Properties

Label 882.4.a.v.1.2
Level $882$
Weight $4$
Character 882.1
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 273130155 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,8,-5,0,0,-16,0,10,-67,0,41] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1345}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 336 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-17.8371\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +15.8371 q^{5} -8.00000 q^{8} -31.6742 q^{10} -51.8371 q^{11} +38.8371 q^{13} +16.0000 q^{16} -27.3485 q^{17} +76.5114 q^{19} +63.3485 q^{20} +103.674 q^{22} -147.348 q^{23} +125.814 q^{25} -77.6742 q^{26} -240.208 q^{29} -296.674 q^{31} -32.0000 q^{32} +54.6970 q^{34} -161.534 q^{37} -153.023 q^{38} -126.697 q^{40} +102.977 q^{41} -328.557 q^{43} -207.348 q^{44} +294.697 q^{46} -67.9546 q^{47} -251.629 q^{50} +155.348 q^{52} +66.4886 q^{53} -820.951 q^{55} +480.417 q^{58} +461.928 q^{59} +185.348 q^{61} +593.348 q^{62} +64.0000 q^{64} +615.068 q^{65} +545.208 q^{67} -109.394 q^{68} +130.742 q^{71} +181.299 q^{73} +323.068 q^{74} +306.045 q^{76} -409.697 q^{79} +253.394 q^{80} -205.955 q^{82} -347.928 q^{83} -433.121 q^{85} +657.114 q^{86} +414.697 q^{88} -1157.16 q^{89} -589.394 q^{92} +135.909 q^{94} +1211.72 q^{95} +1618.30 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 5 q^{5} - 16 q^{8} + 10 q^{10} - 67 q^{11} + 41 q^{13} + 32 q^{16} + 92 q^{17} + 43 q^{19} - 20 q^{20} + 134 q^{22} - 148 q^{23} + 435 q^{25} - 82 q^{26} - 77 q^{29} - 520 q^{31}+ \cdots + 1953 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 15.8371 1.41652 0.708258 0.705954i \(-0.249482\pi\)
0.708258 + 0.705954i \(0.249482\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −31.6742 −1.00163
\(11\) −51.8371 −1.42086 −0.710431 0.703767i \(-0.751500\pi\)
−0.710431 + 0.703767i \(0.751500\pi\)
\(12\) 0 0
\(13\) 38.8371 0.828575 0.414288 0.910146i \(-0.364031\pi\)
0.414288 + 0.910146i \(0.364031\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −27.3485 −0.390175 −0.195088 0.980786i \(-0.562499\pi\)
−0.195088 + 0.980786i \(0.562499\pi\)
\(18\) 0 0
\(19\) 76.5114 0.923837 0.461919 0.886922i \(-0.347161\pi\)
0.461919 + 0.886922i \(0.347161\pi\)
\(20\) 63.3485 0.708258
\(21\) 0 0
\(22\) 103.674 1.00470
\(23\) −147.348 −1.33584 −0.667919 0.744234i \(-0.732815\pi\)
−0.667919 + 0.744234i \(0.732815\pi\)
\(24\) 0 0
\(25\) 125.814 1.00652
\(26\) −77.6742 −0.585891
\(27\) 0 0
\(28\) 0 0
\(29\) −240.208 −1.53812 −0.769061 0.639175i \(-0.779276\pi\)
−0.769061 + 0.639175i \(0.779276\pi\)
\(30\) 0 0
\(31\) −296.674 −1.71885 −0.859424 0.511264i \(-0.829177\pi\)
