Properties

Label 2-888-111.14-c1-0-2
Degree $2$
Conductor $888$
Sign $-0.998 - 0.0471i$
Analytic cond. $7.09071$
Root an. cond. $2.66283$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.996 + 1.41i)3-s + (−0.601 + 2.24i)5-s + (−0.786 − 1.36i)7-s + (−1.01 + 2.82i)9-s − 0.738·11-s + (−5.22 − 1.40i)13-s + (−3.77 + 1.38i)15-s + (−6.88 + 1.84i)17-s + (−2.79 − 0.749i)19-s + (1.14 − 2.47i)21-s + (5.90 + 5.90i)23-s + (−0.345 − 0.199i)25-s + (−5.00 + 1.38i)27-s + (5.65 − 5.65i)29-s + (−1.19 − 1.19i)31-s + ⋯
L(s)  = 1  + (0.575 + 0.817i)3-s + (−0.268 + 1.00i)5-s + (−0.297 − 0.514i)7-s + (−0.337 + 0.941i)9-s − 0.222·11-s + (−1.45 − 0.388i)13-s + (−0.975 + 0.357i)15-s + (−1.66 + 0.447i)17-s + (−0.641 − 0.172i)19-s + (0.249 − 0.539i)21-s + (1.23 + 1.23i)23-s + (−0.0691 − 0.0399i)25-s + (−0.963 + 0.265i)27-s + (1.05 − 1.05i)29-s + (−0.215 − 0.215i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0471i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(888\)    =    \(2^{3} \cdot 3 \cdot 37\)
Sign: $-0.998 - 0.0471i$
Analytic conductor: \(7.09071\)
Root analytic conductor: \(2.66283\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{888} (569, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 888,\ (\ :1/2),\ -0.998 - 0.0471i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0202434 + 0.857910i\)
\(L(\frac12)\) \(\approx\) \(0.0202434 + 0.857910i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.996 - 1.41i)T \)
37 \( 1 + (-4.55 - 4.03i)T \)
good5 \( 1 + (0.601 - 2.24i)T + (-4.33 - 2.5i)T^{2} \)
7 \( 1 + (0.786 + 1.36i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + 0.738T + 11T^{2} \)
13 \( 1 + (5.22 + 1.40i)T + (11.2 + 6.5i)T^{2} \)
17 \( 1 + (6.88 - 1.84i)T + (14.7 - 8.5i)T^{2} \)
19 \( 1 + (2.79 + 0.749i)T + (16.4 + 9.5i)T^{2} \)
23 \( 1 + (-5.90 - 5.90i)T + 23iT^{2} \)
29 \( 1 + (-5.65 + 5.65i)T - 29iT^{2} \)
31 \( 1 + (1.19 + 1.19i)T + 31iT^{2} \)
41 \( 1 + (4.27 + 7.41i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (7.64 - 7.64i)T - 43iT^{2} \)
47 \( 1 - 10.6iT - 47T^{2} \)
53 \( 1 + (-4.00 - 2.30i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (2.81 - 0.755i)T + (51.0 - 29.5i)T^{2} \)
61 \( 1 + (2.69 - 10.0i)T + (-52.8 - 30.5i)T^{2} \)
67 \( 1 + (5.21 - 3.00i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-2.51 + 1.44i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 + 14.9iT - 73T^{2} \)
79 \( 1 + (1.59 + 0.426i)T + (68.4 + 39.5i)T^{2} \)
83 \( 1 + (-12.2 - 7.06i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-3.62 - 13.5i)T + (-77.0 + 44.5i)T^{2} \)
97 \( 1 + (-0.824 + 0.824i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56992055211189647989773418944, −9.776336887600676109564230563178, −9.018040375570101552917113001259, −7.953806363315390074463149753188, −7.22893887945317998756726394276, −6.40713927813496331406925879979, −4.99015641488797859117650654307, −4.23599014832022227720384452152, −3.11634038329858854875207579978, −2.41184787441965779745189760734, 0.35071677855560893783045949115, 2.04594268768854606602385964331, 2.89629219778701196858499038338, 4.46772063871493438058467496617, 5.12093566671538621465076324588, 6.62212310282219539432280459755, 7.00002632934522954589631840825, 8.273454501873667429775280237363, 8.793106024110671814436471227083, 9.321524898966652709445938937128

Graph of the $Z$-function along the critical line