 0
\(153\) −9.13199 19.3331i −0.738277 1.56299i
\(154\) 0 0
\(155\) −3.40959 1.96853i −0.273865 0.158116i
\(156\) 0 0
\(157\) 1.04147 + 1.80388i 0.0831185 + 0.143965i 0.904588 0.426287i \(-0.140179\pi\)
−0.821469 + 0.570253i \(0.806845\pi\)
\(158\) 0 0
\(159\) −0.717010 7.96821i −0.0568626 0.631920i
\(160\) 0 0
\(161\) −3.39817 12.6821i −0.267813 0.999492i
\(162\) 0 0
\(163\) 12.4157 + 3.32678i 0.972475 + 0.260574i 0.709872 0.704330i \(-0.248753\pi\)
0.262602 + 0.964904i \(0.415419\pi\)
\(164\) 0 0
\(165\) −2.92683 0.508611i −0.227853 0.0395953i
\(166\) 0 0
\(167\) 1.49582 + 5.58247i 0.115750 + 0.431984i 0.999342 0.0362731i \(-0.0115486\pi\)
−0.883592 + 0.468258i \(0.844882\pi\)
\(168\) 0 0
\(169\) 14.1215 8.15306i 1.08627 0.627159i
\(170\) 0 0
\(171\) 7.14338 + 4.94932i 0.546268 + 0.378484i
\(172\) 0 0
\(173\) 3.09539 + 5.36137i 0.235338 + 0.407618i 0.959371 0.282148i \(-0.0910469\pi\)
−0.724033 + 0.689766i \(0.757714\pi\)
\(174\) 0 0
\(175\) 0.628130i 0.0474822i
\(176\) 0 0
\(177\) −3.23823 + 3.87863i −0.243400 + 0.291536i
\(178\) 0 0
\(179\) 7.06290 + 7.06290i 0.527906 + 0.527906i 0.919947 0.392042i \(-0.128231\pi\)
−0.392042 + 0.919947i \(0.628231\pi\)
\(180\) 0 0
\(181\) −7.74084 + 13.4075i −0.575372 + 0.996574i 0.420629 + 0.907233i \(0.361809\pi\)
−0.996001 + 0.0893411i \(0.971524\pi\)
\(182\) 0 0
\(183\) 17.7501 + 3.08452i 1.31212 + 0.228015i
\(184\) 0 0
\(185\) 11.7920 + 7.79240i 0.866965 + 0.572908i
\(186\) 0 0
\(187\) 5.08145 + 1.36157i 0.371592 + 0.0995679i
\(188\) 0 0
\(189\) −2.05707 + 7.91168i −0.149630 + 0.575490i
\(190\) 0 0
\(191\) −5.21860 + 5.21860i −0.377605 + 0.377605i −0.870237 0.492633i \(-0.836035\pi\)
0.492633 + 0.870237i \(0.336035\pi\)
\(192\) 0 0
\(193\) 11.6023 + 11.6023i 0.835153 + 0.835153i 0.988216 0.153064i \(-0.0489140\pi\)
−0.153064 + 0.988216i \(0.548914\pi\)
\(194\) 0 0
\(195\) 21.6998 1.95263i 1.55396 0.139831i
\(196\) 0 0
\(197\) −14.7499 + 8.51587i −1.05089 + 0.606730i −0.922898 0.385045i \(-0.874186\pi\)
−0.127990 + 0.991775i \(0.540853\pi\)
\(198\) 0 0
\(199\) −16.9980 + 16.9980i −1.20495 + 1.20495i −0.232312 + 0.972641i \(0.574629\pi\)
−0.972641 + 0.232312i \(0.925371\pi\)
\(200\) 0 0
\(201\) 8.52360 5.99979i 0.601208 0.423193i
\(202\) 0 0
\(203\) 12.1598 3.25822i 0.853454 0.228682i
\(204\) 0 0
\(205\) 19.2060 + 5.14623i 1.34140 + 0.359428i
\(206\) 0 0
\(207\) 24.9520 + 2.05858i 1.73428 + 0.143081i
\(208\) 0 0
\(209\) −2.06535 + 0.553409i −0.142863 + 0.0382801i
\(210\) 0 0
\(211\) −0.208227 −0.0143350 −0.00716748 0.999974i \(-0.502281\pi\)
−0.00716748 + 0.999974i \(0.502281\pi\)
\(212\) 0 0
\(213\) 4.10651 2.89059i 0.281373 0.198060i
\(214\) 0 0
\(215\) 12.5563 21.7482i 0.856333 1.48321i
\(216\) 0 0
\(217\) −0.689910 2.57478i −0.0468341 0.174787i
\(218\) 0 0
\(219\) −23.5072 10.8908i −1.58847 0.735935i
\(220\) 0 0
\(221\) −38.5828 −2.59536
\(222\) 0 0
\(223\) 26.8429 1.79753 0.898767 0.438428i \(-0.144464\pi\)
0.898767 + 0.438428i \(0.144464\pi\)
\(224\) 0 0
\(225\) 1.12757 + 0.404089i 0.0751710 + 0.0269393i
\(226\) 0 0
\(227\) −1.90289 7.10169i −0.126299 0.471356i 0.873583 0.486675i \(-0.161790\pi\)
−0.999883 + 0.0153191i \(0.995124\pi\)
\(228\) 0 0
\(229\) −5.67009 + 9.82088i −0.374690 + 0.648982i −0.990281 0.139084i \(-0.955584\pi\)
0.615591 + 0.788066i \(0.288918\pi\)
\(230\) 0 0
\(231\) −1.15772 1.64472i −0.0761726 0.108215i
\(232\) 0 0
\(233\) 24.3925 1.59801 0.799004 0.601325i \(-0.205360\pi\)
0.799004 + 0.601325i \(0.205360\pi\)
\(234\) 0 0
\(235\) −23.9605 + 6.42019i −1.56301 + 0.418807i
\(236\) 0 0
\(237\) 0.488727 2.81240i 0.0317462 0.182685i
\(238\) 0 0
\(239\) −12.1207 3.24773i −0.784022 0.210078i −0.155465 0.987841i \(-0.549688\pi\)
−0.628557 + 0.777763i \(0.716354\pi\)
\(240\) 0 0
\(241\) 2.41369 0.646746i 0.155479 0.0416606i −0.180240 0.983623i \(-0.557687\pi\)
0.335719 + 0.941962i \(0.391021\pi\)
\(242\) 0 0
\(243\) −12.8790 8.78243i −0.826189 0.563393i
\(244\) 0 0
\(245\) −7.43475 + 7.43475i −0.474989 + 0.474989i
\(246\) 0 0
\(247\) 13.5809 7.84096i 0.864135 0.498908i
\(248\) 0 0
\(249\) −2.19479 24.3909i −0.139089 1.54571i
\(250\) 0 0
\(251\) 10.8542 + 10.8542i 0.685113 + 0.685113i 0.961148 0.276035i \(-0.0890204\pi\)
−0.276035 + 0.961148i \(0.589020\pi\)
\(252\) 0 0
\(253\) −4.35584 + 4.35584i −0.273849 + 0.273849i
\(254\) 0 0
\(255\) −26.0266 12.0580i −1.62985 0.755104i