−0.859424 + 0.511264i \(0.829177\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 54.6970 0.275896
\(35\) 0 0
\(36\) 0 0
\(37\) −161.534 −0.717731 −0.358865 0.933389i \(-0.616836\pi\)
−0.358865 + 0.933389i \(0.616836\pi\)
\(38\) −153.023 −0.653252
\(39\) 0 0
\(40\) −126.697 −0.500814
\(41\) 102.977 0.392252 0.196126 0.980579i \(-0.437164\pi\)
0.196126 + 0.980579i \(0.437164\pi\)
\(42\) 0 0
\(43\) −328.557 −1.16522 −0.582610 0.812752i \(-0.697968\pi\)
−0.582610 + 0.812752i \(0.697968\pi\)
\(44\) −207.348 −0.710431
\(45\) 0 0
\(46\) 294.697 0.944580
\(47\) −67.9546 −0.210898 −0.105449 0.994425i \(-0.533628\pi\)
−0.105449 + 0.994425i \(0.533628\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −251.629 −0.711714
\(51\) 0 0
\(52\) 155.348 0.414288
\(53\) 66.4886 0.172319 0.0861596 0.996281i \(-0.472541\pi\)
0.0861596 + 0.996281i \(0.472541\pi\)
\(54\) 0 0
\(55\) −820.951 −2.01267
\(56\) 0 0
\(57\) 0 0
\(58\) 480.417 1.08762
\(59\) 461.928 1.01929 0.509643 0.860386i \(-0.329777\pi\)
0.509643 + 0.860386i \(0.329777\pi\)
\(60\) 0 0
\(61\) 185.348 0.389040 0.194520 0.980899i \(-0.437685\pi\)
0.194520 + 0.980899i \(0.437685\pi\)
\(62\) 593.348 1.21541
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 615.068 1.17369
\(66\) 0 0
\(67\) 545.208 0.994146 0.497073 0.867709i \(-0.334408\pi\)
0.497073 + 0.867709i \(0.334408\pi\)
\(68\) −109.394 −0.195088
\(69\) 0 0
\(70\) 0 0
\(71\) 130.742 0.218539 0.109270 0.994012i \(-0.465149\pi\)
0.109270 + 0.994012i \(0.465149\pi\)
\(72\) 0 0
\(73\) 181.299 0.290678 0.145339 0.989382i \(-0.453573\pi\)
0.145339 + 0.989382i \(0.453573\pi\)
\(74\) 323.068 0.507512
\(75\) 0 0
\(76\) 306.045 0.461919
\(77\) 0 0
\(78\) 0 0
\(79\) −409.697 −0.583475 −0.291737 0.956498i \(-0.594233\pi\)
−0.291737 + 0.956498i \(0.594233\pi\)
\(80\) 253.394 0.354129
\(81\) 0 0
\(82\) −205.955 −0.277364
\(83\) −347.928 −0.460121 −0.230061 0.973176i \(-0.573892\pi\)
−0.230061 + 0.973176i \(0.573892\pi\)
\(84\) 0 0
\(85\) −433.121 −0.552689
\(86\) 657.114 0.823935
\(87\) 0 0
\(88\) 414.697 0.502351
\(89\) −1157.16 −1.37819 −0.689093 0.724673i \(-0.741991\pi\)
−0.689093 + 0.724673i \(0.741991\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −589.394 −0.667919
\(93\) 0 0
\(94\) 135.909 0.149127
\(95\) 1211.72 1.30863
\(96\) 0 0
\(97\) 1618.30 1.69395 0.846976 0.531631i \(-0.178421\pi\)
0.846976 + 0.531631i \(0.178421\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 503.258 0.503258
\(101\) −718.742 −0.708094 −0.354047 0.935228i \(-0.615195\pi\)
−0.354047 + 0.935228i \(0.615195\pi\)
\(102\) 0 0
\(103\) −1611.58 −1.54169 −0.770843 0.637025i \(-0.780165\pi\)
−0.770843 + 0.637025i \(0.780165\pi\)
