Properties

Label 882.4.g.bd
Level 882882
Weight 44
Character orbit 882.g
Analytic conductor 52.04052.040
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(361,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 882.g (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,-8,12,0,0,32,0,24,-4,0,96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 52.039684625152.0396846251
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 72 7^{2}
Twist minimal: no (minimal twist has level 294)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2β22)q2+4β2q4+(6β2+β1+6)q5+8q8+(2β312β22β1)q10+(6β3+2β26β1)q11++(125β3372)q97+O(q100) q + ( - 2 \beta_{2} - 2) q^{2} + 4 \beta_{2} q^{4} + (6 \beta_{2} + \beta_1 + 6) q^{5} + 8 q^{8} + ( - 2 \beta_{3} - 12 \beta_{2} - 2 \beta_1) q^{10} + ( - 6 \beta_{3} + 2 \beta_{2} - 6 \beta_1) q^{11}+ \cdots + ( - 125 \beta_{3} - 372) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q28q4+12q5+32q8+24q104q11+96q1332q16+84q17+72q1996q20+16q22308q2318q2596q26+160q29384q31+1488q97+O(q100) 4 q - 4 q^{2} - 8 q^{4} + 12 q^{5} + 32 q^{8} + 24 q^{10} - 4 q^{11} + 96 q^{13} - 32 q^{16} + 84 q^{17} + 72 q^{19} - 96 q^{20} + 16 q^{22} - 308 q^{23} - 18 q^{25} - 96 q^{26} + 160 q^{29} - 384 q^{31}+ \cdots - 1488 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== 7ν 7\nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (7ν3)/2 ( 7\nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== (β1)/7 ( \beta_1 ) / 7 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== (2β3)/7 ( 2\beta_{3} ) / 7 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/882Z)×\left(\mathbb{Z}/882\mathbb{Z}\right)^\times.

nn 199199 785785
χ(n)\chi(n) 1β2-1 - \beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
−1.00000 1.73205i 0 −2.00000 + 3.46410i −1.94975 3.37706i 0 0 8.00000 0 −3.89949 + 6.75412i
361.2 −1.00000 1.73205i 0 −2.00000 + 3.46410i 7.94975 + 13.7694i 0 0 8.00000 0 15.8995 27.5387i
667.1 −1.00000 + 1.73205i 0 −2.00000 3.46410i −1.94975 + 3.37706i 0 0 8.00000 0 −3.89949 6.75412i
667.2 −1.00000 + 1.73205i 0 −2.00000 3.46410i 7.94975 13.7694i 0 0 8.00000 0 15.8995 + 27.5387i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.bd 4
3.b odd 2 1 294.4.e.o 4
7.b odd 2 1 882.4.g.y 4
7.c even 3 1 882.4.a.bc 2
7.c even 3 1 inner 882.4.g.bd 4
7.d odd 6 1 882.4.a.bi 2
7.d odd 6 1 882.4.g.y 4
21.c even 2 1 294.4.e.n 4
21.g even 6 1 294.4.a.k yes 2
21.g even 6 1 294.4.e.n 4
21.h odd 6 1 294.4.a.j 2
21.h odd 6 1 294.4.e.o 4
84.j odd 6 1 2352.4.a.bn 2
84.n even 6 1 2352.4.a.cd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.j 2 21.h odd 6 1
294.4.a.k yes 2 21.g even 6 1
294.4.e.n 4 21.c even 2 1
294.4.e.n 4 21.g even 6 1
294.4.e.o 4 3.b odd 2 1
294.4.e.o 4 21.h odd 6 1
882.4.a.bc 2 7.c even 3 1
882.4.a.bi 2 7.d odd 6 1
882.4.g.y 4 7.b odd 2 1
882.4.g.y 4 7.d odd 6 1
882.4.g.bd 4 1.a even 1 1 trivial
882.4.g.bd 4 7.c even 3 1 inner
2352.4.a.bn 2 84.j odd 6 1
2352.4.a.cd 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(882,[χ])S_{4}^{\mathrm{new}}(882, [\chi]):

T5412T53+206T52+744T5+3844 T_{5}^{4} - 12T_{5}^{3} + 206T_{5}^{2} + 744T_{5} + 3844 Copy content Toggle raw display
T114+4T113+3540T11214096T11+12418576 T_{11}^{4} + 4T_{11}^{3} + 3540T_{11}^{2} - 14096T_{11} + 12418576 Copy content Toggle raw display
T13248T13306 T_{13}^{2} - 48T_{13} - 306 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T412T3++3844 T^{4} - 12 T^{3} + \cdots + 3844 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+4T3++12418576 T^{4} + 4 T^{3} + \cdots + 12418576 Copy content Toggle raw display
1313 (T248T306)2 (T^{2} - 48 T - 306)^{2} Copy content Toggle raw display
1717 T484T3++2775556 T^{4} - 84 T^{3} + \cdots + 2775556 Copy content Toggle raw display
1919 T472T3++817216 T^{4} - 72 T^{3} + \cdots + 817216 Copy content Toggle raw display
2323 T4+308T3++407555344 T^{4} + 308 T^{3} + \cdots + 407555344 Copy content Toggle raw display
2929 (T280T30152)2 (T^{2} - 80 T - 30152)^{2} Copy content Toggle raw display
3131 T4++1111288896 T^{4} + \cdots + 1111288896 Copy content Toggle raw display
3737 T4++3330674944 T^{4} + \cdots + 3330674944 Copy content Toggle raw display
4141 (T2+756T+140434)2 (T^{2} + 756 T + 140434)^{2} Copy content Toggle raw display
4343 (T2400T16448)2 (T^{2} - 400 T - 16448)^{2} Copy content Toggle raw display
4747 T4312T3++211295296 T^{4} - 312 T^{3} + \cdots + 211295296 Copy content Toggle raw display
5353 T4++3110515984 T^{4} + \cdots + 3110515984 Copy content Toggle raw display
5959 T4++34682357824 T^{4} + \cdots + 34682357824 Copy content Toggle raw display
6161 T4++234936028804 T^{4} + \cdots + 234936028804 Copy content Toggle raw display
6767 T4++2627997696 T^{4} + \cdots + 2627997696 Copy content Toggle raw display
7171 (T21524T+492444)2 (T^{2} - 1524 T + 492444)^{2} Copy content Toggle raw display
7373 T4++288087680644 T^{4} + \cdots + 288087680644 Copy content Toggle raw display
7979 T4++205520782336 T^{4} + \cdots + 205520782336 Copy content Toggle raw display
8383 (T2312T1788272)2 (T^{2} - 312 T - 1788272)^{2} Copy content Toggle raw display
8989 T4++6320568004 T^{4} + \cdots + 6320568004 Copy content Toggle raw display
9797 (T2+744T1392866)2 (T^{2} + 744 T - 1392866)^{2} Copy content Toggle raw display
show more
show less