Properties

Label 888.2.br.a.785.27
Level $888$
Weight $2$
Character 888.785
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 785.27
Character \(\chi\) \(=\) 888.785
Dual form 888.2.br.a.569.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.996973 - 1.41635i) q^{3} +(-0.601400 - 2.24446i) q^{5} +(-0.786614 + 1.36246i) q^{7} +(-1.01209 - 2.82412i) q^{9} -0.738125 q^{11} +(-5.22905 + 1.40112i) q^{13} +(-3.77851 - 1.38587i) q^{15} +(-6.88427 - 1.84463i) q^{17} +(-2.79810 + 0.749750i) q^{19} +(1.14548 + 2.47245i) q^{21} +(5.90122 - 5.90122i) q^{23} +(-0.345771 + 0.199631i) q^{25} +(-5.00897 - 1.38210i) q^{27} +(5.65819 + 5.65819i) q^{29} +(-1.19809 + 1.19809i) q^{31} +(-0.735890 + 1.04544i) q^{33} +(3.53104 + 0.946139i) q^{35} +(4.55273 - 4.03393i) q^{37} +(-3.22875 + 8.80304i) q^{39} +(-4.27854 + 7.41065i) q^{41} +(-7.64204 - 7.64204i) q^{43} +(-5.72995 + 3.97002i) q^{45} -10.6754i q^{47} +(2.26248 + 3.91872i) q^{49} +(-9.47607 + 7.91148i) q^{51} +(4.00020 - 2.30952i) q^{53} +(0.443908 + 1.65669i) q^{55} +(-1.72773 + 4.71057i) q^{57} +(-2.81778 - 0.755023i) q^{59} +(-2.69213 - 10.0472i) q^{61} +(4.64387 + 0.842568i) q^{63} +(6.28950 + 10.8937i) q^{65} +(-5.21175 - 3.00900i) q^{67} +(-2.47483 - 14.2415i) q^{69} +(2.51092 + 1.44968i) q^{71} +14.9577i q^{73} +(-0.0619772 + 0.688760i) q^{75} +(0.580619 - 1.00566i) q^{77} +(-1.59192 + 0.426553i) q^{79} +(-6.95135 + 5.71653i) q^{81} +(12.2447 - 7.06950i) q^{83} +16.5608i q^{85} +(13.6550 - 2.37291i) q^{87} +(3.62290 - 13.5208i) q^{89} +(2.20428 - 8.22649i) q^{91} +(0.502450 + 2.89138i) q^{93} +(3.36556 + 5.82932i) q^{95} +(0.824155 + 0.824155i) q^{97} +(0.747049 + 2.08456i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.996973 1.41635i 0.575603 0.817730i
\(4\) 0 0
\(5\) −0.601400 2.24446i −0.268954 1.00375i −0.959785 0.280735i \(-0.909422\pi\)
0.690831 0.723016i \(-0.257245\pi\)
\(6\) 0 0
\(7\) −0.786614 + 1.36246i −0.297312 + 0.514960i −0.975520 0.219910i \(-0.929424\pi\)
0.678208 + 0.734870i \(0.262757\pi\)
\(8\) 0 0
\(9\) −1.01209 2.82412i −0.337363 0.941375i
\(10\) 0 0
\(11\) −0.738125 −0.222553 −0.111276 0.993789i \(-0.535494\pi\)
−0.111276 + 0.993789i \(0.535494\pi\)
\(12\) 0 0
\(13\) −5.22905 + 1.40112i −1.45028 + 0.388601i −0.896120 0.443811i \(-0.853626\pi\)
−0.554158 + 0.832412i \(0.686960\pi\)
\(14\) 0 0
\(15\) −3.77851 1.38587i −0.975608 0.357830i
\(16\) 0 0
\(17\) −6.88427 1.84463i −1.66968 0.447389i −0.704656 0.709549i \(-0.748899\pi\)
−0.965024 + 0.262160i \(0.915565\pi\)
\(18\) 0 0
\(19\) −2.79810 + 0.749750i −0.641929 + 0.172004i −0.565077 0.825038i \(-0.691154\pi\)
−0.0768521 + 0.997043i \(0.524487\pi\)
\(20\) 0 0
\(21\) 1.14548 + 2.47245i 0.249964 + 0.539533i
\(22\) 0 0
\(23\) 5.90122 5.90122i 1.23049 1.23049i 0.266713 0.963776i \(-0.414062\pi\)
0.963776 0.266713i \(-0.0859376\pi\)
\(24\) 0 0
\(25\) −0.345771 + 0.199631i −0.0691542 + 0.0399262i
\(26\) 0 0
\(27\) −5.00897 1.38210i −0.963977 0.265986i
\(28\) 0 0
\(29\) 5.65819 + 5.65819i 1.05070 + 1.05070i 0.998644 + 0.0520557i \(0.0165773\pi\)
0.0520557 + 0.998644i \(0.483423\pi\)
\(30\) 0 0
\(31\) −1.19809 + 1.19809i −0.215183 + 0.215183i −0.806465 0.591282i \(-0.798622\pi\)
0.591282 + 0.806465i \(0.298622\pi\)
\(32\) 0 0
\(33\) −0.735890 + 1.04544i −0.128102 + 0.181988i
\(34\) 0 0
\(35\) 3.53104 + 0.946139i 0.596855 + 0.159927i
\(36\) 0 0
\(37\) 4.55273 4.03393i 0.748465 0.663175i
\(38\) 0 0
\(39\) −3.22875 + 8.80304i −0.517013 + 1.40962i
\(40\) 0 0
\(41\) −4.27854 + 7.41065i −0.668196 + 1.15735i 0.310212 + 0.950667i \(0.399600\pi\)
−0.978408 + 0.206682i \(0.933733\pi\)
\(42\) 0 0
\(43\) −7.64204 7.64204i −1.16540 1.16540i −0.983275 0.182125i \(-0.941702\pi\)
−0.182125 0.983275i \(-0.558298\pi\)
\(44\) 0 0
\(45\) −5.72995 + 3.97002i −0.854170 + 0.591815i
\(46\) 0 0
\(47\) 10.6754i 1.55717i −0.627540 0.778584i \(-0.715938\pi\)
0.627540 0.778584i \(-0.284062\pi\)
\(48\) 0 0
\(49\) 2.26248 + 3.91872i 0.323211 + 0.559818i
\(50\) 0 0
\(51\) −9.47607 + 7.91148i −1.32692 + 1.10783i
\(52\) 0 0
\(53\) 4.00020 2.30952i 0.549470 0.317237i −0.199438 0.979910i \(-0.563912\pi\)
0.748908 + 0.662674i \(0.230578\pi\)
\(54\) 0 0
\(55\) 0.443908 + 1.65669i 0.0598566 + 0.223388i
\(56\) 0 0
\(57\) −1.72773 + 4.71057i −0.228843 + 0.623931i
\(58\) 0 0
\(59\) −2.81778 0.755023i −0.366844 0.0982956i 0.0706878 0.997498i \(-0.477481\pi\)
−0.437532 + 0.899203i \(0.644147\pi\)
\(60\) 0 0
\(61\) −2.69213 10.0472i −0.344692 1.28641i −0.892972 0.450112i \(-0.851384\pi\)
0.548280 0.836295i \(-0.315283\pi\)
\(62\) 0 0
\(63\) 4.64387 + 0.842568i 0.585072 + 0.106154i
\(64\) 0 0
\(65\) 6.28950 + 10.8937i 0.780117 + 1.35120i
\(66\) 0 0
\(67\) −5.21175 3.00900i −0.636716 0.367608i 0.146632 0.989191i \(-0.453157\pi\)
−0.783348 + 0.621583i \(0.786490\pi\)
\(68\) 0 0
\(69\) −2.47483 14.2415i −0.297935 1.71448i
\(70\) 0 0
\(71\) 2.51092 + 1.44968i 0.297991 + 0.172045i 0.641540 0.767089i \(-0.278296\pi\)
−0.343549 + 0.939135i \(0.611629\pi\)
\(72\) 0 0
\(73\) 14.9577i 1.75067i 0.483517 + 0.875335i \(0.339359\pi\)
−0.483517 + 0.875335i \(0.660641\pi\)
\(74\) 0 0
\(75\) −0.0619772 + 0.688760i −0.00715651 + 0.0795311i
\(76\) 0 0
\(77\) 0.580619 1.00566i 0.0661677 0.114606i
\(78\) 0 0
\(79\) −1.59192 + 0.426553i −0.179105 + 0.0479910i −0.347257 0.937770i \(-0.612887\pi\)
0.168152 + 0.985761i \(0.446220\pi\)
\(80\) 0 0
\(81\) −6.95135 + 5.71653i −0.772372 + 0.635170i