\(256\) 0 0
\(257\) −19.4702 5.21701i −1.21451 0.325428i −0.405983 0.913881i \(-0.633071\pi\)
−0.808532 + 0.588452i \(0.799737\pi\)
\(258\) 0 0
\(259\) 1.91481 + 9.37605i 0.118981 + 0.582599i
\(260\) 0 0
\(261\) −1.97380 + 23.9244i −0.122175 + 1.48088i
\(262\) 0 0
\(263\) −7.97220 + 13.8083i −0.491587 + 0.851454i −0.999953 0.00968732i \(-0.996916\pi\)
0.508366 + 0.861141i \(0.330250\pi\)
\(264\) 0 0
\(265\) −7.58933 7.58933i −0.466209 0.466209i
\(266\) 0 0
\(267\) −18.6112 15.5383i −1.13899 0.950929i
\(268\) 0 0
\(269\) 8.39048i 0.511577i 0.966733 + 0.255788i \(0.0823350\pi\)
−0.966733 + 0.255788i \(0.917665\pi\)
\(270\) 0 0
\(271\) −10.4866 18.1634i −0.637017 1.10335i −0.986084 0.166249i \(-0.946835\pi\)
0.349066 0.937098i \(-0.386499\pi\)
\(272\) 0 0
\(273\) 11.3236 + 9.45398i 0.685337 + 0.572181i
\(274\) 0 0
\(275\) −0.255222 + 0.147353i −0.0153905 + 0.00888570i
\(276\) 0 0
\(277\) −1.77283 6.61627i −0.106519 0.397533i 0.891994 0.452047i \(-0.149306\pi\)
−0.998513 + 0.0545133i \(0.982639\pi\)
\(278\) 0 0
\(279\) 5.06585 + 0.417941i 0.303285 + 0.0250215i
\(280\) 0 0
\(281\) 0.511629 + 0.137091i 0.0305213 + 0.00817815i 0.274047 0.961716i \(-0.411637\pi\)
−0.243526 + 0.969894i \(0.578304\pi\)
\(282\) 0 0
\(283\) −4.37955 16.3447i −0.260337 0.971593i −0.965043 0.262092i \(-0.915587\pi\)
0.704705 0.709500i \(-0.251079\pi\)
\(284\) 0 0
\(285\) 11.6117 1.04487i 0.687819 0.0618926i
\(286\) 0 0
\(287\) 6.73112 + 11.6586i 0.397326 + 0.688188i
\(288\) 0 0
\(289\) 29.2680 + 16.8979i 1.72165 + 0.993995i
\(290\) 0 0
\(291\) −1.89530 + 0.695151i −0.111104 + 0.0407505i
\(292\) 0 0
\(293\) 1.48615 + 0.858026i 0.0868215 + 0.0501264i 0.542782 0.839873i \(-0.317371\pi\)
−0.455961 + 0.890000i \(0.650704\pi\)
\(294\) 0 0
\(295\) 6.77846i 0.394657i
\(296\) 0 0
\(297\) 3.69725 1.02016i 0.214536 0.0591959i
\(298\) 0 0
\(299\) 22.5895 39.1261i 1.30638 2.26272i
\(300\) 0 0
\(301\) 16.4233 4.40061i 0.946622 0.253647i
\(302\) 0 0
\(303\) −2.84805 + 6.14736i −0.163616 + 0.353156i
\(304\) 0 0
\(305\) 20.9313 12.0847i 1.19853 0.691969i
\(306\) 0 0
\(307\) 1.10309i 0.0629568i −0.999504 0.0314784i \(-0.989978\pi\)
0.999504 0.0314784i \(-0.0100215\pi\)
\(308\) 0 0
\(309\) 2.57061 + 7.00867i 0.146237 + 0.398709i
\(310\) 0 0
\(311\) 6.46091 24.1124i 0.366364 1.36729i −0.499198 0.866488i \(-0.666372\pi\)
0.865562 0.500802i \(-0.166962\pi\)
\(312\) 0 0
\(313\) 1.74599 6.51613i 0.0986892 0.368313i −0.898864 0.438228i \(-0.855606\pi\)
0.997553 + 0.0699151i \(0.0222728\pi\)
\(314\) 0 0
\(315\) 4.68393 + 9.91623i 0.263909 + 0.558716i
\(316\) 0 0
\(317\) −1.30334 2.25745i −0.0732029 0.126791i 0.827100 0.562054i \(-0.189989\pi\)
−0.900303 + 0.435263i \(0.856655\pi\)
\(318\) 0 0
\(319\) −4.17645 4.17645i −0.233836 0.233836i
\(320\) 0 0
\(321\) −15.1537 + 10.6668i −0.845798 + 0.595360i
\(322\) 0 0
\(323\) −20.6459 −1.14877
\(324\) 0 0
\(325\) 1.52835 1.52835i 0.0847775 0.0847775i
\(326\) 0 0
\(327\) 6.57912 + 5.49284i 0.363826 + 0.303755i
\(328\) 0 0
\(329\) −14.5448 8.39742i −0.801879 0.462965i
\(330\) 0 0
\(331\) −2.04670 + 7.63839i −0.112497 + 0.419844i −0.999087 0.0427110i \(-0.986401\pi\)
0.886591 + 0.462555i \(0.153067\pi\)
\(332\) 0 0
\(333\) −18.0629 2.59450i −0.989841 0.142177i
\(334\) 0 0
\(335\) 3.61923 13.5071i 0.197740 0.737974i
\(336\) 0 0
\(337\) 1.60325 + 0.925638i 0.0873347 + 0.0504227i 0.543031 0.839712i \(-0.317276\pi\)
−0.455697 + 0.890135i \(0.650610\pi\)
\(338\) 0 0
\(339\) 12.0361 + 10.0488i 0.653712 + 0.545777i
\(340\) 0 0
\(341\) −0.884340 + 0.884340i −0.0478897 + 0.0478897i
\(342\) 0 0
\(343\) −18.1314 −0.979003
\(344\) 0 0
\(345\) 27.4659 19.3334i 1.47872 1.04087i
\(346\) 0 0
\(347\) 7.93266 + 7.93266i 0.425848 + 0.425848i 0.887211 0.461364i \(-0.152640\pi\)
−0.461364 + 0.887211i \(0.652640\pi\)
\(348\) 0 0
\(349\) 10.9449 + 18.9571i 0.585866 + 1.01475i 0.994767 + 0.102171i \(0.0325787\pi\)
−0.408901 + 0.912579i \(0.634088\pi\)
\(350\) 0 0
\(351\) −24.2557 + 14.2453i −1.29467 + 0.760356i
\(352\) 0 0
\(353\) −3.38668 + 12.6392i −0.180255 + 0.672719i 0.815342 + 0.578979i \(0.196549\pi\)
−0.995597 + 0.0937398i \(0.970118\pi\)
\(354\) 0 0
\(355\) 1.74368 6.50749i 0.0925447 0.345382i
\(356\) 0 0
\(357\) −6.68745 18.2330i −0.353937 0.964995i
\(358\) 0 0
\(359\) 11.5880i 0.611590i −0.952097 0.305795i \(-0.901078\pi\)
0.952097 0.305795i \(-0.0989222\pi\)
