gp: [N,k,chi] = [882,4,Mod(361,882)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(882, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("882.361");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,-4,0,-8,12,0,0,32,0,24,-4,0,96]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 2 x 2 + 4 x^{4} + 2x^{2} + 4 x 4 + 2 x 2 + 4
x^4 + 2*x^2 + 4
:
β 1 \beta_{1} β 1 = = =
7 ν 7\nu 7 ν
7*v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 2 ( \nu^{2} ) / 2 ( ν 2 ) / 2
(v^2) / 2
β 3 \beta_{3} β 3 = = =
( 7 ν 3 ) / 2 ( 7\nu^{3} ) / 2 ( 7 ν 3 ) / 2
(7*v^3) / 2
ν \nu ν = = =
( β 1 ) / 7 ( \beta_1 ) / 7 ( β 1 ) / 7
(b1) / 7
ν 2 \nu^{2} ν 2 = = =
2 β 2 2\beta_{2} 2 β 2
2*b2
ν 3 \nu^{3} ν 3 = = =
( 2 β 3 ) / 7 ( 2\beta_{3} ) / 7 ( 2 β 3 ) / 7
(2*b3) / 7
Character values
We give the values of χ \chi χ on generators for ( Z / 882 Z ) × \left(\mathbb{Z}/882\mathbb{Z}\right)^\times ( Z / 8 8 2 Z ) × .
n n n
199 199 1 9 9
785 785 7 8 5
χ ( n ) \chi(n) χ ( n )
− 1 − β 2 -1 - \beta_{2} − 1 − β 2
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 882 , [ χ ] ) S_{4}^{\mathrm{new}}(882, [\chi]) S 4 n e w ( 8 8 2 , [ χ ] ) :
T 5 4 − 12 T 5 3 + 206 T 5 2 + 744 T 5 + 3844 T_{5}^{4} - 12T_{5}^{3} + 206T_{5}^{2} + 744T_{5} + 3844 T 5 4 − 1 2 T 5 3 + 2 0 6 T 5 2 + 7 4 4 T 5 + 3 8 4 4
T5^4 - 12*T5^3 + 206*T5^2 + 744*T5 + 3844
T 11 4 + 4 T 11 3 + 3540 T 11 2 − 14096 T 11 + 12418576 T_{11}^{4} + 4T_{11}^{3} + 3540T_{11}^{2} - 14096T_{11} + 12418576 T 1 1 4 + 4 T 1 1 3 + 3 5 4 0 T 1 1 2 − 1 4 0 9 6 T 1 1 + 1 2 4 1 8 5 7 6
T11^4 + 4*T11^3 + 3540*T11^2 - 14096*T11 + 12418576
T 13 2 − 48 T 13 − 306 T_{13}^{2} - 48T_{13} - 306 T 1 3 2 − 4 8 T 1 3 − 3 0 6
T13^2 - 48*T13 - 306
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 2 T + 4 ) 2 (T^{2} + 2 T + 4)^{2} ( T 2 + 2 T + 4 ) 2
(T^2 + 2*T + 4)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − 12 T 3 + ⋯ + 3844 T^{4} - 12 T^{3} + \cdots + 3844 T 4 − 1 2 T 3 + ⋯ + 3 8 4 4
T^4 - 12*T^3 + 206*T^2 + 744*T + 3844
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 + 4 T 3 + ⋯ + 12418576 T^{4} + 4 T^{3} + \cdots + 12418576 T 4 + 4 T 3 + ⋯ + 1 2 4 1 8 5 7 6
T^4 + 4*T^3 + 3540*T^2 - 14096*T + 12418576
13 13 1 3
( T 2 − 48 T − 306 ) 2 (T^{2} - 48 T - 306)^{2} ( T 2 − 4 8 T − 3 0 6 ) 2
(T^2 - 48*T - 306)^2
17 17 1 7
T 4 − 84 T 3 + ⋯ + 2775556 T^{4} - 84 T^{3} + \cdots + 2775556 T 4 − 8 4 T 3 + ⋯ + 2 7 7 5 5 5 6
T^4 - 84*T^3 + 5390*T^2 - 139944*T + 2775556
19 19 1 9
T 4 − 72 T 3 + ⋯ + 817216 T^{4} - 72 T^{3} + \cdots + 817216 T 4 − 7 2 T 3 + ⋯ + 8 1 7 2 1 6