\(82\) 0 0
\(83\) 12.2447 7.06950i 1.34403 0.775979i 0.356638 0.934243i \(-0.383923\pi\)
0.987397 + 0.158264i \(0.0505896\pi\)
\(84\) 0 0
\(85\) 16.5608i 1.79627i
\(86\) 0 0
\(87\) 13.6550 2.37291i 1.46397 0.254403i
\(88\) 0 0
\(89\) 3.62290 13.5208i 0.384027 1.43321i −0.455669 0.890149i \(-0.650600\pi\)
0.839695 0.543058i \(-0.182733\pi\)
\(90\) 0 0
\(91\) 2.20428 8.22649i 0.231072 0.862371i
\(92\) 0 0
\(93\) 0.502450 + 2.89138i 0.0521017 + 0.299822i
\(94\) 0 0
\(95\) 3.36556 + 5.82932i 0.345299 + 0.598076i
\(96\) 0 0
\(97\) 0.824155 + 0.824155i 0.0836803 + 0.0836803i 0.747708 0.664028i \(-0.231154\pi\)
−0.664028 + 0.747708i \(0.731154\pi\)
\(98\) 0 0
\(99\) 0.747049 + 2.08456i 0.0750812 + 0.209506i
\(100\) 0 0
\(101\) −3.91158 −0.389217 −0.194608 0.980881i \(-0.562344\pi\)
−0.194608 + 0.980881i \(0.562344\pi\)
\(102\) 0 0
\(103\) 3.04766 3.04766i 0.300295 0.300295i −0.540834 0.841129i \(-0.681891\pi\)
0.841129 + 0.540834i \(0.181891\pi\)
\(104\) 0 0
\(105\) 4.86042 4.05791i 0.474328 0.396012i
\(106\) 0 0
\(107\) −9.26572 5.34957i −0.895751 0.517162i −0.0199320 0.999801i \(-0.506345\pi\)
−0.875819 + 0.482639i \(0.839678\pi\)
\(108\) 0 0
\(109\) 1.28071 4.77966i 0.122669 0.457809i −0.877076 0.480351i \(-0.840509\pi\)
0.999746 + 0.0225422i \(0.00717600\pi\)
\(110\) 0 0
\(111\) −1.17451 10.4700i −0.111479 0.993767i
\(112\) 0 0
\(113\) −2.34298 + 8.74411i −0.220409 + 0.822577i 0.763783 + 0.645473i \(0.223340\pi\)
−0.984192 + 0.177104i \(0.943327\pi\)
\(114\) 0 0
\(115\) −16.7940 9.69603i −1.56605 0.904159i
\(116\) 0 0
\(117\) 9.24921 + 13.3494i 0.855090 + 1.23416i
\(118\) 0 0
\(119\) 7.92849 7.92849i 0.726804 0.726804i
\(120\) 0 0
\(121\) −10.4552 −0.950470
\(122\) 0 0
\(123\) 6.23048 + 13.4481i 0.561783 + 1.21258i
\(124\) 0 0
\(125\) −7.55927 7.55927i −0.676121 0.676121i
\(126\) 0 0
\(127\) 1.03336 + 1.78984i 0.0916963 + 0.158823i 0.908225 0.418482i \(-0.137438\pi\)
−0.816529 + 0.577305i \(0.804104\pi\)
\(128\) 0 0
\(129\) −18.4427 + 3.20489i −1.62379 + 0.282175i
\(130\) 0 0
\(131\) 2.66749 9.95520i 0.233060 0.869790i −0.745954 0.665997i \(-0.768006\pi\)
0.979014 0.203793i \(-0.0653270\pi\)
\(132\) 0 0
\(133\) 1.17953 4.40206i 0.102278 0.381707i
\(134\) 0 0
\(135\) −0.0896718 + 12.0736i −0.00771772 + 1.03913i
\(136\) 0 0
\(137\) 4.40430i 0.376285i −0.982142 0.188142i \(-0.939753\pi\)
0.982142 0.188142i \(-0.0602466\pi\)
\(138\) 0 0
\(139\) 13.9351 8.04542i 1.18196 0.682404i 0.225491 0.974245i \(-0.427601\pi\)
0.956467 + 0.291842i \(0.0942680\pi\)
\(140\) 0 0
\(141\) −15.1201 10.6431i −1.27334 0.896310i
\(142\) 0 0
\(143\) 3.85969 1.03420i 0.322764 0.0864843i
\(144\) 0 0
\(145\) 9.29672 16.1024i 0.772051 1.33723i
\(146\) 0 0
\(147\) 7.80591 + 0.702406i 0.643821 + 0.0579334i
\(148\) 0 0
\(149\) 5.92774i 0.485620i −0.970074 0.242810i \(-0.921931\pi\)
0.970074 0.242810i \(-0.0780691\pi\)
\(150\) 0 0
\(151\) 13.3541 + 7.71000i 1.08674 + 0.627431i 0.932707 0.360635i \(-0.117440\pi\)
0.154035 + 0.988065i \(0.450773\pi\)
\(152\) 0 0
\(153\) 1.75802 + 21.3090i 0.142128 + 1.72273i
\(154\) 0 0
\(155\) 3.40959 + 1.96853i 0.273865 + 0.158116i
\(156\) 0 0
\(157\) 1.04147 + 1.80388i 0.0831185 + 0.143965i 0.904588 0.426287i \(-0.140179\pi\)
−0.821469 + 0.570253i \(0.806845\pi\)
\(158\) 0 0
\(159\) 0.717010 7.96821i 0.0568626 0.631920i
\(160\) 0 0
\(161\) 3.39817 + 12.6821i 0.267813 + 0.999492i
\(162\) 0 0
\(163\) 12.4157 + 3.32678i 0.972475 + 0.260574i 0.709872 0.704330i \(-0.248753\pi\)
0.262602 + 0.964904i \(0.415419\pi\)
\(164\) 0 0
\(165\) 2.78901 + 1.02294i 0.217124 + 0.0796361i
\(166\) 0 0
\(167\) −1.49582 5.58247i −0.115750 0.431984i 0.883592 0.468258i \(-0.155118\pi\)
−0.999342 + 0.0362731i \(0.988451\pi\)
\(168\) 0 0
\(169\) 14.1215 8.15306i 1.08627 0.627159i
\(170\) 0 0
\(171\) 4.94932 + 7.14338i 0.378484 + 0.546268i
\(172\) 0 0
\(173\) −3.09539 5.36137i −0.235338 0.407618i 0.724033 0.689766i \(-0.242286\pi\)
−0.959371 + 0.282148i \(0.908953\pi\)
\(174\) 0 0
\(175\) 0.628130i 0.0474822i
\(176\) 0 0
\(177\) −3.87863 + 3.23823i −0.291536 + 0.243400i
\(178\) 0 0
\(179\) −7.06290 7.06290i −0.527906 0.527906i 0.392042 0.919947i \(-0.371769\pi\)
−0.919947 + 0.392042i \(0.871769\pi\)
\(180\) 0 0
\(181\) −7.74084 + 13.4075i −0.575372 + 0.996574i 0.420629 + 0.907233i \(0.361809\pi\)
−0.996001 + 0.0893411i \(0.971524\pi\)
\(182\) 0 0
\(183\) −16.9143 6.20375i −1.25034 0.458594i
\(184\) 0 0
\(185\) −11.7920 7.79240i −0.866965 0.572908i
\(186\) 0 0
\(187\) 5.08145 + 1.36157i 0.371592 + 0.0995679i
\(188\) 0 0
\(189\) 5.82318 5.73732i 0.423574 0.417329i
\(190\) 0 0
\(191\) 5.21860 5.21860i 0.377605 0.377605i −0.492633 0.870237i \(-0.663965\pi\)
0.870237 + 0.492633i \(0.163965\pi\)
\(192\) 0 0
\(193\) 11.6023 + 11.6023i 0.835153 + 0.835153i 0.988216 0.153064i \(-0.0489140\pi\)
−0.153064 + 0.988216i \(0.548914\pi\)
\(194\) 0 0
\(195\) 21.6998 + 1.95263i 1.55396 + 0.139831i
\(196\) 0 0
\(197\) 14.7499 8.51587i 1.05089 0.606730i 0.127990 0.991775i \(-0.459147\pi\)
0.922898 + 0.385045i \(0.125814\pi\)
\(198\) 0 0
\(199\) −16.9980 + 16.9980i −1.20495 + 1.20495i −0.232312 + 0.972641i \(0.574629\pi\)
−0.972641 + 0.232312i \(0.925371\pi\)
\(200\) 0 0
\(201\) −9.45777 + 4.38176i −0.667100 + 0.309065i
\(202\) 0 0
\(203\) −12.1598 + 3.25822i −0.853454 + 0.228682i
\(204\) 0 0
\(205\) 19.2060 + 5.14623i 1.34140 + 0.359428i
\(206\) 0 0
\(207\) −22.6383 10.6932i −1.57347 0.743229i
