Properties

Label 882.4.g.y
Level $882$
Weight $4$
Character orbit 882.g
Analytic conductor $52.040$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(361,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,-8,-12,0,0,32,0,-24,-4,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: no (minimal twist has level 294)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_{2} - 2) q^{2} + 4 \beta_{2} q^{4} + ( - 6 \beta_{2} - \beta_1 - 6) q^{5} + 8 q^{8} + (2 \beta_{3} + 12 \beta_{2} + 2 \beta_1) q^{10} + ( - 6 \beta_{3} + 2 \beta_{2} - 6 \beta_1) q^{11}+ \cdots + (125 \beta_{3} + 372) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{4} - 12 q^{5} + 32 q^{8} - 24 q^{10} - 4 q^{11} - 96 q^{13} - 32 q^{16} - 84 q^{17} - 72 q^{19} + 96 q^{20} + 16 q^{22} - 308 q^{23} - 18 q^{25} + 96 q^{26} + 160 q^{29} + 384 q^{31}+ \cdots + 1488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 7\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{3} ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-1 - \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 1.22474i
−0.707107 + 1.22474i
−1.00000 1.73205i 0 −2.00000 + 3.46410i −7.94975 13.7694i 0 0 8.00000 0 −15.8995 + 27.5387i
361.2 −1.00000 1.73205i 0 −2.00000 + 3.46410i 1.94975 + 3.37706i 0 0 8.00000 0 3.89949 6.75412i
667.1 −1.00000 + 1.73205i 0 −2.00000 3.46410i −7.94975 + 13.7694i 0 0 8.00000 0 −15.8995 27.5387i
667.2 −1.00000 + 1.73205i 0 −2.00000 3.46410i 1.94975 3.37706i 0 0 8.00000 0 3.89949 + 6.75412i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.y 4
3.b odd 2 1 294.4.e.n 4
7.b odd 2 1 882.4.g.bd 4
7.c even 3 1 882.4.a.bi 2
7.c even 3 1 inner 882.4.g.y 4
7.d odd 6 1 882.4.a.bc 2
7.d odd 6 1 882.4.g.bd 4
21.c even 2 1 294.4.e.o 4
21.g even 6 1 294.4.a.j 2
21.g even 6 1 294.4.e.o 4
21.h odd 6 1 294.4.a.k yes 2
21.h odd 6 1 294.4.e.n 4
84.j odd 6 1 2352.4.a.cd 2
84.n even 6 1 2352.4.a.bn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.j 2 21.g even 6 1
294.4.a.k yes 2 21.h odd 6 1
294.4.e.n 4 3.b odd 2 1
294.4.e.n 4 21.h odd 6 1
294.4.e.o 4 21.c even 2 1
294.4.e.o 4 21.g even 6 1
882.4.a.bc 2 7.d odd 6 1
882.4.a.bi 2 7.c even 3 1
882.4.g.y 4 1.a even 1 1 trivial
882.4.g.y 4 7.c even 3 1 inner
882.4.g.bd 4 7.b odd 2 1
882.4.g.bd 4 7.d odd 6 1
2352.4.a.bn 2 84.n even 6 1
2352.4.a.cd 2 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{4} + 12T_{5}^{3} + 206T_{5}^{2} - 744T_{5} + 3844 \) Copy content Toggle raw display
\( T_{11}^{4} + 4T_{11}^{3} + 3540T_{11}^{2} - 14096T_{11} + 12418576 \) Copy content Toggle raw display
\( T_{13}^{2} + 48T_{13} - 306 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 12 T^{3} + \cdots + 3844 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 12418576 \) Copy content Toggle raw display
$13$ \( (T^{2} + 48 T - 306)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 84 T^{3} + \cdots + 2775556 \) Copy content Toggle raw display
$19$ \( T^{4} + 72 T^{3} + \cdots + 817216 \) Copy content Toggle raw display
$23$ \( T^{4} + 308 T^{3} + \cdots + 407555344 \) Copy content Toggle raw display
$29$ \( (T^{2} - 80 T - 30152)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1111288896 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 3330674944 \) Copy content Toggle raw display
$41$ \( (T^{2} - 756 T + 140434)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 400 T - 16448)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 312 T^{3} + \cdots + 211295296 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 3110515984 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 34682357824 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 234936028804 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 2627997696 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1524 T + 492444)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 288087680644 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 205520782336 \) Copy content Toggle raw display
$83$ \( (T^{2} + 312 T - 1788272)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 6320568004 \) Copy content Toggle raw display
$97$ \( (T^{2} - 744 T - 1392866)^{2} \) Copy content Toggle raw display
show more
show less