\(360\) 0 0
\(361\) −9.18722 + 5.30424i −0.483538 + 0.279171i
\(362\) 0 0
\(363\) 7.61249 16.4311i 0.399552 0.862410i
\(364\) 0 0
\(365\) −33.5720 + 8.99558i −1.75724 + 0.470850i
\(366\) 0 0
\(367\) 5.41597 9.38074i 0.282711 0.489671i −0.689340 0.724438i \(-0.742099\pi\)
0.972052 + 0.234767i \(0.0754328\pi\)
\(368\) 0 0
\(369\) −25.2589 + 4.58289i −1.31492 + 0.238576i
\(370\) 0 0
\(371\) 7.26680i 0.377273i
\(372\) 0 0
\(373\) 20.0111 + 11.5534i 1.03614 + 0.598214i 0.918737 0.394870i \(-0.129211\pi\)
0.117401 + 0.993085i \(0.462544\pi\)
\(374\) 0 0
\(375\) −17.3839 + 6.37602i −0.897703 + 0.329256i
\(376\) 0 0
\(377\) 37.5148 + 21.6592i 1.93211 + 1.11550i
\(378\) 0 0
\(379\) −9.70115 16.8029i −0.498314 0.863106i 0.501684 0.865051i \(-0.332714\pi\)
−0.999998 + 0.00194516i \(0.999381\pi\)
\(380\) 0 0
\(381\) −3.56527 + 0.320817i −0.182655 + 0.0164359i
\(382\) 0 0
\(383\) −3.55621 13.2720i −0.181714 0.678166i −0.995310 0.0967353i \(-0.969160\pi\)
0.813596 0.581430i \(-0.197507\pi\)
\(384\) 0 0
\(385\) −2.60635 0.698369i −0.132832 0.0355922i
\(386\) 0 0
\(387\) −2.66585 + 32.3127i −0.135513 + 1.64254i
\(388\) 0 0
\(389\) 0.882991 + 3.29537i 0.0447694 + 0.167082i 0.984691 0.174308i \(-0.0557689\pi\)
−0.939922 + 0.341390i \(0.889102\pi\)
\(390\) 0 0
\(391\) −51.5112 + 29.7400i −2.60503 + 1.50402i
\(392\) 0 0
\(393\) −13.7032 11.4406i −0.691233 0.577103i
\(394\) 0 0
\(395\) −1.91476 3.31646i −0.0963421 0.166869i
\(396\) 0 0
\(397\) 17.7233i 0.889506i 0.895653 + 0.444753i \(0.146709\pi\)
−0.895653 + 0.444753i \(0.853291\pi\)
\(398\) 0 0
\(399\) 6.05935 + 5.05889i 0.303347 + 0.253261i
\(400\) 0 0
\(401\) 3.96835 + 3.96835i 0.198170 + 0.198170i 0.799215 0.601045i \(-0.205249\pi\)
−0.601045 + 0.799215i \(0.705249\pi\)
\(402\) 0 0
\(403\) 4.58621 7.94354i 0.228455 0.395696i
\(404\) 0 0
\(405\) −20.8140 + 2.02887i −1.03426 + 0.100815i
\(406\) 0 0
\(407\) 3.36048 2.97755i 0.166573 0.147592i
\(408\) 0 0
\(409\) −22.8004 6.10934i −1.12741 0.302087i −0.353529 0.935424i \(-0.615018\pi\)
−0.773877 + 0.633336i \(0.781685\pi\)
\(410\) 0 0
\(411\) −6.92170 3.20680i −0.341422 0.158180i
\(412\) 0 0
\(413\) −3.24519 + 3.24519i −0.159685 + 0.159685i
\(414\) 0 0
\(415\) −23.2312 23.2312i −1.14037 1.14037i
\(416\) 0 0
\(417\) 2.49777 + 27.7580i 0.122316 + 1.35932i
\(418\) 0 0
\(419\) 9.13532 5.27428i 0.446289 0.257665i −0.259972 0.965616i \(-0.583713\pi\)
0.706262 + 0.707951i \(0.250380\pi\)
\(420\) 0 0
\(421\) −1.74417 + 1.74417i −0.0850059 + 0.0850059i −0.748331 0.663325i \(-0.769145\pi\)
0.663325 + 0.748331i \(0.269145\pi\)
\(422\) 0 0
\(423\) 24.4313 20.7073i 1.18789 1.00682i
\(424\) 0 0
\(425\) −2.74863 + 0.736493i −0.133328 + 0.0357251i
\(426\) 0 0
\(427\) 15.8065 + 4.23533i 0.764929 + 0.204962i
\(428\) 0 0
\(429\) 1.18494 6.81882i 0.0572096 0.329216i
\(430\) 0 0
\(431\) 21.5800 5.78234i 1.03947 0.278525i 0.301577 0.953442i \(-0.402487\pi\)
0.737894 + 0.674916i \(0.235820\pi\)
\(432\) 0 0
\(433\) −12.1314 −0.582996 −0.291498 0.956571i \(-0.594154\pi\)
−0.291498 + 0.956571i \(0.594154\pi\)
\(434\) 0 0
\(435\) 18.5372 + 26.3348i 0.888789 + 1.26266i
\(436\) 0 0
\(437\) 12.0878 20.9367i 0.578237 1.00154i
\(438\) 0 0
\(439\) −9.09223 33.9327i −0.433949 1.61952i −0.743570 0.668658i \(-0.766869\pi\)
0.309621 0.950860i \(-0.399798\pi\)
\(440\) 0 0
\(441\) 4.57966 12.7790i 0.218079 0.608525i
\(442\) 0 0
\(443\) −22.8962 −1.08783 −0.543916 0.839139i \(-0.683059\pi\)
−0.543916 + 0.839139i \(0.683059\pi\)
\(444\) 0 0
\(445\) −32.5258 −1.54187
\(446\) 0 0
\(447\) −9.31592 4.31604i −0.440628 0.204142i
\(448\) 0 0
\(449\) 0.735701 + 2.74567i 0.0347199 + 0.129576i 0.981111 0.193448i \(-0.0619671\pi\)
−0.946391 + 0.323024i \(0.895300\pi\)
\(450\) 0 0
\(451\) 3.15810 5.46999i 0.148709 0.257572i
\(452\) 0 0
\(453\) −21.8401 + 15.3733i −1.02614 + 0.722302i
\(454\) 0 0
\(455\) 19.7896 0.927753
\(456\) 0 0
\(457\) −32.7026 + 8.76263i −1.52976 + 0.409899i −0.922941 0.384940i \(-0.874222\pi\)
−0.606821 + 0.794839i \(0.707555\pi\)
\(458\) 0 0
\(459\) 37.0326 0.275044i 1.72853 0.0128380i
\(460\) 0 0
\(461\) 34.9168 + 9.35594i 1.62624 + 0.435749i 0.952826 0.303517i \(-0.0981610\pi\)
0.673413 + 0.739267i \(0.264828\pi\)
\(462\) 0 0
\(463\) 10.7494 2.88030i 0.499568 0.133859i −0.000231714 1.00000i \(-0.500074\pi\)
0.499799 + 0.866141i \(0.333407\pi\)
\(464\) 0 0