\(208\) 0 0
\(209\) 2.06535 0.553409i 0.142863 0.0382801i
\(210\) 0 0
\(211\) −0.208227 −0.0143350 −0.00716748 0.999974i \(-0.502281\pi\)
−0.00716748 + 0.999974i \(0.502281\pi\)
\(212\) 0 0
\(213\) 4.55657 2.11105i 0.312211 0.144647i
\(214\) 0 0
\(215\) −12.5563 + 21.7482i −0.856333 + 1.48321i
\(216\) 0 0
\(217\) −0.689910 2.57478i −0.0468341 0.174787i
\(218\) 0 0
\(219\) 21.1854 + 14.9125i 1.43157 + 1.00769i
\(220\) 0 0
\(221\) 38.5828 2.59536
\(222\) 0 0
\(223\) 26.8429 1.79753 0.898767 0.438428i \(-0.144464\pi\)
0.898767 + 0.438428i \(0.144464\pi\)
\(224\) 0 0
\(225\) 0.913734 + 0.774456i 0.0609156 + 0.0516304i
\(226\) 0 0
\(227\) 1.90289 + 7.10169i 0.126299 + 0.471356i 0.999883 0.0153191i \(-0.00487640\pi\)
−0.873583 + 0.486675i \(0.838210\pi\)
\(228\) 0 0
\(229\) −5.67009 + 9.82088i −0.374690 + 0.648982i −0.990281 0.139084i \(-0.955584\pi\)
0.615591 + 0.788066i \(0.288918\pi\)
\(230\) 0 0
\(231\) −0.845507 1.82498i −0.0556303 0.120075i
\(232\) 0 0
\(233\) −24.3925 −1.59801 −0.799004 0.601325i \(-0.794640\pi\)
−0.799004 + 0.601325i \(0.794640\pi\)
\(234\) 0 0
\(235\) −23.9605 + 6.42019i −1.56301 + 0.418807i
\(236\) 0 0
\(237\) −0.982952 + 2.67998i −0.0638496 + 0.174083i
\(238\) 0 0
\(239\) 12.1207 + 3.24773i 0.784022 + 0.210078i 0.628557 0.777763i \(-0.283646\pi\)
0.155465 + 0.987841i \(0.450312\pi\)
\(240\) 0 0
\(241\) 2.41369 0.646746i 0.155479 0.0416606i −0.180240 0.983623i \(-0.557687\pi\)
0.335719 + 0.941962i \(0.391021\pi\)
\(242\) 0 0
\(243\) 1.16630 + 15.5448i 0.0748182 + 0.997197i
\(244\) 0 0
\(245\) 7.43475 7.43475i 0.474989 0.474989i
\(246\) 0 0
\(247\) 13.5809 7.84096i 0.864135 0.498908i
\(248\) 0 0
\(249\) 2.19479 24.3909i 0.139089 1.54571i
\(250\) 0 0
\(251\) −10.8542 10.8542i −0.685113 0.685113i 0.276035 0.961148i \(-0.410980\pi\)
−0.961148 + 0.276035i \(0.910980\pi\)
\(252\) 0 0
\(253\) −4.35584 + 4.35584i −0.273849 + 0.273849i
\(254\) 0 0
\(255\) 23.4559 + 16.5107i 1.46886 + 1.03394i
\(256\) 0 0
\(257\) 19.4702 + 5.21701i 1.21451 + 0.325428i 0.808532 0.588452i \(-0.200263\pi\)
0.405983 + 0.913881i \(0.366929\pi\)
\(258\) 0 0
\(259\) 1.91481 + 9.37605i 0.118981 + 0.582599i
\(260\) 0 0
\(261\) 10.2528 21.7060i 0.634635 1.34357i
\(262\) 0 0
\(263\) 7.97220 13.8083i 0.491587 0.851454i −0.508366 0.861141i \(-0.669750\pi\)
0.999953 + 0.00968732i \(0.00308362\pi\)
\(264\) 0 0
\(265\) −7.58933 7.58933i −0.466209 0.466209i
\(266\) 0 0
\(267\) −15.5383 18.6112i −0.950929 1.13899i
\(268\) 0 0
\(269\) 8.39048i 0.511577i −0.966733 0.255788i \(-0.917665\pi\)
0.966733 0.255788i \(-0.0823350\pi\)
\(270\) 0 0
\(271\) −10.4866 18.1634i −0.637017 1.10335i −0.986084 0.166249i \(-0.946835\pi\)
0.349066 0.937098i \(-0.386499\pi\)
\(272\) 0 0
\(273\) −9.45398 11.3236i −0.572181 0.685337i
\(274\) 0 0
\(275\) 0.255222 0.147353i 0.0153905 0.00888570i
\(276\) 0 0
\(277\) −1.77283 6.61627i −0.106519 0.397533i 0.891994 0.452047i \(-0.149306\pi\)
−0.998513 + 0.0545133i \(0.982639\pi\)
\(278\) 0 0
\(279\) 4.59613 + 2.17098i 0.275163 + 0.129973i
\(280\) 0 0
\(281\) −0.511629 0.137091i −0.0305213 0.00817815i 0.243526 0.969894i \(-0.421696\pi\)
−0.274047 + 0.961716i \(0.588363\pi\)
\(282\) 0 0
\(283\) −4.37955 16.3447i −0.260337 0.971593i −0.965043 0.262092i \(-0.915587\pi\)
0.704705 0.709500i \(-0.251079\pi\)
\(284\) 0 0
\(285\) 11.6117 + 1.04487i 0.687819 + 0.0618926i
\(286\) 0 0
\(287\) −6.73112 11.6586i −0.397326 0.688188i
\(288\) 0 0
\(289\) 29.2680 + 16.8979i 1.72165 + 0.993995i
\(290\) 0 0
\(291\) 1.98895 0.345631i 0.116594 0.0202613i
\(292\) 0 0
\(293\) −1.48615 0.858026i −0.0868215 0.0501264i 0.455961 0.890000i \(-0.349296\pi\)
−0.542782 + 0.839873i \(0.682629\pi\)
\(294\) 0 0
\(295\) 6.77846i 0.394657i
\(296\) 0 0
\(297\) 3.69725 + 1.02016i 0.214536 + 0.0591959i
\(298\) 0 0
\(299\) −22.5895 + 39.1261i −1.30638 + 2.26272i
\(300\) 0 0
\(301\) 16.4233 4.40061i 0.946622 0.253647i
\(302\) 0 0
\(303\) −3.89974 + 5.54016i −0.224034 + 0.318274i
\(304\) 0 0
\(305\) −20.9313 + 12.0847i −1.19853 + 0.691969i
\(306\) 0 0
\(307\) 1.10309i 0.0629568i −0.999504 0.0314784i \(-0.989978\pi\)
0.999504 0.0314784i \(-0.0100215\pi\)
\(308\) 0 0
\(309\) −1.27812 7.35499i −0.0727095 0.418411i
\(310\) 0 0
\(311\) −6.46091 + 24.1124i −0.366364 + 1.36729i 0.499198 + 0.866488i \(0.333628\pi\)
−0.865562 + 0.500802i \(0.833038\pi\)
\(312\) 0 0
\(313\) 1.74599 6.51613i 0.0986892 0.368313i −0.898864 0.438228i \(-0.855606\pi\)
0.997553 + 0.0699151i \(0.0222728\pi\)
\(314\) 0 0
\(315\) −0.901715 10.9297i −0.0508059 0.615817i
\(316\) 0 0
\(317\) 1.30334 + 2.25745i 0.0732029 + 0.126791i 0.900303 0.435263i \(-0.143345\pi\)
−0.827100 + 0.562054i \(0.810011\pi\)
\(318\) 0 0
\(319\) −4.17645 4.17645i −0.233836 0.233836i
\(320\) 0 0
\(321\) −16.8145 + 7.79013i −0.938496 + 0.434802i
\(322\) 0 0
\(323\) 20.6459 1.14877
\(324\) 0 0
\(325\) 1.52835 1.52835i 0.0847775 0.0847775i
\(326\) 0 0
\(327\) −5.49284 6.57912i −0.303755 0.363826i
\(328\) 0 0
\(329\) 14.5448 + 8.39742i 0.801879 + 0.462965i
\(330\) 0 0
\(331\) −2.04670 + 7.63839i −0.112497 + 0.419844i −0.999087 0.0427110i \(-0.986401\pi\)
0.886591 + 0.462555i \(0.153067\pi\)
\(332\) 0 0
\(333\) −16.0001 8.77478i −0.876800 0.480855i
\(334\) 0 0
\(335\) −3.61923 + 13.5071i −0.197740 + 0.737974i
\(336\) 0 0
\(337\) 1.60325 + 0.925638i 0.0873347 + 0.0504227i 0.543031 0.839712i \(-0.317276\pi\)