\(104\) −310.697 −0.292946
\(105\) 0 0
\(106\) −132.977 −0.121848
\(107\) −934.670 −0.844467 −0.422234 0.906487i \(-0.638754\pi\)
−0.422234 + 0.906487i \(0.638754\pi\)
\(108\) 0 0
\(109\) −1197.02 −1.05187 −0.525934 0.850525i \(-0.676284\pi\)
−0.525934 + 0.850525i \(0.676284\pi\)
\(110\) 1641.90 1.42317
\(111\) 0 0
\(112\) 0 0
\(113\) 2384.64 1.98521 0.992604 0.121400i \(-0.0387384\pi\)
0.992604 + 0.121400i \(0.0387384\pi\)
\(114\) 0 0
\(115\) −2333.58 −1.89224
\(116\) −960.833 −0.769061
\(117\) 0 0
\(118\) −923.856 −0.720744
\(119\) 0 0
\(120\) 0 0
\(121\) 1356.09 1.01885
\(122\) −370.697 −0.275093
\(123\) 0 0
\(124\) −1186.70 −0.859424
\(125\) 12.8977 0.00922883
\(126\) 0 0
\(127\) −2673.92 −1.86829 −0.934143 0.356898i \(-0.883834\pi\)
−0.934143 + 0.356898i \(0.883834\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −1230.14 −0.829924
\(131\) 38.8598 0.0259176 0.0129588 0.999916i \(-0.495875\pi\)
0.0129588 + 0.999916i \(0.495875\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1090.42 −0.702968
\(135\) 0 0
\(136\) 218.788 0.137948
\(137\) 768.144 0.479029 0.239514 0.970893i \(-0.423012\pi\)
0.239514 + 0.970893i \(0.423012\pi\)
\(138\) 0 0
\(139\) 1052.55 0.642274 0.321137 0.947033i \(-0.395935\pi\)
0.321137 + 0.947033i \(0.395935\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −261.485 −0.154530
\(143\) −2013.20 −1.17729
\(144\) 0 0
\(145\) −3804.21 −2.17877
\(146\) −362.598 −0.205540
\(147\) 0 0
\(148\) −646.136 −0.358865
\(149\) −360.977 −0.198473 −0.0992363 0.995064i \(-0.531640\pi\)
−0.0992363 + 0.995064i \(0.531640\pi\)
\(150\) 0 0
\(151\) 1548.39 0.834478 0.417239 0.908797i \(-0.362998\pi\)
0.417239 + 0.908797i \(0.362998\pi\)
\(152\) −612.091 −0.326626
\(153\) 0 0
\(154\) 0 0
\(155\) −4698.47 −2.43477
\(156\) 0 0
\(157\) −967.068 −0.491595 −0.245798 0.969321i \(-0.579050\pi\)
−0.245798 + 0.969321i \(0.579050\pi\)
\(158\) 819.394 0.412579
\(159\) 0 0
\(160\) −506.788 −0.250407
\(161\) 0 0
\(162\) 0 0
\(163\) −1326.50 −0.637420 −0.318710 0.947852i \(-0.603250\pi\)
−0.318710 + 0.947852i \(0.603250\pi\)
\(164\) 411.909 0.196126
\(165\) 0 0
\(166\) 695.856 0.325355
\(167\) −1416.70 −0.656451 −0.328225 0.944599i \(-0.606451\pi\)
−0.328225 + 0.944599i \(0.606451\pi\)
\(168\) 0 0
\(169\) −688.678 −0.313463
\(170\) 866.242 0.390810
\(171\) 0 0
\(172\) −1314.23 −0.582610
\(173\) 1036.60 0.455556 0.227778 0.973713i \(-0.426854\pi\)
0.227778 + 0.973713i \(0.426854\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −829.394 −0.355215
\(177\) 0 0
\(178\) 2314.32 0.974525
\(179\) 767.432 0.320450 0.160225 0.987081i \(-0.448778\pi\)
0.160225 + 0.987081i \(0.448778\pi\)