\(465\) 5.57625 3.92514i 0.258592 0.182024i
\(466\) 0 0
\(467\) −4.40877 + 4.40877i −0.204013 + 0.204013i −0.801717 0.597704i \(-0.796080\pi\)
0.597704 + 0.801717i \(0.296080\pi\)
\(468\) 0 0
\(469\) 8.19927 4.73385i 0.378607 0.218589i
\(470\) 0 0
\(471\) −3.59325 + 0.323334i −0.165568 + 0.0148984i
\(472\) 0 0
\(473\) −5.64078 5.64078i −0.259363 0.259363i
\(474\) 0 0
\(475\) 0.817830 0.817830i 0.0375246 0.0375246i
\(476\) 0 0
\(477\) 13.0447 + 4.67488i 0.597277 + 0.214048i
\(478\) 0 0
\(479\) −27.7943 7.44746i −1.26995 0.340283i −0.439941 0.898027i \(-0.645001\pi\)
−0.830014 + 0.557743i \(0.811667\pi\)
\(480\) 0 0
\(481\) −18.1545 + 27.4726i −0.827772 + 1.25264i
\(482\) 0 0
\(483\) 22.4052 + 3.89347i 1.01947 + 0.177159i
\(484\) 0 0
\(485\) −1.35413 + 2.34543i −0.0614880 + 0.106500i
\(486\) 0 0
\(487\) 19.1433 + 19.1433i 0.867467 + 0.867467i 0.992191 0.124724i \(-0.0398046\pi\)
−0.124724 + 0.992191i \(0.539805\pi\)
\(488\) 0 0
\(489\) −14.2683 + 17.0900i −0.645234 + 0.772838i
\(490\) 0 0
\(491\) 26.1251i 1.17901i 0.807766 + 0.589504i \(0.200677\pi\)
−0.807766 + 0.589504i \(0.799323\pi\)
\(492\) 0 0
\(493\) −28.5152 49.3898i −1.28426 2.22440i
\(494\) 0 0
\(495\) 2.93037 4.22942i 0.131710 0.190098i
\(496\) 0 0
\(497\) 3.95025 2.28068i 0.177193 0.102302i
\(498\) 0 0
\(499\) 0.0835255 + 0.311722i 0.00373912 + 0.0139546i 0.967770 0.251835i \(-0.0810340\pi\)
−0.964031 + 0.265790i \(0.914367\pi\)
\(500\) 0 0
\(501\) −9.86241 1.71384i −0.440620 0.0765689i
\(502\) 0 0
\(503\) −3.07410 0.823702i −0.137067 0.0367271i 0.189633 0.981855i \(-0.439270\pi\)
−0.326700 + 0.945128i \(0.605937\pi\)
\(504\) 0 0
\(505\) 2.35242 + 8.77937i 0.104682 + 0.390677i
\(506\) 0 0
\(507\) 2.53119 + 28.1294i 0.112414 + 1.24927i
\(508\) 0 0
\(509\) 0.869109 + 1.50534i 0.0385226 + 0.0667231i 0.884644 0.466267i \(-0.154402\pi\)
−0.846121 + 0.532990i \(0.821068\pi\)
\(510\) 0 0
\(511\) −20.3792 11.7660i −0.901525 0.520495i
\(512\) 0 0
\(513\) −12.9794 + 7.62274i −0.573054 + 0.336552i
\(514\) 0 0
\(515\) 8.67321 + 5.00748i 0.382187 + 0.220656i
\(516\) 0 0
\(517\) 7.87978i 0.346552i
\(518\) 0 0
\(519\) −10.6796 + 0.960991i −0.468782 + 0.0421828i
\(520\) 0 0
\(521\) 16.3152 28.2588i 0.714783 1.23804i −0.248260 0.968693i \(-0.579859\pi\)
0.963043 0.269347i \(-0.0868080\pi\)
\(522\) 0 0
\(523\) 8.61180 2.30753i 0.376568 0.100901i −0.0655704 0.997848i \(-0.520887\pi\)
0.442138 + 0.896947i \(0.354220\pi\)
\(524\) 0 0
\(525\) 0.987156 + 0.457347i 0.0430830 + 0.0199602i
\(526\) 0 0
\(527\) −10.4580 + 6.03793i −0.455558 + 0.263017i
\(528\) 0 0
\(529\) 46.6488i 2.02821i
\(530\) 0 0
\(531\) −3.73779 7.91319i −0.162206 0.343403i
\(532\) 0 0
\(533\) −11.9895 + 44.7454i −0.519323 + 1.93814i
\(534\) 0 0
\(535\) −6.43446 + 24.0137i −0.278186 + 1.03820i
\(536\) 0 0
\(537\) −16.2425 + 5.95735i −0.700913 + 0.257079i
\(538\) 0 0
\(539\) 1.66999 + 2.89251i 0.0719316 + 0.124589i
\(540\) 0 0
\(541\) −25.0556 25.0556i −1.07722 1.07722i −0.996757 0.0804666i \(-0.974359\pi\)
−0.0804666 0.996757i \(-0.525641\pi\)
\(542\) 0 0
\(543\) −15.4348 21.9275i −0.662371 0.940998i
\(544\) 0 0
\(545\) 11.4980 0.492518
\(546\) 0 0
\(547\) −14.9873 + 14.9873i −0.640813 + 0.640813i −0.950755 0.309943i \(-0.899690\pi\)
0.309943 + 0.950755i \(0.399690\pi\)
\(548\) 0 0
\(549\) −17.7715 + 25.6497i −0.758470 + 1.09470i
\(550\) 0 0
\(551\) 20.0744 + 11.5900i 0.855200 + 0.493750i
\(552\) 0 0
\(553\) 0.671066 2.50445i 0.0285366 0.106500i
\(554\) 0 0
\(555\) −20.8322 + 12.8583i −0.884278 + 0.545806i
\(556\) 0 0
\(557\) 0.774505 2.89049i 0.0328168 0.122474i −0.947574 0.319535i \(-0.896473\pi\)
0.980391 + 0.197061i \(0.0631398\pi\)
\(558\) 0 0
\(559\) 50.6681 + 29.2532i 2.14303 + 1.23728i
\(560\) 0 0
\(561\) −5.83966 + 6.99453i −0.246550 + 0.295309i
\(562\) 0 0
\(563\) 10.5667 10.5667i 0.445333 0.445333i −0.448467 0.893799i \(-0.648030\pi\)
0.893799 + 0.448467i \(0.148030\pi\)
\(564\) 0 0
\(565\) 21.0348 0.884942
\(566\) 0 0
\(567\) −10.9361 8.99341i −0.459271 0.377688i
\(568\) 0 0
\(569\) −20.3507 20.3507i −0.853144 0.853144i 0.137375 0.990519i \(-0.456133\pi\)
−0.990519 + 0.137375i \(0.956133\pi\)
\(570\) 0 0
\(571\) −4.11144 7.12122i −0.172058 0.298014i 0.767081 0.641550i \(-0.221708\pi\)
−0.939139 + 0.343537i \(0.888375\pi\)
\(572\) 0 0
\(573\) −4.40174 12.0011i −0.183885 0.501355i
\(574\) 0 0