−0.455697 + 0.890135i \(0.650610\pi\)
\(338\) 0 0
\(339\) 10.0488 + 12.0361i 0.545777 + 0.653712i
\(340\) 0 0
\(341\) 0.884340 0.884340i 0.0478897 0.0478897i
\(342\) 0 0
\(343\) −18.1314 −0.979003
\(344\) 0 0
\(345\) −30.4761 + 14.1195i −1.64078 + 0.760169i
\(346\) 0 0
\(347\) −7.93266 7.93266i −0.425848 0.425848i 0.461364 0.887211i \(-0.347360\pi\)
−0.887211 + 0.461364i \(0.847360\pi\)
\(348\) 0 0
\(349\) 10.9449 + 18.9571i 0.585866 + 1.01475i 0.994767 + 0.102171i \(0.0325787\pi\)
−0.408901 + 0.912579i \(0.634088\pi\)
\(350\) 0 0
\(351\) 28.1287 + 0.208914i 1.50140 + 0.0111510i
\(352\) 0 0
\(353\) 3.38668 12.6392i 0.180255 0.672719i −0.815342 0.578979i \(-0.803451\pi\)
0.995597 0.0937398i \(-0.0298822\pi\)
\(354\) 0 0
\(355\) 1.74368 6.50749i 0.0925447 0.345382i
\(356\) 0 0
\(357\) −3.32502 19.1340i −0.175979 1.01268i
\(358\) 0 0
\(359\) 11.5880i 0.611590i 0.952097 + 0.305795i \(0.0989222\pi\)
−0.952097 + 0.305795i \(0.901078\pi\)
\(360\) 0 0
\(361\) −9.18722 + 5.30424i −0.483538 + 0.279171i
\(362\) 0 0
\(363\) −10.4235 + 14.8082i −0.547093 + 0.777228i
\(364\) 0 0
\(365\) 33.5720 8.99558i 1.75724 0.470850i
\(366\) 0 0
\(367\) 5.41597 9.38074i 0.282711 0.489671i −0.689340 0.724438i \(-0.742099\pi\)
0.972052 + 0.234767i \(0.0754328\pi\)
\(368\) 0 0
\(369\) 25.2589 + 4.58289i 1.31492 + 0.238576i
\(370\) 0 0
\(371\) 7.26680i 0.377273i
\(372\) 0 0
\(373\) 20.0111 + 11.5534i 1.03614 + 0.598214i 0.918737 0.394870i \(-0.129211\pi\)
0.117401 + 0.993085i \(0.462544\pi\)
\(374\) 0 0
\(375\) −18.2429 + 3.17018i −0.942062 + 0.163707i
\(376\) 0 0
\(377\) −37.5148 21.6592i −1.93211 1.11550i
\(378\) 0 0
\(379\) −9.70115 16.8029i −0.498314 0.863106i 0.501684 0.865051i \(-0.332714\pi\)
−0.999998 + 0.00194516i \(0.999381\pi\)
\(380\) 0 0
\(381\) 3.56527 + 0.320817i 0.182655 + 0.0164359i
\(382\) 0 0
\(383\) 3.55621 + 13.2720i 0.181714 + 0.678166i 0.995310 + 0.0967353i \(0.0308400\pi\)
−0.813596 + 0.581430i \(0.802493\pi\)
\(384\) 0 0
\(385\) −2.60635 0.698369i −0.132832 0.0355922i
\(386\) 0 0
\(387\) −13.8476 + 29.3165i −0.703915 + 1.49024i
\(388\) 0 0
\(389\) −0.882991 3.29537i −0.0447694 0.167082i 0.939922 0.341390i \(-0.110898\pi\)
−0.984691 + 0.174308i \(0.944231\pi\)
\(390\) 0 0
\(391\) −51.5112 + 29.7400i −2.60503 + 1.50402i
\(392\) 0 0
\(393\) −11.4406 13.7032i −0.577103 0.691233i
\(394\) 0 0
\(395\) 1.91476 + 3.31646i 0.0963421 + 0.166869i
\(396\) 0 0
\(397\) 17.7233i 0.889506i 0.895653 + 0.444753i \(0.146709\pi\)
−0.895653 + 0.444753i \(0.853291\pi\)
\(398\) 0 0
\(399\) −5.05889 6.05935i −0.253261 0.303347i
\(400\) 0 0
\(401\) −3.96835 3.96835i −0.198170 0.198170i 0.601045 0.799215i \(-0.294751\pi\)
−0.799215 + 0.601045i \(0.794751\pi\)
\(402\) 0 0
\(403\) 4.58621 7.94354i 0.228455 0.395696i
\(404\) 0 0
\(405\) 17.0110 + 12.1641i 0.845286 + 0.604437i
\(406\) 0 0
\(407\) −3.36048 + 2.97755i −0.166573 + 0.147592i
\(408\) 0 0
\(409\) −22.8004 6.10934i −1.12741 0.302087i −0.353529 0.935424i \(-0.615018\pi\)
−0.773877 + 0.633336i \(0.781685\pi\)
\(410\) 0 0
\(411\) −6.23803 4.39097i −0.307699 0.216590i
\(412\) 0 0
\(413\) 3.24519 3.24519i 0.159685 0.159685i
\(414\) 0 0
\(415\) −23.2312 23.2312i −1.14037 1.14037i
\(416\) 0 0
\(417\) 2.49777 27.7580i 0.122316 1.35932i
\(418\) 0 0
\(419\) −9.13532 + 5.27428i −0.446289 + 0.257665i −0.706262 0.707951i \(-0.749620\pi\)
0.259972 + 0.965616i \(0.416287\pi\)
\(420\) 0 0
\(421\) −1.74417 + 1.74417i −0.0850059 + 0.0850059i −0.748331 0.663325i \(-0.769145\pi\)
0.663325 + 0.748331i \(0.269145\pi\)
\(422\) 0 0
\(423\) −30.1487 + 10.8045i −1.46588 + 0.525331i
\(424\) 0 0
\(425\) 2.74863 0.736493i 0.133328 0.0357251i
\(426\) 0 0
\(427\) 15.8065 + 4.23533i 0.764929 + 0.204962i
\(428\) 0 0
\(429\) 2.38322 6.49774i 0.115063 0.313714i
\(430\) 0 0
\(431\) −21.5800 + 5.78234i −1.03947 + 0.278525i −0.737894 0.674916i \(-0.764180\pi\)
−0.301577 + 0.953442i \(0.597513\pi\)
\(432\) 0 0
\(433\) −12.1314 −0.582996 −0.291498 0.956571i \(-0.594154\pi\)
−0.291498 + 0.956571i \(0.594154\pi\)
\(434\) 0 0
\(435\) −13.5380 29.2211i −0.649099 1.40104i
\(436\) 0 0
\(437\) −12.0878 + 20.9367i −0.578237 + 1.00154i
\(438\) 0 0
\(439\) −9.09223 33.9327i −0.433949 1.61952i −0.743570 0.668658i \(-0.766869\pi\)
0.309621 0.950860i \(-0.399798\pi\)
\(440\) 0 0
\(441\) 8.77713 10.3556i 0.417959 0.493125i
\(442\) 0 0
\(443\) 22.8962 1.08783 0.543916 0.839139i \(-0.316941\pi\)
0.543916 + 0.839139i \(0.316941\pi\)
\(444\) 0 0
\(445\) −32.5258 −1.54187
\(446\) 0 0
\(447\) −8.39576 5.90980i −0.397106 0.279524i
\(448\) 0 0
\(449\) −0.735701 2.74567i −0.0347199 0.129576i 0.946391 0.323024i \(-0.104700\pi\)
−0.981111 + 0.193448i \(0.938033\pi\)
\(450\) 0 0
\(451\) 3.15810 5.46999i 0.148709 0.257572i
\(452\) 0 0
\(453\) 24.2337 11.2274i 1.13860 0.527510i
\(454\) 0 0
\(455\) −19.7896 −0.927753
\(456\) 0 0
\(457\) −32.7026 + 8.76263i −1.52976 + 0.409899i −0.922941 0.384940i \(-0.874222\pi\)
−0.606821 + 0.794839i \(0.707555\pi\)
\(458\) 0 0
\(459\) 31.9336 + 18.7545i 1.49053 + 0.875384i
\(460\) 0 0
\(461\) −34.9168 9.35594i −1.62624 0.435749i −0.673413 0.739267i \(-0.735172\pi\)
−0.952826 + 0.303517i \(0.901839\pi\)
\(462\) 0 0
\(463\) 10.7494 2.88030i 0.499568 0.133859i −0.000231714 1.00000i \(-0.500074\pi\)
0.499799 + 0.866141i \(0.333407\pi\)
\(464\) 0 0
\(465\) 6.18739 2.86660i 0.286933 0.132935i
\(466\) 0 0
\(467\) 4.40877 4.40877i 0.204013 0.204013i −0.597704 0.801717i \(-0.703920\pi\)