\(180\) 0 0
\(181\) −3957.71 −1.62527 −0.812636 0.582772i \(-0.801968\pi\)
−0.812636 + 0.582772i \(0.801968\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1178.79 0.472290
\(185\) −2558.23 −1.01668
\(186\) 0 0
\(187\) 1417.67 0.554385
\(188\) −271.818 −0.105449
\(189\) 0 0
\(190\) −2423.44 −0.925341
\(191\) 1805.30 0.683909 0.341954 0.939717i \(-0.388911\pi\)
0.341954 + 0.939717i \(0.388911\pi\)
\(192\) 0 0
\(193\) 3370.84 1.25719 0.628597 0.777731i \(-0.283630\pi\)
0.628597 + 0.777731i \(0.283630\pi\)
\(194\) −3236.60 −1.19781
\(195\) 0 0
\(196\) 0 0
\(197\) 4612.31 1.66809 0.834044 0.551697i \(-0.186020\pi\)
0.834044 + 0.551697i \(0.186020\pi\)
\(198\) 0 0
\(199\) −2229.86 −0.794326 −0.397163 0.917748i \(-0.630005\pi\)
−0.397163 + 0.917748i \(0.630005\pi\)
\(200\) −1006.52 −0.355857
\(201\) 0 0
\(202\) 1437.48 0.500698
\(203\) 0 0
\(204\) 0 0
\(205\) 1630.86 0.555631
\(206\) 3223.16 1.09014
\(207\) 0 0
\(208\) 621.394 0.207144
\(209\) −3966.13 −1.31265
\(210\) 0 0
\(211\) 912.614 0.297758 0.148879 0.988855i \(-0.452434\pi\)
0.148879 + 0.988855i \(0.452434\pi\)
\(212\) 265.955 0.0861596
\(213\) 0 0
\(214\) 1869.34 0.597129
\(215\) −5203.39 −1.65055
\(216\) 0 0
\(217\) 0 0
\(218\) 2394.04 0.743783
\(219\) 0 0
\(220\) −3283.80 −1.00634
\(221\) −1062.14 −0.323290
\(222\) 0 0
\(223\) −4319.47 −1.29710 −0.648549 0.761173i \(-0.724624\pi\)
−0.648549 + 0.761173i \(0.724624\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4769.29 −1.40375
\(227\) −2061.28 −0.602697 −0.301349 0.953514i \(-0.597437\pi\)
−0.301349 + 0.953514i \(0.597437\pi\)
\(228\) 0 0
\(229\) −3474.63 −1.00266 −0.501332 0.865255i \(-0.667157\pi\)
−0.501332 + 0.865255i \(0.667157\pi\)
\(230\) 4667.15 1.33801
\(231\) 0 0
\(232\) 1921.67 0.543809
\(233\) −776.099 −0.218214 −0.109107 0.994030i \(-0.534799\pi\)
−0.109107 + 0.994030i \(0.534799\pi\)
\(234\) 0 0
\(235\) −1076.20 −0.298740
\(236\) 1847.71 0.509643
\(237\) 0 0
\(238\) 0 0
\(239\) −2006.80 −0.543133 −0.271567 0.962420i \(-0.587542\pi\)
−0.271567 + 0.962420i \(0.587542\pi\)
\(240\) 0 0
\(241\) 805.648 0.215337 0.107669 0.994187i \(-0.465661\pi\)
0.107669 + 0.994187i \(0.465661\pi\)
\(242\) −2712.17 −0.720435
\(243\) 0 0
\(244\) 741.394 0.194520
\(245\) 0 0
\(246\) 0 0
\(247\) 2971.48 0.765469
\(248\) 2373.39 0.607704
\(249\) 0 0
\(250\) −25.7954 −0.00652577
\(251\) −1421.78 −0.357539 −0.178769 0.983891i \(-0.557212\pi\)
−0.178769 + 0.983891i \(0.557212\pi\)
\(252\) 0 0
\(253\) 7638.12 1.89804
\(254\) 5347.85 1.32108
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1465.82 0.355779 0.177890 0.984050i \(-0.443073\pi\)
