Properties

Label 4-294e2-1.1-c3e2-0-14
Degree $4$
Conductor $86436$
Sign $1$
Analytic cond. $300.903$
Root an. cond. $4.16492$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 6·3-s + 12·4-s − 12·5-s − 24·6-s − 32·8-s + 27·9-s + 48·10-s − 4·11-s + 72·12-s − 48·13-s − 72·15-s + 80·16-s − 84·17-s − 108·18-s + 72·19-s − 144·20-s + 16·22-s − 308·23-s − 192·24-s − 44·25-s + 192·26-s + 108·27-s − 80·29-s + 288·30-s − 384·31-s − 192·32-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 3/2·4-s − 1.07·5-s − 1.63·6-s − 1.41·8-s + 9-s + 1.51·10-s − 0.109·11-s + 1.73·12-s − 1.02·13-s − 1.23·15-s + 5/4·16-s − 1.19·17-s − 1.41·18-s + 0.869·19-s − 1.60·20-s + 0.155·22-s − 2.79·23-s − 1.63·24-s − 0.351·25-s + 1.44·26-s + 0.769·27-s − 0.512·29-s + 1.75·30-s − 2.22·31-s − 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(86436\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(300.903\)
Root analytic conductor: \(4.16492\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 86436,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
3$C_1$ \( ( 1 - p T )^{2} \)
7 \( 1 \)
good5$D_{4}$ \( 1 + 12 T + 188 T^{2} + 12 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 4 T - 862 T^{2} + 4 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 48 T + 4088 T^{2} + 48 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 84 T + 676 p T^{2} + 84 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 72 T + 14622 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 308 T + 44522 T^{2} + 308 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 80 T + 18626 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 384 T + 92918 T^{2} + 384 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 536 T + 159018 T^{2} - 536 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 756 T + 278276 T^{2} + 756 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 400 T + 142566 T^{2} - 400 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 312 T + 222182 T^{2} + 312 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 52 T + 241982 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 864 T + 596990 T^{2} + 864 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1416 T + 938664 T^{2} + 1416 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 144 T + 550262 T^{2} - 144 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 1524 T + 1208266 T^{2} + 1524 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 744 T + 241296 T^{2} + 744 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 976 T + 532734 T^{2} - 976 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 312 T - 644698 T^{2} - 312 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 108 T + 1330436 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 744 T + 432480 T^{2} - 744 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01078268999428782279105875749, −10.47503222882454953691200399240, −9.952624272733552531982308827923, −9.651312137416242421496265502210, −9.030140924676082000774990781871, −8.926503701804876290893032428766, −8.010110502586491936596428866848, −7.88677254101643899811533793045, −7.40681055414911277316208398581, −7.30690027901813792296692594568, −6.21986903775267006160769438229, −5.95014499637341461349311098617, −4.75735418594606979380009882113, −4.23042052409539446516930576079, −3.52960274074151958935121362167, −2.96915635250354504757669641456, −2.01758182723099691574107084194, −1.74112416410043549236673096231, 0, 0, 1.74112416410043549236673096231, 2.01758182723099691574107084194, 2.96915635250354504757669641456, 3.52960274074151958935121362167, 4.23042052409539446516930576079, 4.75735418594606979380009882113, 5.95014499637341461349311098617, 6.21986903775267006160769438229, 7.30690027901813792296692594568, 7.40681055414911277316208398581, 7.88677254101643899811533793045, 8.010110502586491936596428866848, 8.926503701804876290893032428766, 9.030140924676082000774990781871, 9.651312137416242421496265502210, 9.952624272733552531982308827923, 10.47503222882454953691200399240, 11.01078268999428782279105875749

Graph of the $Z$-function along the critical line