0.801717 + 0.597704i \(0.203920\pi\)
\(468\) 0 0
\(469\) 8.19927 4.73385i 0.378607 0.218589i
\(470\) 0 0
\(471\) 3.59325 + 0.323334i 0.165568 + 0.0148984i
\(472\) 0 0
\(473\) 5.64078 + 5.64078i 0.259363 + 0.259363i
\(474\) 0 0
\(475\) 0.817830 0.817830i 0.0375246 0.0375246i
\(476\) 0 0
\(477\) −10.5709 8.95963i −0.484010 0.410233i
\(478\) 0 0
\(479\) 27.7943 + 7.44746i 1.26995 + 0.340283i 0.830014 0.557743i \(-0.188333\pi\)
0.439941 + 0.898027i \(0.354999\pi\)
\(480\) 0 0
\(481\) −18.1545 + 27.4726i −0.827772 + 1.25264i
\(482\) 0 0
\(483\) 21.3502 + 7.83075i 0.971468 + 0.356311i
\(484\) 0 0
\(485\) 1.35413 2.34543i 0.0614880 0.106500i
\(486\) 0 0
\(487\) 19.1433 + 19.1433i 0.867467 + 0.867467i 0.992191 0.124724i \(-0.0398046\pi\)
−0.124724 + 0.992191i \(0.539805\pi\)
\(488\) 0 0
\(489\) 17.0900 14.2683i 0.772838 0.645234i
\(490\) 0 0
\(491\) 26.1251i 1.17901i −0.807766 0.589504i \(-0.799323\pi\)
0.807766 0.589504i \(-0.200677\pi\)
\(492\) 0 0
\(493\) −28.5152 49.3898i −1.28426 2.22440i
\(494\) 0 0
\(495\) 4.22942 2.93037i 0.190098 0.131710i
\(496\) 0 0
\(497\) −3.95025 + 2.28068i −0.177193 + 0.102302i
\(498\) 0 0
\(499\) 0.0835255 + 0.311722i 0.00373912 + 0.0139546i 0.967770 0.251835i \(-0.0810340\pi\)
−0.964031 + 0.265790i \(0.914367\pi\)
\(500\) 0 0
\(501\) −9.39802 3.44697i −0.419872 0.153999i
\(502\) 0 0
\(503\) 3.07410 + 0.823702i 0.137067 + 0.0367271i 0.326700 0.945128i \(-0.394063\pi\)
−0.189633 + 0.981855i \(0.560730\pi\)
\(504\) 0 0
\(505\) 2.35242 + 8.77937i 0.104682 + 0.390677i
\(506\) 0 0
\(507\) 2.53119 28.1294i 0.112414 1.24927i
\(508\) 0 0
\(509\) −0.869109 1.50534i −0.0385226 0.0667231i 0.846121 0.532990i \(-0.178932\pi\)
−0.884644 + 0.466267i \(0.845598\pi\)
\(510\) 0 0
\(511\) −20.3792 11.7660i −0.901525 0.520495i
\(512\) 0 0
\(513\) 15.0519 + 0.111792i 0.664556 + 0.00493572i
\(514\) 0 0
\(515\) −8.67321 5.00748i −0.382187 0.220656i
\(516\) 0 0
\(517\) 7.87978i 0.346552i
\(518\) 0 0
\(519\) −10.6796 0.960991i −0.468782 0.0421828i
\(520\) 0 0
\(521\) −16.3152 + 28.2588i −0.714783 + 1.23804i 0.248260 + 0.968693i \(0.420141\pi\)
−0.963043 + 0.269347i \(0.913192\pi\)
\(522\) 0 0
\(523\) 8.61180 2.30753i 0.376568 0.100901i −0.0655704 0.997848i \(-0.520887\pi\)
0.442138 + 0.896947i \(0.354220\pi\)
\(524\) 0 0
\(525\) −0.889652 0.626229i −0.0388276 0.0273309i
\(526\) 0 0
\(527\) 10.4580 6.03793i 0.455558 0.263017i
\(528\) 0 0
\(529\) 46.6488i 2.02821i
\(530\) 0 0
\(531\) 0.719572 + 8.72192i 0.0312268 + 0.378499i
\(532\) 0 0
\(533\) 11.9895 44.7454i 0.519323 1.93814i
\(534\) 0 0
\(535\) −6.43446 + 24.0137i −0.278186 + 1.03820i
\(536\) 0 0
\(537\) −17.0450 + 2.96201i −0.735548 + 0.127820i
\(538\) 0 0
\(539\) −1.66999 2.89251i −0.0719316 0.124589i
\(540\) 0 0
\(541\) −25.0556 25.0556i −1.07722 1.07722i −0.996757 0.0804666i \(-0.974359\pi\)
−0.0804666 0.996757i \(-0.525641\pi\)
\(542\) 0 0
\(543\) 11.2723 + 24.3307i 0.483742 + 1.04413i
\(544\) 0 0
\(545\) −11.4980 −0.492518
\(546\) 0 0
\(547\) −14.9873 + 14.9873i −0.640813 + 0.640813i −0.950755 0.309943i \(-0.899690\pi\)
0.309943 + 0.950755i \(0.399690\pi\)
\(548\) 0 0
\(549\) −25.6497 + 17.7715i −1.09470 + 0.758470i
\(550\) 0 0
\(551\) −20.0744 11.5900i −0.855200 0.493750i
\(552\) 0 0
\(553\) 0.671066 2.50445i 0.0285366 0.106500i
\(554\) 0 0
\(555\) −22.7931 + 8.93278i −0.967512 + 0.379175i
\(556\) 0 0
\(557\) −0.774505 + 2.89049i −0.0328168 + 0.122474i −0.980391 0.197061i \(-0.936860\pi\)
0.947574 + 0.319535i \(0.103527\pi\)
\(558\) 0 0
\(559\) 50.6681 + 29.2532i 2.14303 + 1.23728i
\(560\) 0 0
\(561\) 6.99453 5.83966i 0.295309 0.246550i
\(562\) 0 0
\(563\) −10.5667 + 10.5667i −0.445333 + 0.445333i −0.893799 0.448467i \(-0.851970\pi\)
0.448467 + 0.893799i \(0.351970\pi\)
\(564\) 0 0
\(565\) 21.0348 0.884942
\(566\) 0 0
\(567\) −2.32049 13.9676i −0.0974516 0.586584i
\(568\) 0 0
\(569\) 20.3507 + 20.3507i 0.853144 + 0.853144i 0.990519 0.137375i \(-0.0438666\pi\)
−0.137375 + 0.990519i \(0.543867\pi\)
\(570\) 0 0
\(571\) −4.11144 7.12122i −0.172058 0.298014i 0.767081 0.641550i \(-0.221708\pi\)
−0.939139 + 0.343537i \(0.888375\pi\)
\(572\) 0 0
\(573\) −2.18856 12.5942i −0.0914283 0.526129i
\(574\) 0 0
\(575\) −0.862405 + 3.21854i −0.0359648 + 0.134222i
\(576\) 0 0
\(577\) 7.90121 29.4877i 0.328932 1.22759i −0.581368 0.813640i \(-0.697482\pi\)
0.910300 0.413949i \(-0.135851\pi\)
\(578\) 0 0
\(579\) 28.0001 4.86573i 1.16364 0.202213i
\(580\) 0 0
\(581\) 22.2439i 0.922832i
\(582\) 0 0
\(583\) −2.95265 + 1.70471i −0.122286 + 0.0706020i
\(584\) 0 0
\(585\) 24.3997 28.7878i 1.00880 1.19023i
\(586\) 0 0
\(587\) −8.10721 + 2.17232i −0.334620 + 0.0896612i −0.422217 0.906495i \(-0.638748\pi\)
0.0875968 + 0.996156i \(0.472081\pi\)
\(588\) 0 0
\(589\) 2.45411 4.25065i 0.101120 0.175145i
\(590\) 0 0
\(591\) 2.64382 29.3811i 0.108752 1.20858i
\(592\) 0 0
\(593\) 19.5338i 0.802155i 0.916044 + 0.401078i \(0.131364\pi\)
−0.916044 + 0.401078i \(0.868636\pi\)
\(594\) 0 0
\(595\) −22.5633 13.0270i −0.925007 0.534053i
\(596\) 0 0
\(597\) 7.12854 + 41.0215i 0.291752 + 1.67890i
\(598\) 0 0
\(599\) −0.169109 0.0976351i −0.00690960 0.00398926i 0.496541 0.868013i \(-0.334603\pi\)
−0.503451 + 0.864024i \(0.667936\pi\)
\(600\) 0 0
\(601\) 17.8418 + 30.9029i 0.727782 + 1.26055i 0.957819 + 0.287373i \(0.0927818\pi\)
−0.230037 + 0.973182i \(0.573885\pi\)
\(602\) 0 0