0.177890 + 0.984050i \(0.443073\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2460.27 0.586845
\(261\) 0 0
\(262\) −77.7197 −0.0183265
\(263\) −6991.39 −1.63919 −0.819596 0.572942i \(-0.805802\pi\)
−0.819596 + 0.572942i \(0.805802\pi\)
\(264\) 0 0
\(265\) 1052.99 0.244093
\(266\) 0 0
\(267\) 0 0
\(268\) 2180.83 0.497073
\(269\) −808.958 −0.183357 −0.0916786 0.995789i \(-0.529223\pi\)
−0.0916786 + 0.995789i \(0.529223\pi\)
\(270\) 0 0
\(271\) 6661.77 1.49326 0.746630 0.665239i \(-0.231670\pi\)
0.746630 + 0.665239i \(0.231670\pi\)
\(272\) −437.576 −0.0975438
\(273\) 0 0
\(274\) −1536.29 −0.338725
\(275\) −6521.86 −1.43012
\(276\) 0 0
\(277\) −7531.47 −1.63365 −0.816827 0.576883i \(-0.804269\pi\)
−0.816827 + 0.576883i \(0.804269\pi\)
\(278\) −2105.10 −0.454156
\(279\) 0 0
\(280\) 0 0
\(281\) −1690.19 −0.358819 −0.179410 0.983774i \(-0.557419\pi\)
−0.179410 + 0.983774i \(0.557419\pi\)
\(282\) 0 0
\(283\) 3178.23 0.667584 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(284\) 522.970 0.109270
\(285\) 0 0
\(286\) 4026.41 0.832470
\(287\) 0 0
\(288\) 0 0
\(289\) −4165.06 −0.847763
\(290\) 7608.42 1.54063
\(291\) 0 0
\(292\) 725.197 0.145339
\(293\) 2176.53 0.433974 0.216987 0.976174i \(-0.430377\pi\)
0.216987 + 0.976174i \(0.430377\pi\)
\(294\) 0 0
\(295\) 7315.61 1.44383
\(296\) 1292.27 0.253756
\(297\) 0 0
\(298\) 721.955 0.140341
\(299\) −5722.59 −1.10684
\(300\) 0 0
\(301\) 0 0
\(302\) −3096.78 −0.590065
\(303\) 0 0
\(304\) 1224.18 0.230959
\(305\) 2935.39 0.551081
\(306\) 0 0
\(307\) 623.504 0.115913 0.0579564 0.998319i \(-0.481542\pi\)
0.0579564 + 0.998319i \(0.481542\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9396.93 1.72164
\(311\) −467.992 −0.0853293 −0.0426647 0.999089i \(-0.513585\pi\)
−0.0426647 + 0.999089i \(0.513585\pi\)
\(312\) 0 0
\(313\) 3612.81 0.652422 0.326211 0.945297i \(-0.394228\pi\)
0.326211 + 0.945297i \(0.394228\pi\)
\(314\) 1934.14 0.347610
\(315\) 0 0
\(316\) −1638.79 −0.291737
\(317\) −4531.74 −0.802927 −0.401463 0.915875i \(-0.631498\pi\)
−0.401463 + 0.915875i \(0.631498\pi\)
\(318\) 0 0
\(319\) 12451.7 2.18546
\(320\) 1013.58 0.177064
\(321\) 0 0
\(322\) 0 0
\(323\) −2092.47 −0.360459
\(324\) 0 0
\(325\) 4886.27 0.833974
\(326\) 2653.00 0.450724
\(327\) 0 0
\(328\) −823.818 −0.138682
\(329\) 0 0
\(330\) 0 0
\(331\) −1237.06 −0.205422 −0.102711 0.994711i \(-0.532752\pi\)
−0.102711 + 0.994711i \(0.532752\pi\)
\(332\) −1391.71 −0.230061
\(333\) 0 0
\(334\) 2833.39 0.464181
\(335\) 8634.53 1.40822
\(336\) 0 0
\(337\) −1867.83 −0.301921 −0.150960 0.988540i \(-0.548237\pi\)
−0.150960 + 0.988540i \(0.548237\pi\)
\(338\) 1377.36 0.221652
\(339\) 0 0
\(340\) −1732.48 −0.276345