\(575\) 0.862405 3.21854i 0.0359648 0.134222i
\(576\) 0 0
\(577\) 7.90121 29.4877i 0.328932 1.22759i −0.581368 0.813640i \(-0.697482\pi\)
0.910300 0.413949i \(-0.135851\pi\)
\(578\) 0 0
\(579\) −26.6817 + 9.78621i −1.10885 + 0.406701i
\(580\) 0 0
\(581\) 22.2439i 0.922832i
\(582\) 0 0
\(583\) −2.95265 + 1.70471i −0.122286 + 0.0706020i
\(584\) 0 0
\(585\) −12.7311 + 35.5247i −0.526366 + 1.46876i
\(586\) 0 0
\(587\) 8.10721 2.17232i 0.334620 0.0896612i −0.0875968 0.996156i \(-0.527919\pi\)
0.422217 + 0.906495i \(0.361252\pi\)
\(588\) 0 0
\(589\) 2.45411 4.25065i 0.101120 0.175145i
\(590\) 0 0
\(591\) −2.64382 29.3811i −0.108752 1.20858i
\(592\) 0 0
\(593\) 19.5338i 0.802155i −0.916044 0.401078i \(-0.868636\pi\)
0.916044 0.401078i \(-0.131364\pi\)
\(594\) 0 0
\(595\) −22.5633 13.0270i −0.925007 0.534053i
\(596\) 0 0
\(597\) −14.3373 39.0900i −0.586786 1.59985i
\(598\) 0 0
\(599\) 0.169109 + 0.0976351i 0.00690960 + 0.00398926i 0.503451 0.864024i \(-0.332064\pi\)
−0.496541 + 0.868013i \(0.665397\pi\)
\(600\) 0 0
\(601\) 17.8418 + 30.9029i 0.727782 + 1.26055i 0.957819 + 0.287373i \(0.0927818\pi\)
−0.230037 + 0.973182i \(0.573885\pi\)
\(602\) 0 0
\(603\) 3.22304 + 17.7640i 0.131252 + 0.723406i
\(604\) 0 0
\(605\) −6.28774 23.4662i −0.255633 0.954035i
\(606\) 0 0
\(607\) 10.1421 + 2.71757i 0.411656 + 0.110303i 0.458703 0.888590i \(-0.348314\pi\)
−0.0470466 + 0.998893i \(0.514981\pi\)
\(608\) 0 0
\(609\) −3.73313 + 21.4825i −0.151274 + 0.870515i
\(610\) 0 0
\(611\) −14.9575 55.8223i −0.605117 2.25833i
\(612\) 0 0
\(613\) −8.61416 + 4.97339i −0.347923 + 0.200873i −0.663770 0.747937i \(-0.731045\pi\)
0.315847 + 0.948810i \(0.397711\pi\)
\(614\) 0 0
\(615\) −22.0717 + 26.4367i −0.890018 + 1.06603i
\(616\) 0 0
\(617\) 5.84248 + 10.1195i 0.235210 + 0.407395i 0.959334 0.282275i \(-0.0910890\pi\)
−0.724124 + 0.689670i \(0.757756\pi\)
\(618\) 0 0
\(619\) 1.66106i 0.0667635i 0.999443 + 0.0333818i \(0.0106277\pi\)
−0.999443 + 0.0333818i \(0.989372\pi\)
\(620\) 0 0
\(621\) −21.4029 + 37.7151i −0.858871 + 1.51346i
\(622\) 0 0
\(623\) −15.5717 15.5717i −0.623868 0.623868i
\(624\) 0 0
\(625\) −13.4185 + 23.2414i −0.536738 + 0.929658i
\(626\) 0 0
\(627\) 0.634072 3.64880i 0.0253224 0.145719i
\(628\) 0 0
\(629\) 38.7834 19.3726i 1.54639 0.772434i
\(630\) 0 0
\(631\) 17.1356 + 4.59146i 0.682156 + 0.182783i 0.583224 0.812311i \(-0.301791\pi\)
0.0989317 + 0.995094i \(0.468457\pi\)
\(632\) 0 0
\(633\) 0.151612 0.327245i 0.00602603 0.0130068i
\(634\) 0 0
\(635\) −3.39575 + 3.39575i −0.134756 + 0.134756i
\(636\) 0 0
\(637\) −17.3212 17.3212i −0.686291 0.686291i
\(638\) 0 0
\(639\) 1.55280 + 8.55836i 0.0614278 + 0.338563i
\(640\) 0 0
\(641\) 8.40159 4.85066i 0.331843 0.191590i −0.324816 0.945777i \(-0.605302\pi\)
0.656659 + 0.754188i \(0.271969\pi\)
\(642\) 0 0
\(643\) 20.6922 20.6922i 0.816021 0.816021i −0.169508 0.985529i \(-0.554218\pi\)
0.985529 + 0.169508i \(0.0542178\pi\)
\(644\) 0 0
\(645\) 25.0366 + 35.5682i 0.985815 + 1.40050i
\(646\) 0 0
\(647\) 45.9218 12.3047i 1.80537 0.483748i 0.810576 0.585633i \(-0.199154\pi\)
0.994796 + 0.101885i \(0.0324873\pi\)
\(648\) 0 0
\(649\) 2.07988 + 0.557301i 0.0816422 + 0.0218760i
\(650\) 0 0
\(651\) 4.54879 + 0.790469i 0.178281 + 0.0309809i
\(652\) 0 0
\(653\) −16.1422 + 4.32530i −0.631694 + 0.169262i −0.560438 0.828196i \(-0.689367\pi\)
−0.0712560 + 0.997458i \(0.522701\pi\)
\(654\) 0 0
\(655\) −23.9482 −0.935735
\(656\) 0 0
\(657\) 34.2316 29.0138i 1.33550 1.13194i
\(658\) 0 0
\(659\) 11.3024 19.5764i 0.440280 0.762587i −0.557430 0.830224i \(-0.688213\pi\)
0.997710 + 0.0676367i \(0.0215459\pi\)
\(660\) 0 0
\(661\) −0.890448 3.32320i −0.0346344 0.129257i 0.946444 0.322868i \(-0.104647\pi\)
−0.981079 + 0.193610i \(0.937980\pi\)
\(662\) 0 0
\(663\) 28.0924 60.6358i 1.09102 2.35490i
\(664\) 0 0
\(665\) 10.5896 0.410647
\(666\) 0 0
\(667\) 66.7805 2.58575
\(668\) 0 0
\(669\) −19.5445 + 42.1857i −0.755635 + 1.63099i
\(670\) 0 0
\(671\) −1.98713 7.41605i −0.0767121 0.286294i
\(672\) 0 0
\(673\) −15.4794 + 26.8111i −0.596686 + 1.03349i 0.396621 + 0.917983i \(0.370183\pi\)
−0.993307 + 0.115508i \(0.963150\pi\)
\(674\) 0 0
\(675\) −1.45605 + 1.47784i −0.0560433 + 0.0568820i
\(676\) 0 0
\(677\) 0.490033 0.0188335 0.00941674 0.999956i \(-0.497003\pi\)
0.00941674 + 0.999956i \(0.497003\pi\)
\(678\) 0 0
\(679\) −1.77117 + 0.474583i −0.0679712 + 0.0182128i