\(603\) −3.22304 + 17.7640i −0.131252 + 0.723406i
\(604\) 0 0
\(605\) 6.28774 + 23.4662i 0.255633 + 0.954035i
\(606\) 0 0
\(607\) 10.1421 + 2.71757i 0.411656 + 0.110303i 0.458703 0.888590i \(-0.348314\pi\)
−0.0470466 + 0.998893i \(0.514981\pi\)
\(608\) 0 0
\(609\) −7.50826 + 20.4709i −0.304250 + 0.829525i
\(610\) 0 0
\(611\) 14.9575 + 55.8223i 0.605117 + 2.25833i
\(612\) 0 0
\(613\) −8.61416 + 4.97339i −0.347923 + 0.200873i −0.663770 0.747937i \(-0.731045\pi\)
0.315847 + 0.948810i \(0.397711\pi\)
\(614\) 0 0
\(615\) 26.4367 22.0717i 1.06603 0.890018i
\(616\) 0 0
\(617\) −5.84248 10.1195i −0.235210 0.407395i 0.724124 0.689670i \(-0.242244\pi\)
−0.959334 + 0.282275i \(0.908911\pi\)
\(618\) 0 0
\(619\) 1.66106i 0.0667635i 0.999443 + 0.0333818i \(0.0106277\pi\)
−0.999443 + 0.0333818i \(0.989372\pi\)
\(620\) 0 0
\(621\) −37.7151 + 21.4029i −1.51346 + 0.858871i
\(622\) 0 0
\(623\) 15.5717 + 15.5717i 0.623868 + 0.623868i
\(624\) 0 0
\(625\) −13.4185 + 23.2414i −0.536738 + 0.929658i
\(626\) 0 0
\(627\) 1.27528 3.47699i 0.0509297 0.138858i
\(628\) 0 0
\(629\) −38.7834 + 19.3726i −1.54639 + 0.772434i
\(630\) 0 0
\(631\) 17.1356 + 4.59146i 0.682156 + 0.182783i 0.583224 0.812311i \(-0.301791\pi\)
0.0989317 + 0.995094i \(0.468457\pi\)
\(632\) 0 0
\(633\) −0.207597 + 0.294922i −0.00825124 + 0.0117221i
\(634\) 0 0
\(635\) 3.39575 3.39575i 0.134756 0.134756i
\(636\) 0 0
\(637\) −17.3212 17.3212i −0.686291 0.686291i
\(638\) 0 0
\(639\) 1.55280 8.55836i 0.0614278 0.338563i
\(640\) 0 0
\(641\) −8.40159 + 4.85066i −0.331843 + 0.191590i −0.656659 0.754188i \(-0.728031\pi\)
0.324816 + 0.945777i \(0.394698\pi\)
\(642\) 0 0
\(643\) 20.6922 20.6922i 0.816021 0.816021i −0.169508 0.985529i \(-0.554218\pi\)
0.985529 + 0.169508i \(0.0542178\pi\)
\(644\) 0 0
\(645\) 18.2847 + 39.4664i 0.719959 + 1.55399i
\(646\) 0 0
\(647\) −45.9218 + 12.3047i −1.80537 + 0.483748i −0.994796 0.101885i \(-0.967513\pi\)
−0.810576 + 0.585633i \(0.800846\pi\)
\(648\) 0 0
\(649\) 2.07988 + 0.557301i 0.0816422 + 0.0218760i
\(650\) 0 0
\(651\) −4.33461 1.58983i −0.169887 0.0623104i
\(652\) 0 0
\(653\) 16.1422 4.32530i 0.631694 0.169262i 0.0712560 0.997458i \(-0.477299\pi\)
0.560438 + 0.828196i \(0.310633\pi\)
\(654\) 0 0
\(655\) −23.9482 −0.935735
\(656\) 0 0
\(657\) 42.2425 15.1386i 1.64804 0.590612i
\(658\) 0 0
\(659\) −11.3024 + 19.5764i −0.440280 + 0.762587i −0.997710 0.0676367i \(-0.978454\pi\)
0.557430 + 0.830224i \(0.311787\pi\)
\(660\) 0 0
\(661\) −0.890448 3.32320i −0.0346344 0.129257i 0.946444 0.322868i \(-0.104647\pi\)
−0.981079 + 0.193610i \(0.937980\pi\)
\(662\) 0 0
\(663\) 38.4660 54.6466i 1.49389 2.12230i
\(664\) 0 0
\(665\) −10.5896 −0.410647
\(666\) 0 0
\(667\) 66.7805 2.58575
\(668\) 0 0
\(669\) 26.7616 38.0189i 1.03466 1.46990i
\(670\) 0 0
\(671\) 1.98713 + 7.41605i 0.0767121 + 0.286294i
\(672\) 0 0
\(673\) −15.4794 + 26.8111i −0.596686 + 1.03349i 0.396621 + 0.917983i \(0.370183\pi\)
−0.993307 + 0.115508i \(0.963150\pi\)
\(674\) 0 0
\(675\) 2.00787 0.522055i 0.0772829 0.0200939i
\(676\) 0 0
\(677\) −0.490033 −0.0188335 −0.00941674 0.999956i \(-0.502997\pi\)
−0.00941674 + 0.999956i \(0.502997\pi\)
\(678\) 0 0
\(679\) −1.77117 + 0.474583i −0.0679712 + 0.0182128i
\(680\) 0 0
\(681\) 11.9556 + 4.38503i 0.458140 + 0.168035i
\(682\) 0 0
\(683\) −22.1468 5.93422i −0.847424 0.227067i −0.191123 0.981566i \(-0.561213\pi\)
−0.656301 + 0.754499i \(0.727880\pi\)
\(684\) 0 0
\(685\) −9.88525 + 2.64875i −0.377696 + 0.101203i
\(686\) 0 0
\(687\) 8.25687 + 17.8220i 0.315019 + 0.679951i
\(688\) 0 0
\(689\) −17.6814 + 17.6814i −0.673606 + 0.673606i
\(690\) 0 0
\(691\) −15.9187 + 9.19065i −0.605575 + 0.349629i −0.771232 0.636555i \(-0.780359\pi\)
0.165657 + 0.986184i \(0.447026\pi\)
\(692\) 0 0
\(693\) −3.42775 0.621920i −0.130210 0.0236248i
\(694\) 0 0
\(695\) −26.4381 26.4381i −1.00286 1.00286i
\(696\) 0 0
\(697\) 43.1246 43.1246i 1.63346 1.63346i
\(698\) 0 0
\(699\) −24.3187 + 34.5484i −0.919818 + 1.30674i
\(700\) 0 0
\(701\) 14.0705 + 3.77019i 0.531437 + 0.142398i 0.514552 0.857459i \(-0.327958\pi\)
0.0168851 + 0.999857i \(0.494625\pi\)
\(702\) 0 0
\(703\) −9.71458 + 14.7008i −0.366392 + 0.554450i
\(704\) 0 0
\(705\) −14.7947 + 40.3372i −0.557201 + 1.51918i
\(706\) 0 0
\(707\) 3.07690 5.32935i 0.115719 0.200431i
\(708\) 0 0
\(709\) 26.7224 + 26.7224i 1.00358 + 1.00358i 0.999994 + 0.00358773i \(0.00114201\pi\)
0.00358773 + 0.999994i \(0.498858\pi\)
\(710\) 0 0
\(711\) 2.81581 + 4.06407i 0.105601 + 0.152414i
\(712\) 0 0
\(713\) 14.1404i 0.529561i
\(714\) 0 0
\(715\) −4.64244 8.04094i −0.173617 0.300714i
\(716\) 0 0
\(717\) 16.6839 13.9292i 0.623072 0.520197i
\(718\) 0 0
\(719\) 37.3478 21.5628i 1.39284 0.804156i 0.399210 0.916860i \(-0.369285\pi\)
0.993629 + 0.112704i \(0.0359512\pi\)
\(720\) 0 0
\(721\) 1.75497 + 6.54964i 0.0653585 + 0.243921i
\(722\) 0 0
\(723\) 1.49037 4.06342i 0.0554273 0.151120i
\(724\) 0 0
\(725\) −3.08599 0.826889i −0.114611 0.0307099i
\(726\) 0 0
\(727\) 3.82417 + 14.2720i 0.141830 + 0.529318i 0.999876 + 0.0157449i \(0.00501196\pi\)
−0.858046 + 0.513573i \(0.828321\pi\)
\(728\) 0 0
\(729\) 23.1796 + 13.8458i 0.858503 + 0.512808i
\(730\) 0 0
\(731\) 38.5131 + 66.7066i 1.42446 + 2.46723i
\(732\) 0 0
\(733\) −9.28224 5.35911i −0.342847 0.197943i 0.318683 0.947861i \(-0.396759\pi\)
−0.661530 + 0.749918i \(0.730093\pi\)
\(734\) 0 0
\(735\) −3.11796 17.9424i −0.115008 0.661817i
\(736\) 0 0