\(341\) 15378.7 2.44224
\(342\) 0 0
\(343\) 0 0
\(344\) 2628.45 0.411967
\(345\) 0 0
\(346\) −2073.20 −0.322126
\(347\) 63.3637 0.00980271 0.00490136 0.999988i \(-0.498440\pi\)
0.00490136 + 0.999988i \(0.498440\pi\)
\(348\) 0 0
\(349\) 1223.79 0.187702 0.0938508 0.995586i \(-0.470082\pi\)
0.0938508 + 0.995586i \(0.470082\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1658.79 0.251175
\(353\) 4515.61 0.680855 0.340428 0.940271i \(-0.389428\pi\)
0.340428 + 0.940271i \(0.389428\pi\)
\(354\) 0 0
\(355\) 2070.58 0.309564
\(356\) −4628.64 −0.689093
\(357\) 0 0
\(358\) −1534.86 −0.226592
\(359\) −2228.49 −0.327619 −0.163810 0.986492i \(-0.552378\pi\)
−0.163810 + 0.986492i \(0.552378\pi\)
\(360\) 0 0
\(361\) −1005.01 −0.146524
\(362\) 7915.42 1.14924
\(363\) 0 0
\(364\) 0 0
\(365\) 2871.26 0.411749
\(366\) 0 0
\(367\) −1437.34 −0.204438 −0.102219 0.994762i \(-0.532594\pi\)
−0.102219 + 0.994762i \(0.532594\pi\)
\(368\) −2357.58 −0.333960
\(369\) 0 0
\(370\) 5116.47 0.718899
\(371\) 0 0
\(372\) 0 0
\(373\) −12237.4 −1.69874 −0.849370 0.527798i \(-0.823018\pi\)
−0.849370 + 0.527798i \(0.823018\pi\)
\(374\) −2835.33 −0.392010
\(375\) 0 0
\(376\) 543.636 0.0745636
\(377\) −9329.00 −1.27445
\(378\) 0 0
\(379\) −10647.0 −1.44301 −0.721503 0.692411i \(-0.756549\pi\)
−0.721503 + 0.692411i \(0.756549\pi\)
\(380\) 4846.88 0.654315
\(381\) 0 0
\(382\) −3610.59 −0.483597
\(383\) 6714.81 0.895851 0.447925 0.894071i \(-0.352163\pi\)
0.447925 + 0.894071i \(0.352163\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6741.68 −0.888970
\(387\) 0 0
\(388\) 6473.20 0.846976
\(389\) 10653.1 1.38852 0.694258 0.719727i \(-0.255733\pi\)
0.694258 + 0.719727i \(0.255733\pi\)
\(390\) 0 0
\(391\) 4029.76 0.521211
\(392\) 0 0
\(393\) 0 0
\(394\) −9224.62 −1.17952
\(395\) −6488.42 −0.826501
\(396\) 0 0
\(397\) 3221.04 0.407203 0.203601 0.979054i \(-0.434735\pi\)
0.203601 + 0.979054i \(0.434735\pi\)
\(398\) 4459.73 0.561673
\(399\) 0 0
\(400\) 2013.03 0.251629
\(401\) −12485.0 −1.55479 −0.777395 0.629012i \(-0.783460\pi\)
−0.777395 + 0.629012i \(0.783460\pi\)
\(402\) 0 0
\(403\) −11522.0 −1.42419
\(404\) −2874.97 −0.354047
\(405\) 0 0
\(406\) 0 0
\(407\) 8373.46 1.01980
\(408\) 0 0
\(409\) 7037.39 0.850798 0.425399 0.905006i \(-0.360134\pi\)
0.425399 + 0.905006i \(0.360134\pi\)
\(410\) −3261.73 −0.392891
\(411\) 0 0
\(412\) −6446.32 −0.770843
\(413\) 0 0
\(414\) 0 0
\(415\) −5510.18 −0.651769
\(416\) −1242.79 −0.146473
\(417\) 0 0
\(418\) 7932.26 0.928180
\(419\) 1549.66 0.180682 0.0903410 0.995911i \(-0.471204\pi\)
0.0903410 + 0.995911i \(0.471204\pi\)
\(420\) 0 0
\(421\) 5531.63 0.640369 0.320184 0.947355i \(-0.396255\pi\)
