L(s) = 1 | + (0.996 + 1.41i)3-s + (−0.601 + 2.24i)5-s + (−0.786 − 1.36i)7-s + (−1.01 + 2.82i)9-s − 0.738·11-s + (−5.22 − 1.40i)13-s + (−3.77 + 1.38i)15-s + (−6.88 + 1.84i)17-s + (−2.79 − 0.749i)19-s + (1.14 − 2.47i)21-s + (5.90 + 5.90i)23-s + (−0.345 − 0.199i)25-s + (−5.00 + 1.38i)27-s + (5.65 − 5.65i)29-s + (−1.19 − 1.19i)31-s + ⋯ |
L(s) = 1 | + (0.575 + 0.817i)3-s + (−0.268 + 1.00i)5-s + (−0.297 − 0.514i)7-s + (−0.337 + 0.941i)9-s − 0.222·11-s + (−1.45 − 0.388i)13-s + (−0.975 + 0.357i)15-s + (−1.66 + 0.447i)17-s + (−0.641 − 0.172i)19-s + (0.249 − 0.539i)21-s + (1.23 + 1.23i)23-s + (−0.0691 − 0.0399i)25-s + (−0.963 + 0.265i)27-s + (1.05 − 1.05i)29-s + (−0.215 − 0.215i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0202434 + 0.857910i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0202434 + 0.857910i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.996 - 1.41i)T \) |
| 37 | \( 1 + (-4.55 - 4.03i)T \) |
good | 5 | \( 1 + (0.601 - 2.24i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (0.786 + 1.36i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 0.738T + 11T^{2} \) |
| 13 | \( 1 + (5.22 + 1.40i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (6.88 - 1.84i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (2.79 + 0.749i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-5.90 - 5.90i)T + 23iT^{2} \) |
| 29 | \( 1 + (-5.65 + 5.65i)T - 29iT^{2} \) |
| 31 | \( 1 + (1.19 + 1.19i)T + 31iT^{2} \) |
| 41 | \( 1 + (4.27 + 7.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (7.64 - 7.64i)T - 43iT^{2} \) |
| 47 | \( 1 - 10.6iT - 47T^{2} \) |
| 53 | \( 1 + (-4.00 - 2.30i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.81 - 0.755i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.69 - 10.0i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (5.21 - 3.00i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.51 + 1.44i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14.9iT - 73T^{2} \) |
| 79 | \( 1 + (1.59 + 0.426i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-12.2 - 7.06i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.62 - 13.5i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.824 + 0.824i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56992055211189647989773418944, −9.776336887600676109564230563178, −9.018040375570101552917113001259, −7.953806363315390074463149753188, −7.22893887945317998756726394276, −6.40713927813496331406925879979, −4.99015641488797859117650654307, −4.23599014832022227720384452152, −3.11634038329858854875207579978, −2.41184787441965779745189760734,
0.35071677855560893783045949115, 2.04594268768854606602385964331, 2.89629219778701196858499038338, 4.46772063871493438058467496617, 5.12093566671538621465076324588, 6.62212310282219539432280459755, 7.00002632934522954589631840825, 8.273454501873667429775280237363, 8.793106024110671814436471227083, 9.321524898966652709445938937128