\(680\) 0 0
\(681\) 12.5464 + 2.18025i 0.480778 + 0.0835474i
\(682\) 0 0
\(683\) 22.1468 + 5.93422i 0.847424 + 0.227067i 0.656301 0.754499i \(-0.272120\pi\)
0.191123 + 0.981566i \(0.438787\pi\)
\(684\) 0 0
\(685\) −9.88525 + 2.64875i −0.377696 + 0.101203i
\(686\) 0 0
\(687\) −11.3059 16.0617i −0.431345 0.612790i
\(688\) 0 0
\(689\) 17.6814 17.6814i 0.673606 0.673606i
\(690\) 0 0
\(691\) −15.9187 + 9.19065i −0.605575 + 0.349629i −0.771232 0.636555i \(-0.780359\pi\)
0.165657 + 0.986184i \(0.447026\pi\)
\(692\) 0 0
\(693\) 3.42775 0.621920i 0.130210 0.0236248i
\(694\) 0 0
\(695\) 26.4381 + 26.4381i 1.00286 + 1.00286i
\(696\) 0 0
\(697\) 43.1246 43.1246i 1.63346 1.63346i
\(698\) 0 0
\(699\) −17.7604 + 38.3348i −0.671760 + 1.44996i
\(700\) 0 0
\(701\) −14.0705 3.77019i −0.531437 0.142398i −0.0168851 0.999857i \(-0.505375\pi\)
−0.514552 + 0.857459i \(0.672042\pi\)
\(702\) 0 0
\(703\) −9.71458 + 14.7008i −0.366392 + 0.554450i
\(704\) 0 0
\(705\) 7.35598 42.3304i 0.277042 1.59425i
\(706\) 0 0
\(707\) −3.07690 + 5.32935i −0.115719 + 0.200431i
\(708\) 0 0
\(709\) 26.7224 + 26.7224i 1.00358 + 1.00358i 0.999994 + 0.00358773i \(0.00114201\pi\)
0.00358773 + 0.999994i \(0.498858\pi\)
\(710\) 0 0
\(711\) 4.06407 + 2.81581i 0.152414 + 0.105601i
\(712\) 0 0
\(713\) 14.1404i 0.529561i
\(714\) 0 0
\(715\) −4.64244 8.04094i −0.173617 0.300714i
\(716\) 0 0
\(717\) 13.9292 16.6839i 0.520197 0.623072i
\(718\) 0 0
\(719\) −37.3478 + 21.5628i −1.39284 + 0.804156i −0.993629 0.112704i \(-0.964049\pi\)
−0.399210 + 0.916860i \(0.630715\pi\)
\(720\) 0 0
\(721\) 1.75497 + 6.54964i 0.0653585 + 0.243921i
\(722\) 0 0
\(723\) −0.741014 + 4.26420i −0.0275586 + 0.158587i
\(724\) 0 0
\(725\) 3.08599 + 0.826889i 0.114611 + 0.0307099i
\(726\) 0 0
\(727\) 3.82417 + 14.2720i 0.141830 + 0.529318i 0.999876 + 0.0157449i \(0.00501196\pi\)
−0.858046 + 0.513573i \(0.828321\pi\)
\(728\) 0 0
\(729\) 23.1796 13.8458i 0.858503 0.512808i
\(730\) 0 0
\(731\) −38.5131 66.7066i −1.42446 2.46723i
\(732\) 0 0
\(733\) −9.28224 5.35911i −0.342847 0.197943i 0.318683 0.947861i \(-0.396759\pi\)
−0.661530 + 0.749918i \(0.730093\pi\)
\(734\) 0 0
\(735\) −6.27099 17.0976i −0.231309 0.630654i
\(736\) 0 0
\(737\) −3.84692 2.22102i −0.141703 0.0818123i
\(738\) 0 0
\(739\) 10.1714i 0.374162i −0.982345 0.187081i \(-0.940097\pi\)
0.982345 0.187081i \(-0.0599026\pi\)
\(740\) 0 0
\(741\) 2.43429 + 27.0526i 0.0894261 + 0.993802i
\(742\) 0 0
\(743\) −6.19620 + 10.7321i −0.227317 + 0.393724i −0.957012 0.290049i \(-0.906329\pi\)
0.729695 + 0.683772i \(0.239662\pi\)
\(744\) 0 0
\(745\) −13.3046 + 3.56495i −0.487441 + 0.130609i
\(746\) 0 0
\(747\) 39.9303 + 14.3099i 1.46097 + 0.523574i
\(748\) 0 0
\(749\) −14.5771 + 8.41609i −0.532636 + 0.307517i
\(750\) 0 0
\(751\) 11.1169i 0.405660i 0.979214 + 0.202830i \(0.0650138\pi\)
−0.979214 + 0.202830i \(0.934986\pi\)
\(752\) 0 0
\(753\) −24.9613 + 9.15523i −0.909641 + 0.333635i
\(754\) 0 0
\(755\) −9.27359 + 34.6095i −0.337500 + 1.25957i
\(756\) 0 0
\(757\) 6.85426 25.5805i 0.249122 0.929738i −0.722144 0.691743i \(-0.756843\pi\)
0.971266 0.237995i \(-0.0764902\pi\)
\(758\) 0 0
\(759\) −3.67402 10.0171i −0.133358 0.363596i
\(760\) 0 0
\(761\) −11.2680 19.5167i −0.408463 0.707479i 0.586255 0.810127i \(-0.300602\pi\)
−0.994718 + 0.102648i \(0.967268\pi\)
\(762\) 0 0
\(763\) 5.50466 + 5.50466i 0.199282 + 0.199282i
\(764\) 0 0
\(765\) 37.9003 32.1233i 1.37029 1.16142i
\(766\) 0 0
\(767\) −15.7922 −0.570224
\(768\) 0 0
\(769\) 32.3631 32.3631i 1.16704 1.16704i 0.184145 0.982899i \(-0.441048\pi\)
0.982899 0.184145i \(-0.0589516\pi\)
\(770\) 0 0
\(771\) 22.3753 26.8003i 0.805827 0.965190i
\(772\) 0 0
\(773\) 17.1782 + 9.91786i 0.617858 + 0.356721i 0.776035 0.630690i \(-0.217228\pi\)
−0.158177 + 0.987411i \(0.550562\pi\)
\(774\) 0 0
\(775\) 0.175089 0.653441i 0.00628938 0.0234723i
\(776\) 0 0
\(777\) −16.1294 3.81749i −0.578638 0.136952i
\(778\) 0 0
\(779\) −6.41567 + 23.9436i −0.229865 + 0.857869i
\(780\) 0 0
\(781\) −1.85337 1.07005i −0.0663189 0.0382892i
\(782\) 0 0
\(783\) −36.1619 20.5215i −1.29232 0.733379i
\(784\) 0 0
\(785\) −3.42239 + 3.42239i −0.122150 + 0.122150i
\(786\) 0 0
\(787\) 43.0619 1.53499 0.767495 0.641055i \(-0.221503\pi\)
0.767495 + 0.641055i \(0.221503\pi\)
\(788\) 0 0
\(789\) −15.8961 22.5828i −0.565918 0.803971i
\(790\) 0 0