\(737\) 3.84692 + 2.22102i 0.141703 + 0.0818123i
\(738\) 0 0
\(739\) 10.1714i 0.374162i −0.982345 0.187081i \(-0.940097\pi\)
0.982345 0.187081i \(-0.0599026\pi\)
\(740\) 0 0
\(741\) 2.43429 27.0526i 0.0894261 0.993802i
\(742\) 0 0
\(743\) 6.19620 10.7321i 0.227317 0.393724i −0.729695 0.683772i \(-0.760338\pi\)
0.957012 + 0.290049i \(0.0936714\pi\)
\(744\) 0 0
\(745\) −13.3046 + 3.56495i −0.487441 + 0.130609i
\(746\) 0 0
\(747\) −32.3579 27.4257i −1.18391 1.00345i
\(748\) 0 0
\(749\) 14.5771 8.41609i 0.532636 0.307517i
\(750\) 0 0
\(751\) 11.1169i 0.405660i 0.979214 + 0.202830i \(0.0650138\pi\)
−0.979214 + 0.202830i \(0.934986\pi\)
\(752\) 0 0
\(753\) −26.1948 + 4.55201i −0.954590 + 0.165884i
\(754\) 0 0
\(755\) 9.27359 34.6095i 0.337500 1.25957i
\(756\) 0 0
\(757\) 6.85426 25.5805i 0.249122 0.929738i −0.722144 0.691743i \(-0.756843\pi\)
0.971266 0.237995i \(-0.0764902\pi\)
\(758\) 0 0
\(759\) 1.82673 + 10.5120i 0.0663062 + 0.381563i
\(760\) 0 0
\(761\) 11.2680 + 19.5167i 0.408463 + 0.707479i 0.994718 0.102648i \(-0.0327315\pi\)
−0.586255 + 0.810127i \(0.699398\pi\)
\(762\) 0 0
\(763\) 5.50466 + 5.50466i 0.199282 + 0.199282i
\(764\) 0 0
\(765\) 46.7697 16.7610i 1.69096 0.605996i
\(766\) 0 0
\(767\) 15.7922 0.570224
\(768\) 0 0
\(769\) 32.3631 32.3631i 1.16704 1.16704i 0.184145 0.982899i \(-0.441048\pi\)
0.982899 0.184145i \(-0.0589516\pi\)
\(770\) 0 0
\(771\) 26.8003 22.3753i 0.965190 0.805827i
\(772\) 0 0
\(773\) −17.1782 9.91786i −0.617858 0.356721i 0.158177 0.987411i \(-0.449438\pi\)
−0.776035 + 0.630690i \(0.782772\pi\)
\(774\) 0 0
\(775\) 0.175089 0.653441i 0.00628938 0.0234723i
\(776\) 0 0
\(777\) 15.1888 + 6.63562i 0.544894 + 0.238052i
\(778\) 0 0
\(779\) 6.41567 23.9436i 0.229865 0.857869i
\(780\) 0 0
\(781\) −1.85337 1.07005i −0.0663189 0.0382892i
\(782\) 0 0
\(783\) −20.5215 36.1619i −0.733379 1.29232i
\(784\) 0 0
\(785\) 3.42239 3.42239i 0.122150 0.122150i
\(786\) 0 0
\(787\) 43.0619 1.53499 0.767495 0.641055i \(-0.221503\pi\)
0.767495 + 0.641055i \(0.221503\pi\)
\(788\) 0 0
\(789\) −11.6092 25.0579i −0.413300 0.892084i
\(790\) 0 0
\(791\) −10.0704 10.0704i −0.358064 0.358064i
\(792\) 0 0
\(793\) 28.1546 + 48.7651i 0.999797 + 1.73170i
\(794\) 0 0
\(795\) −18.3155 + 3.18279i −0.649584 + 0.112882i
\(796\) 0 0
\(797\) −8.79885 + 32.8377i −0.311671 + 1.16317i 0.615378 + 0.788232i \(0.289003\pi\)
−0.927049 + 0.374940i \(0.877663\pi\)
\(798\) 0 0
\(799\) −19.6922 + 73.4924i −0.696661 + 2.59997i
\(800\) 0 0
\(801\) −41.8512 + 3.45279i −1.47874 + 0.121998i
\(802\) 0 0
\(803\) 11.0407i 0.389617i
\(804\) 0 0
\(805\) 26.4208 15.2541i 0.931211 0.537635i
\(806\) 0 0
\(807\) −11.8839 8.36508i −0.418331 0.294465i
\(808\) 0 0
\(809\) −21.9561 + 5.88311i −0.771934 + 0.206839i −0.623226 0.782042i \(-0.714178\pi\)
−0.148708 + 0.988881i \(0.547512\pi\)
\(810\) 0 0
\(811\) −14.5931 + 25.2761i −0.512434 + 0.887562i 0.487462 + 0.873144i \(0.337923\pi\)
−0.999896 + 0.0144181i \(0.995410\pi\)
\(812\) 0 0
\(813\) −36.1806 3.25567i −1.26891 0.114181i
\(814\) 0 0
\(815\) 29.8673i 1.04621i
\(816\) 0 0
\(817\) 27.1129 + 15.6536i 0.948559 + 0.547651i
\(818\) 0 0
\(819\) −25.4636 + 2.10078i −0.889769 + 0.0734073i
\(820\) 0 0
\(821\) 22.9968 + 13.2772i 0.802595 + 0.463378i 0.844378 0.535748i \(-0.179970\pi\)
−0.0417829 + 0.999127i \(0.513304\pi\)
\(822\) 0 0
\(823\) −14.1533 24.5143i −0.493354 0.854514i 0.506617 0.862171i \(-0.330896\pi\)
−0.999971 + 0.00765756i \(0.997562\pi\)
\(824\) 0 0
\(825\) 0.0457469 0.508390i 0.00159270 0.0176999i
\(826\) 0 0
\(827\) −6.54668 24.4325i −0.227650 0.849602i −0.981325 0.192355i \(-0.938387\pi\)
0.753675 0.657247i \(-0.228279\pi\)
\(828\) 0 0
\(829\) 40.4430 + 10.8367i 1.40464 + 0.376373i 0.880010 0.474956i \(-0.157536\pi\)
0.524633 + 0.851328i \(0.324203\pi\)
\(830\) 0 0
\(831\) −11.1384 4.08531i −0.386387 0.141718i
\(832\) 0 0
\(833\) −8.34688 31.1510i −0.289202 1.07932i
\(834\) 0 0
\(835\) −11.6300 + 6.71459i −0.402473 + 0.232368i
\(836\) 0 0
\(837\) 7.65708 4.34531i 0.264667 0.150196i
\(838\) 0 0
\(839\) 4.99925 + 8.65896i 0.172593 + 0.298941i 0.939326 0.343026i \(-0.111452\pi\)
−0.766732 + 0.641967i \(0.778119\pi\)
\(840\) 0 0
\(841\) 35.0303i 1.20794i
\(842\) 0 0
\(843\) −0.704249 + 0.587970i −0.0242556 + 0.0202508i
\(844\) 0 0
\(845\) −26.7919 26.7919i −0.921668 0.921668i
\(846\) 0 0
\(847\) 8.22419 14.2447i 0.282586 0.489454i
\(848\) 0 0
\(849\) −27.5161 10.0923i −0.944351 0.346366i
\(850\) 0 0
\(851\) 3.06154 50.6718i 0.104948 1.73701i
\(852\) 0 0
\(853\) −3.06823 0.822129i −0.105054 0.0281492i 0.205909 0.978571i \(-0.433985\pi\)
−0.310963 + 0.950422i \(0.600652\pi\)
\(854\) 0 0
\(855\) 13.0565 15.4046i 0.446522 0.526825i
\(856\) 0 0
\(857\) −1.38018 + 1.38018i −0.0471460 + 0.0471460i −0.730287 0.683141i \(-0.760614\pi\)
0.683141 + 0.730287i \(0.260614\pi\)
\(858\) 0 0
\(859\) −37.4233 37.4233i −1.27687 1.27687i −0.942412 0.334453i \(-0.891448\pi\)
−0.334453 0.942412i \(-0.608552\pi\)
\(860\) 0 0
\(861\) −23.2235 2.08974i −0.791453 0.0712180i
\(862\) 0 0
\(863\) −31.6227 + 18.2574i −1.07645 + 0.621489i −0.929937 0.367720i \(-0.880139\pi\)
−0.146513 + 0.989209i \(0.546805\pi\)
\(864\) 0 0
\(865\) −10.1718 + 10.1718i −0.345851 + 0.345851i
\(866\) 0 0
\(867\) 53.1128 24.6070i 1.80380 0.835698i
\(868\) 0 0
\(869\) 1.17504 0.314850i 0.0398603 0.0106805i
\(870\) 0 0
\(871\) 31.4685 + 8.43195i 1.06627 + 0.285706i
