Properties

Label 294.4.a.k
Level $294$
Weight $4$
Character orbit 294.a
Self dual yes
Analytic conductor $17.347$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,4,Mod(1,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,6,8,-12,-12,0,-16,18,24,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3465615417\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 7\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} + (\beta - 6) q^{5} - 6 q^{6} - 8 q^{8} + 9 q^{9} + ( - 2 \beta + 12) q^{10} + ( - 6 \beta - 2) q^{11} + 12 q^{12} + ( - 3 \beta - 24) q^{13} + (3 \beta - 18) q^{15} + 16 q^{16}+ \cdots + ( - 54 \beta - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 6 q^{3} + 8 q^{4} - 12 q^{5} - 12 q^{6} - 16 q^{8} + 18 q^{9} + 24 q^{10} - 4 q^{11} + 24 q^{12} - 48 q^{13} - 36 q^{15} + 32 q^{16} - 84 q^{17} - 36 q^{18} + 72 q^{19} - 48 q^{20} + 8 q^{22}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 3.00000 4.00000 −15.8995 −6.00000 0 −8.00000 9.00000 31.7990
1.2 −2.00000 3.00000 4.00000 3.89949 −6.00000 0 −8.00000 9.00000 −7.79899
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.a.k yes 2
3.b odd 2 1 882.4.a.bi 2
4.b odd 2 1 2352.4.a.bn 2
7.b odd 2 1 294.4.a.j 2
7.c even 3 2 294.4.e.n 4
7.d odd 6 2 294.4.e.o 4
21.c even 2 1 882.4.a.bc 2
21.g even 6 2 882.4.g.bd 4
21.h odd 6 2 882.4.g.y 4
28.d even 2 1 2352.4.a.cd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.j 2 7.b odd 2 1
294.4.a.k yes 2 1.a even 1 1 trivial
294.4.e.n 4 7.c even 3 2
294.4.e.o 4 7.d odd 6 2
882.4.a.bc 2 21.c even 2 1
882.4.a.bi 2 3.b odd 2 1
882.4.g.y 4 21.h odd 6 2
882.4.g.bd 4 21.g even 6 2
2352.4.a.bn 2 4.b odd 2 1
2352.4.a.cd 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5}^{2} + 12T_{5} - 62 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} - 3524 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12T - 62 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 3524 \) Copy content Toggle raw display
$13$ \( T^{2} + 48T - 306 \) Copy content Toggle raw display
$17$ \( T^{2} + 84T + 1666 \) Copy content Toggle raw display
$19$ \( T^{2} - 72T + 904 \) Copy content Toggle raw display
$23$ \( T^{2} + 308T + 20188 \) Copy content Toggle raw display
$29$ \( T^{2} + 80T - 30152 \) Copy content Toggle raw display
$31$ \( T^{2} + 384T + 33336 \) Copy content Toggle raw display
$37$ \( T^{2} - 536T + 57712 \) Copy content Toggle raw display
$41$ \( T^{2} + 756T + 140434 \) Copy content Toggle raw display
$43$ \( T^{2} - 400T - 16448 \) Copy content Toggle raw display
$47$ \( T^{2} + 312T + 14536 \) Copy content Toggle raw display
$53$ \( T^{2} + 52T - 55772 \) Copy content Toggle raw display
$59$ \( T^{2} + 864T + 186232 \) Copy content Toggle raw display
$61$ \( T^{2} + 1416 T + 484702 \) Copy content Toggle raw display
$67$ \( T^{2} - 144T - 51264 \) Copy content Toggle raw display
$71$ \( T^{2} + 1524 T + 492444 \) Copy content Toggle raw display
$73$ \( T^{2} + 744T - 536738 \) Copy content Toggle raw display
$79$ \( T^{2} - 976T - 453344 \) Copy content Toggle raw display
$83$ \( T^{2} - 312 T - 1788272 \) Copy content Toggle raw display
$89$ \( T^{2} + 108T - 79502 \) Copy content Toggle raw display
$97$ \( T^{2} - 744 T - 1392866 \) Copy content Toggle raw display
show more
show less