\(791\) 10.0704 + 10.0704i 0.358064 + 0.358064i
\(792\) 0 0
\(793\) 28.1546 + 48.7651i 0.999797 + 1.73170i
\(794\) 0 0
\(795\) 17.4531 6.40138i 0.618997 0.227034i
\(796\) 0 0
\(797\) 8.79885 32.8377i 0.311671 1.16317i −0.615378 0.788232i \(-0.710997\pi\)
0.927049 0.374940i \(-0.122337\pi\)
\(798\) 0 0
\(799\) −19.6922 + 73.4924i −0.696661 + 2.59997i
\(800\) 0 0
\(801\) 37.9706 17.9354i 1.34163 0.633717i
\(802\) 0 0
\(803\) 11.0407i 0.389617i
\(804\) 0 0
\(805\) 26.4208 15.2541i 0.931211 0.537635i
\(806\) 0 0
\(807\) −13.1863 6.10918i −0.464180 0.215053i
\(808\) 0 0
\(809\) 21.9561 5.88311i 0.771934 0.206839i 0.148708 0.988881i \(-0.452488\pi\)
0.623226 + 0.782042i \(0.285822\pi\)
\(810\) 0 0
\(811\) −14.5931 + 25.2761i −0.512434 + 0.887562i 0.487462 + 0.873144i \(0.337923\pi\)
−0.999896 + 0.0144181i \(0.995410\pi\)
\(812\) 0 0
\(813\) 36.1806 3.25567i 1.26891 0.114181i
\(814\) 0 0
\(815\) 29.8673i 1.04621i
\(816\) 0 0
\(817\) 27.1129 + 15.6536i 0.948559 + 0.547651i
\(818\) 0 0
\(819\) −23.1025 + 10.9124i −0.807266 + 0.381312i
\(820\) 0 0
\(821\) −22.9968 13.2772i −0.802595 0.463378i 0.0417829 0.999127i \(-0.486696\pi\)
−0.844378 + 0.535748i \(0.820030\pi\)
\(822\) 0 0
\(823\) −14.1533 24.5143i −0.493354 0.854514i 0.506617 0.862171i \(-0.330896\pi\)
−0.999971 + 0.00765756i \(0.997562\pi\)
\(824\) 0 0
\(825\) −0.0457469 0.508390i −0.00159270 0.0176999i
\(826\) 0 0
\(827\) 6.54668 + 24.4325i 0.227650 + 0.849602i 0.981325 + 0.192355i \(0.0616125\pi\)
−0.753675 + 0.657247i \(0.771721\pi\)
\(828\) 0 0
\(829\) 40.4430 + 10.8367i 1.40464 + 0.376373i 0.880010 0.474956i \(-0.157536\pi\)
0.524633 + 0.851328i \(0.324203\pi\)
\(830\) 0 0
\(831\) 11.6888 + 2.03123i 0.405480 + 0.0704625i
\(832\) 0 0
\(833\) 8.34688 + 31.1510i 0.289202 + 1.07932i
\(834\) 0 0
\(835\) −11.6300 + 6.71459i −0.402473 + 0.232368i
\(836\) 0 0
\(837\) −4.34531 + 7.65708i −0.150196 + 0.264667i
\(838\) 0 0
\(839\) −4.99925 8.65896i −0.172593 0.298941i 0.766732 0.641967i \(-0.221881\pi\)
−0.939326 + 0.343026i \(0.888548\pi\)
\(840\) 0 0
\(841\) 35.0303i 1.20794i
\(842\) 0 0
\(843\) −0.587970 + 0.704249i −0.0202508 + 0.0242556i
\(844\) 0 0
\(845\) 26.7919 + 26.7919i 0.921668 + 0.921668i
\(846\) 0 0
\(847\) 8.22419 14.2447i 0.282586 0.489454i
\(848\) 0 0
\(849\) 28.8758 + 5.01790i 0.991015 + 0.172214i
\(850\) 0 0
\(851\) −3.06154 + 50.6718i −0.104948 + 1.73701i
\(852\) 0 0
\(853\) −3.06823 0.822129i −0.105054 0.0281492i 0.205909 0.978571i \(-0.433985\pi\)
−0.310963 + 0.950422i \(0.600652\pi\)
\(854\) 0 0
\(855\) −6.81250 + 19.0095i −0.232983 + 0.650112i
\(856\) 0 0
\(857\) 1.38018 1.38018i 0.0471460 0.0471460i −0.683141 0.730287i \(-0.739386\pi\)
0.730287 + 0.683141i \(0.239386\pi\)
\(858\) 0 0
\(859\) −37.4233 37.4233i −1.27687 1.27687i −0.942412 0.334453i \(-0.891448\pi\)
−0.334453 0.942412i \(-0.608552\pi\)
\(860\) 0 0
\(861\) −23.2235 + 2.08974i −0.791453 + 0.0712180i
\(862\) 0 0
\(863\) 31.6227 18.2574i 1.07645 0.621489i 0.146513 0.989209i \(-0.453195\pi\)
0.929937 + 0.367720i \(0.119861\pi\)
\(864\) 0 0
\(865\) −10.1718 + 10.1718i −0.345851 + 0.345851i
\(866\) 0 0
\(867\) −47.8667 + 33.6935i −1.62564 + 1.14429i
\(868\) 0 0
\(869\) −1.17504 + 0.314850i −0.0398603 + 0.0106805i
\(870\) 0 0
\(871\) 31.4685 + 8.43195i 1.06627 + 0.285706i
\(872\) 0 0
\(873\) 0.287498 3.48476i 0.00973033 0.117941i
\(874\) 0 0
\(875\) −16.2454 + 4.35294i −0.549194 + 0.147156i
\(876\) 0 0
\(877\) 53.5958 1.80980 0.904900 0.425623i \(-0.139945\pi\)
0.904900 + 0.425623i \(0.139945\pi\)
\(878\) 0 0
\(879\) −2.43053 + 1.71086i −0.0819797 + 0.0577058i
\(880\) 0 0
\(881\) −18.3911 + 31.8543i −0.619611 + 1.07320i 0.369945 + 0.929054i \(0.379376\pi\)
−0.989557 + 0.144145i \(0.953957\pi\)
\(882\) 0 0
\(883\) −10.8500 40.4928i −0.365132 1.36269i −0.867242 0.497887i \(-0.834109\pi\)
0.502110 0.864804i \(-0.332557\pi\)
\(884\) 0 0
\(885\) −10.6529 4.93545i −0.358093 0.165903i
\(886\) 0 0
\(887\) −1.05111 −0.0352928 −0.0176464 0.999844i \(-0.505617\pi\)
−0.0176464 + 0.999844i \(0.505617\pi\)
\(888\) 0 0
\(889\) −3.25144 −0.109050
\(890\) 0 0
\(891\) −1.08873 + 6.55330i −0.0364737 + 0.219544i
\(892\) 0 0
\(893\) −8.00388 29.8709i −0.267840 0.999592i
\(894\) 0 0
\(895\) −11.6047 + 20.1000i −0.387903 + 0.671868i
\(896\) 0 0
\(897\) 45.0422 + 63.9891i 1.50391 + 2.13653i
\(898\) 0 0
\(899\) 13.5580 0.452186
\(900\) 0 0