T^4 - 72*T^3 + 4280*T^2 - 65088*T + 817216
23 23 2 3
T 4 + 308 T 3 + ⋯ + 407555344 T^{4} + 308 T^{3} + \cdots + 407555344 T 4 + 3 0 8 T 3 + ⋯ + 4 0 7 5 5 5 3 4 4
T^4 + 308*T^3 + 74676*T^2 + 6217904*T + 407555344
29 29 2 9
( T 2 − 80 T − 30152 ) 2 (T^{2} - 80 T - 30152)^{2} ( T 2 − 8 0 T − 3 0 1 5 2 ) 2
(T^2 - 80*T - 30152)^2
31 31 3 1
T 4 + ⋯ + 1111288896 T^{4} + \cdots + 1111288896 T 4 + ⋯ + 1 1 1 1 2 8 8 8 9 6
T^4 + 384*T^3 + 114120*T^2 + 12801024*T + 1111288896
37 37 3 7
T 4 + ⋯ + 3330674944 T^{4} + \cdots + 3330674944 T 4 + ⋯ + 3 3 3 0 6 7 4 9 4 4
T^4 + 536*T^3 + 229584*T^2 + 30933632*T + 3330674944
41 41 4 1
( T 2 + 756 T + 140434 ) 2 (T^{2} + 756 T + 140434)^{2} ( T 2 + 7 5 6 T + 1 4 0 4 3 4 ) 2
(T^2 + 756*T + 140434)^2
43 43 4 3
( T 2 − 400 T − 16448 ) 2 (T^{2} - 400 T - 16448)^{2} ( T 2 − 4 0 0 T − 1 6 4 4 8 ) 2
(T^2 - 400*T - 16448)^2
47 47 4 7
T 4 − 312 T 3 + ⋯ + 211295296 T^{4} - 312 T^{3} + \cdots + 211295296 T 4 − 3 1 2 T 3 + ⋯ + 2 1 1 2 9 5 2 9 6
T^4 - 312*T^3 + 82808*T^2 - 4535232*T + 211295296
53 53 5 3
T 4 + ⋯ + 3110515984 T^{4} + \cdots + 3110515984 T 4 + ⋯ + 3 1 1 0 5 1 5 9 8 4
T^4 + 52*T^3 + 58476*T^2 - 2900144*T + 3110515984
59 59 5 9
T 4 + ⋯ + 34682357824 T^{4} + \cdots + 34682357824 T 4 + ⋯ + 3 4 6 8 2 3 5 7 8 2 4
T^4 - 864*T^3 + 560264*T^2 - 160904448*T + 34682357824
61 61 6 1
T 4 + ⋯ + 234936028804 T^{4} + \cdots + 234936028804 T 4 + ⋯ + 2 3 4 9 3 6 0 2 8 8 0 4
T^4 + 1416*T^3 + 1520354*T^2 + 686338032*T + 234936028804
67 67 6 7
T 4 + ⋯ + 2627997696 T^{4} + \cdots + 2627997696 T 4 + ⋯ + 2 6 2 7 9 9 7 6 9 6
T^4 + 144*T^3 + 72000*T^2 - 7382016*T + 2627997696
71 71 7 1
( T 2 − 1524 T + 492444 ) 2 (T^{2} - 1524 T + 492444)^{2} ( T 2 − 1 5 2 4 T + 4 9 2 4 4 4 ) 2
(T^2 - 1524*T + 492444)^2
73 73 7 3
T 4 + ⋯ + 288087680644 T^{4} + \cdots + 288087680644 T 4 + ⋯ + 2 8 8 0 8 7 6 8 0 6 4 4
T^4 + 744*T^3 + 1090274*T^2 - 399333072*T + 288087680644
79 79 7 9
T 4 + ⋯ + 205520782336 T^{4} + \cdots + 205520782336 T 4 + ⋯ + 2 0 5 5 2 0 7 8 2 3 3 6
T^4 + 976*T^3 + 1405920*T^2 - 442463744*T + 205520782336
83 83 8 3
( T 2 − 312 T − 1788272 ) 2 (T^{2} - 312 T - 1788272)^{2} ( T 2 − 3 1 2 T − 1 7 8 8 2 7 2 ) 2
(T^2 - 312*T - 1788272)^2
89 89 8 9
T 4 + ⋯ + 6320568004 T^{4} + \cdots + 6320568004 T 4 + ⋯ + 6 3 2 0 5 6 8 0 0 4
T^4 - 108*T^3 + 91166*T^2 + 8586216*T + 6320568004
97 97 9 7
( T 2 + 744 T − 1392866 ) 2 (T^{2} + 744 T - 1392866)^{2} ( T 2 + 7 4 4 T − 1 3 9 2 8 6 6 ) 2
(T^2 + 744*T - 1392866)^2
show more
show less