\(872\) 0 0
\(873\) 1.49340 3.16164i 0.0505438 0.107005i
\(874\) 0 0
\(875\) 16.2454 4.35294i 0.549194 0.147156i
\(876\) 0 0
\(877\) 53.5958 1.80980 0.904900 0.425623i \(-0.139945\pi\)
0.904900 + 0.425623i \(0.139945\pi\)
\(878\) 0 0
\(879\) −2.69691 + 1.24947i −0.0909646 + 0.0421436i
\(880\) 0 0
\(881\) 18.3911 31.8543i 0.619611 1.07320i −0.369945 0.929054i \(-0.620624\pi\)
0.989557 0.144145i \(-0.0460431\pi\)
\(882\) 0 0
\(883\) −10.8500 40.4928i −0.365132 1.36269i −0.867242 0.497887i \(-0.834109\pi\)
0.502110 0.864804i \(-0.332557\pi\)
\(884\) 0 0
\(885\) 9.60066 + 6.75794i 0.322723 + 0.227166i
\(886\) 0 0
\(887\) 1.05111 0.0352928 0.0176464 0.999844i \(-0.494383\pi\)
0.0176464 + 0.999844i \(0.494383\pi\)
\(888\) 0 0
\(889\) −3.25144 −0.109050
\(890\) 0 0
\(891\) 5.13096 4.21951i 0.171894 0.141359i
\(892\) 0 0
\(893\) 8.00388 + 29.8709i 0.267840 + 0.999592i
\(894\) 0 0
\(895\) −11.6047 + 20.1000i −0.387903 + 0.671868i
\(896\) 0 0
\(897\) 32.8951 + 71.0022i 1.09834 + 2.37070i
\(898\) 0 0
\(899\) −13.5580 −0.452186
\(900\) 0 0
\(901\) −31.7987 + 8.52043i −1.05937 + 0.283857i
\(902\) 0 0
\(903\) 10.1408 27.6484i 0.337464 0.920081i
\(904\) 0 0
\(905\) 34.7479 + 9.31068i 1.15506 + 0.309498i
\(906\) 0 0
\(907\) 39.6867 10.6340i 1.31777 0.353096i 0.469631 0.882863i \(-0.344387\pi\)
0.848143 + 0.529767i \(0.177720\pi\)
\(908\) 0 0
\(909\) 3.95887 + 11.0468i 0.131307 + 0.366399i
\(910\) 0 0
\(911\) 33.4058 33.4058i 1.10678 1.10678i 0.113214 0.993571i \(-0.463885\pi\)
0.993571 0.113214i \(-0.0361146\pi\)
\(912\) 0 0
\(913\) −9.03815 + 5.21818i −0.299119 + 0.172696i
\(914\) 0 0
\(915\) −3.75181 + 41.6942i −0.124031 + 1.37837i
\(916\) 0 0
\(917\) 11.4652 + 11.4652i 0.378616 + 0.378616i
\(918\) 0 0
\(919\) 28.9777 28.9777i 0.955887 0.955887i −0.0431807 0.999067i \(-0.513749\pi\)
0.999067 + 0.0431807i \(0.0137491\pi\)
\(920\) 0 0
\(921\) −1.56236 1.09975i −0.0514816 0.0362381i
\(922\) 0 0
\(923\) −15.1609 4.06235i −0.499028 0.133714i
\(924\) 0 0
\(925\) −0.768905 + 2.30369i −0.0252814 + 0.0757447i
\(926\) 0 0
\(927\) −11.6915 5.52247i −0.383999 0.181382i
\(928\) 0 0
\(929\) 6.53422 11.3176i 0.214381 0.371319i −0.738700 0.674034i \(-0.764560\pi\)
0.953081 + 0.302716i \(0.0978933\pi\)
\(930\) 0 0
\(931\) −9.26871 9.26871i −0.303770 0.303770i
\(932\) 0 0
\(933\) 27.7103 + 33.1903i 0.907193 + 1.08660i
\(934\) 0 0
\(935\) 12.2239i 0.399765i
\(936\) 0 0
\(937\) −1.56828 2.71634i −0.0512334 0.0887388i 0.839271 0.543713i \(-0.182982\pi\)
−0.890505 + 0.454974i \(0.849649\pi\)
\(938\) 0 0
\(939\) −7.48840 8.96933i −0.244375 0.292703i
\(940\) 0 0
\(941\) 0.104995 0.0606190i 0.00342275 0.00197612i −0.498288 0.867012i \(-0.666038\pi\)
0.501710 + 0.865036i \(0.332704\pi\)
\(942\) 0 0
\(943\) 18.4833 + 68.9805i 0.601898 + 2.24631i
\(944\) 0 0
\(945\) −16.3792 9.61944i −0.532816 0.312921i
\(946\) 0 0
\(947\) 32.9832 + 8.83783i 1.07181 + 0.287191i 0.751237 0.660033i \(-0.229458\pi\)
0.320574 + 0.947224i \(0.396124\pi\)
\(948\) 0 0
\(949\) −20.9576 78.2148i −0.680312 2.53896i
\(950\) 0 0
\(951\) 4.49673 + 0.404633i 0.145817 + 0.0131211i
\(952\) 0 0
\(953\) 8.51043 + 14.7405i 0.275680 + 0.477492i 0.970306 0.241879i \(-0.0777637\pi\)
−0.694626 + 0.719371i \(0.744430\pi\)
\(954\) 0 0
\(955\) −14.8514 8.57445i −0.480580 0.277463i
\(956\) 0 0
\(957\) −10.0791 + 1.75150i −0.325812 + 0.0566181i
\(958\) 0 0
\(959\) 6.00066 + 3.46448i 0.193771 + 0.111874i
\(960\) 0 0
\(961\) 28.1292i 0.907392i
\(962\) 0 0
\(963\) −5.73010 + 31.5818i −0.184650 + 1.01771i
\(964\) 0 0
\(965\) 19.0632 33.0185i 0.613667 1.06290i
\(966\) 0 0
\(967\) 25.2639 6.76943i 0.812431 0.217690i 0.171396 0.985202i \(-0.445172\pi\)
0.641035 + 0.767512i \(0.278505\pi\)
\(968\) 0 0
\(969\) 20.5834 29.2418i 0.661235 0.939383i
\(970\) 0 0
\(971\) −38.6025 + 22.2872i −1.23881 + 0.715229i −0.968851 0.247642i \(-0.920344\pi\)
−0.269961 + 0.962871i \(0.587011\pi\)
\(972\) 0 0
\(973\) 25.3146i 0.811548i
\(974\) 0 0
\(975\) −0.640953 3.68840i −0.0205269 0.118123i
\(976\) 0 0
\(977\) 2.21376 8.26186i 0.0708244 0.264320i −0.921430 0.388545i \(-0.872978\pi\)
0.992254 + 0.124225i \(0.0396444\pi\)
\(978\) 0 0
\(979\) −2.67415 + 9.98007i −0.0854663 + 0.318964i
\(980\) 0 0
\(981\) −14.7946 + 1.22057i −0.472354 + 0.0389699i
\(982\) 0 0
\(983\) −19.4970 33.7698i −0.621858 1.07709i −0.989140 0.146979i \(-0.953045\pi\)
0.367282 0.930110i \(-0.380288\pi\)
\(984\) 0 0
\(985\) −27.9841 27.9841i −0.891647 0.891647i
\(986\) 0 0
\(987\) 26.3944 12.2285i 0.840144 0.389236i
\(988\) 0 0
\(989\) −90.1947 −2.86803
\(990\) 0 0
\(991\) 10.4846 10.4846i 0.333056 0.333056i −0.520690 0.853746i \(-0.674325\pi\)
0.853746 + 0.520690i \(0.174325\pi\)
\(992\) 0 0
\(993\) 8.77812 + 10.5141i 0.278565 + 0.333655i
\(994\) 0 0
\(995\) 48.3737 + 27.9286i 1.53355 + 0.885395i
\(996\) 0 0
\(997\) 6.82342 25.4654i 0.216100 0.806496i −0.769677 0.638434i \(-0.779583\pi\)
0.985776 0.168062i \(-0.0537508\pi\)
\(998\) 0 0
\(999\) −28.3798 + 13.9135i −0.897898 + 0.440204i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.785.27 yes 152
3.2 odd 2 inner 888.2.br.a.785.13 yes 152
37.14 odd 12 inner 888.2.br.a.569.13 152
111.14 even 12 inner 888.2.br.a.569.27 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.13 152 37.14 odd 12 inner
888.2.br.a.569.27 yes 152 111.14 even 12 inner
888.2.br.a.785.13 yes 152 3.2 odd 2 inner
888.2.br.a.785.27 yes 152 1.1 even 1 trivial