\(901\) −31.7987 + 8.52043i −1.05937 + 0.283857i
\(902\) 0 0
\(903\) −5.04202 + 29.0146i −0.167788 + 0.965545i
\(904\) 0 0
\(905\) −34.7479 9.31068i −1.15506 0.309498i
\(906\) 0 0
\(907\) 39.6867 10.6340i 1.31777 0.353096i 0.469631 0.882863i \(-0.344387\pi\)
0.848143 + 0.529767i \(0.177720\pi\)
\(908\) 0 0
\(909\) −7.58736 8.95188i −0.251657 0.296915i
\(910\) 0 0
\(911\) −33.4058 + 33.4058i −1.10678 + 1.10678i −0.113214 + 0.993571i \(0.536115\pi\)
−0.993571 + 0.113214i \(0.963885\pi\)
\(912\) 0 0
\(913\) −9.03815 + 5.21818i −0.299119 + 0.172696i
\(914\) 0 0
\(915\) 3.75181 + 41.6942i 0.124031 + 1.37837i
\(916\) 0 0
\(917\) −11.4652 11.4652i −0.378616 0.378616i
\(918\) 0 0
\(919\) 28.9777 28.9777i 0.955887 0.955887i −0.0431807 0.999067i \(-0.513749\pi\)
0.999067 + 0.0431807i \(0.0137491\pi\)
\(920\) 0 0
\(921\) 1.73360 + 0.803170i 0.0571239 + 0.0264654i
\(922\) 0 0
\(923\) 15.1609 + 4.06235i 0.499028 + 0.133714i
\(924\) 0 0
\(925\) −0.768905 + 2.30369i −0.0252814 + 0.0757447i
\(926\) 0 0
\(927\) −12.8864 1.06314i −0.423243 0.0349182i
\(928\) 0 0
\(929\) −6.53422 + 11.3176i −0.214381 + 0.371319i −0.953081 0.302716i \(-0.902107\pi\)
0.738700 + 0.674034i \(0.235440\pi\)
\(930\) 0 0
\(931\) −9.26871 9.26871i −0.303770 0.303770i
\(932\) 0 0
\(933\) 33.1903 + 27.7103i 1.08660 + 0.907193i
\(934\) 0 0
\(935\) 12.2239i 0.399765i
\(936\) 0 0
\(937\) −1.56828 2.71634i −0.0512334 0.0887388i 0.839271 0.543713i \(-0.182982\pi\)
−0.890505 + 0.454974i \(0.849649\pi\)
\(938\) 0 0
\(939\) 8.96933 + 7.48840i 0.292703 + 0.244375i
\(940\) 0 0
\(941\) −0.104995 + 0.0606190i −0.00342275 + 0.00197612i −0.501710 0.865036i \(-0.667296\pi\)
0.498288 + 0.867012i \(0.333962\pi\)
\(942\) 0 0
\(943\) 18.4833 + 68.9805i 0.601898 + 2.24631i
\(944\) 0 0
\(945\) −18.9945 + 0.141074i −0.617892 + 0.00458915i
\(946\) 0 0
\(947\) −32.9832 8.83783i −1.07181 0.287191i −0.320574 0.947224i \(-0.603876\pi\)
−0.751237 + 0.660033i \(0.770542\pi\)
\(948\) 0 0
\(949\) −20.9576 78.2148i −0.680312 2.53896i
\(950\) 0 0
\(951\) 4.49673 0.404633i 0.145817 0.0131211i
\(952\) 0 0
\(953\) −8.51043 14.7405i −0.275680 0.477492i 0.694626 0.719371i \(-0.255570\pi\)
−0.970306 + 0.241879i \(0.922236\pi\)
\(954\) 0 0
\(955\) −14.8514 8.57445i −0.480580 0.277463i
\(956\) 0 0
\(957\) 9.60453 3.52271i 0.310470 0.113873i
\(958\) 0 0
\(959\) −6.00066 3.46448i −0.193771 0.111874i
\(960\) 0 0
\(961\) 28.1292i 0.907392i
\(962\) 0 0
\(963\) −5.73010 31.5818i −0.184650 1.01771i
\(964\) 0 0
\(965\) −19.0632 + 33.0185i −0.613667 + 1.06290i
\(966\) 0 0
\(967\) 25.2639 6.76943i 0.812431 0.217690i 0.171396 0.985202i \(-0.445172\pi\)
0.641035 + 0.767512i \(0.278505\pi\)
\(968\) 0 0
\(969\) 15.0325 32.4467i 0.482912 1.04234i
\(970\) 0 0
\(971\) 38.6025 22.2872i 1.23881 0.715229i 0.269961 0.962871i \(-0.412989\pi\)
0.968851 + 0.247642i \(0.0796558\pi\)
\(972\) 0 0
\(973\) 25.3146i 0.811548i
\(974\) 0 0
\(975\) 1.28912 + 3.51472i 0.0412848 + 0.112561i
\(976\) 0 0
\(977\) −2.21376 + 8.26186i −0.0708244 + 0.264320i −0.992254 0.124225i \(-0.960356\pi\)
0.921430 + 0.388545i \(0.127022\pi\)
\(978\) 0 0
\(979\) −2.67415 + 9.98007i −0.0854663 + 0.318964i
\(980\) 0 0
\(981\) −13.4227 + 6.34023i −0.428555 + 0.202428i
\(982\) 0 0
\(983\) 19.4970 + 33.7698i 0.621858 + 1.07709i 0.989140 + 0.146979i \(0.0469551\pi\)
−0.367282 + 0.930110i \(0.619712\pi\)
\(984\) 0 0
\(985\) −27.9841 27.9841i −0.891647 0.891647i
\(986\) 0 0
\(987\) 23.7874 16.7440i 0.757160 0.532968i
\(988\) 0 0
\(989\) 90.1947 2.86803
\(990\) 0 0
\(991\) 10.4846 10.4846i 0.333056 0.333056i −0.520690 0.853746i \(-0.674325\pi\)
0.853746 + 0.520690i \(0.174325\pi\)
\(992\) 0 0
\(993\) −10.5141 8.77812i −0.333655 0.278565i
\(994\) 0 0
\(995\) −48.3737 27.9286i −1.53355 0.885395i
\(996\) 0 0
\(997\) 6.82342 25.4654i 0.216100 0.806496i −0.769677 0.638434i \(-0.779583\pi\)
0.985776 0.168062i \(-0.0537508\pi\)
\(998\) 0 0
\(999\) 17.2292 26.4982i 0.545108 0.838366i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.785.13 yes 152
3.2 odd 2 inner 888.2.br.a.785.27 yes 152
37.14 odd 12 inner 888.2.br.a.569.27 yes 152
111.14 even 12 inner 888.2.br.a.569.13 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.13 152 111.14 even 12 inner
888.2.br.a.569.27 yes 152 37.14 odd 12 inner
888.2.br.a.785.13 yes 152 1.1 even 1 trivial
888.2.br.a.785.27 yes 152 3.2 odd 2 inner