0.320184 + 0.947355i \(0.396255\pi\)
\(422\) −1825.23 −0.210547
\(423\) 0 0
\(424\) −531.909 −0.0609240
\(425\) −3440.83 −0.392717
\(426\) 0 0
\(427\) 0 0
\(428\) −3738.68 −0.422234
\(429\) 0 0
\(430\) 10406.8 1.16712
\(431\) 2029.93 0.226864 0.113432 0.993546i \(-0.463816\pi\)
0.113432 + 0.993546i \(0.463816\pi\)
\(432\) 0 0
\(433\) −327.739 −0.0363744 −0.0181872 0.999835i \(-0.505789\pi\)
−0.0181872 + 0.999835i \(0.505789\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4788.08 −0.525934
\(437\) −11273.8 −1.23410
\(438\) 0 0
\(439\) 7908.68 0.859819 0.429910 0.902872i \(-0.358545\pi\)
0.429910 + 0.902872i \(0.358545\pi\)
\(440\) 6567.61 0.711587
\(441\) 0 0
\(442\) 2124.27 0.228600
\(443\) 2920.82 0.313256 0.156628 0.987658i \(-0.449938\pi\)
0.156628 + 0.987658i \(0.449938\pi\)
\(444\) 0 0
\(445\) −18326.1 −1.95222
\(446\) 8638.93 0.917187
\(447\) 0 0
\(448\) 0 0
\(449\) 10240.2 1.07631 0.538156 0.842845i \(-0.319121\pi\)
0.538156 + 0.842845i \(0.319121\pi\)
\(450\) 0 0
\(451\) −5338.05 −0.557336
\(452\) 9538.58 0.992604
\(453\) 0 0
\(454\) 4122.57 0.426171
\(455\) 0 0
\(456\) 0 0
\(457\) 5892.63 0.603163 0.301582 0.953440i \(-0.402485\pi\)
0.301582 + 0.953440i \(0.402485\pi\)
\(458\) 6949.26 0.708991
\(459\) 0 0
\(460\) −9334.30 −0.946118
\(461\) 12643.4 1.27735 0.638677 0.769475i \(-0.279482\pi\)
0.638677 + 0.769475i \(0.279482\pi\)
\(462\) 0 0
\(463\) 15093.2 1.51499 0.757494 0.652842i \(-0.226423\pi\)
0.757494 + 0.652842i \(0.226423\pi\)
\(464\) −3843.33 −0.384531
\(465\) 0 0
\(466\) 1552.20 0.154301
\(467\) 2820.23 0.279454 0.139727 0.990190i \(-0.455378\pi\)
0.139727 + 0.990190i \(0.455378\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2152.41 0.211241
\(471\) 0 0
\(472\) −3695.42 −0.360372
\(473\) 17031.4 1.65562
\(474\) 0 0
\(475\) 9626.23 0.929856
\(476\) 0 0
\(477\) 0 0
\(478\) 4013.59 0.384053
\(479\) 16448.5 1.56900 0.784500 0.620129i \(-0.212920\pi\)
0.784500 + 0.620129i \(0.212920\pi\)
\(480\) 0 0
\(481\) −6273.52 −0.594694
\(482\) −1611.30 −0.152267
\(483\) 0 0
\(484\) 5424.35 0.509424
\(485\) 25629.2 2.39951
\(486\) 0 0
\(487\) 6331.07 0.589093 0.294546 0.955637i \(-0.404831\pi\)
0.294546 + 0.955637i \(0.404831\pi\)
\(488\) −1482.79 −0.137546
\(489\) 0 0
\(490\) 0 0
\(491\) 9286.90 0.853588 0.426794 0.904349i \(-0.359643\pi\)
0.426794 + 0.904349i \(0.359643\pi\)
\(492\) 0 0
\(493\) 6569.33 0.600138
\(494\) −5942.96 −0.541268
\(495\) 0 0
\(496\) −4746.79 −0.429712
\(497\) 0 0
\(498\) 0 0
\(499\) −243.451 −0.0218404 −0.0109202 0.999940i \(-0.503476\pi\)
−0.0109202 + 0.999940i \(0.503476\pi\)
\(500\) 51.5907 0.00461442
\(501\) 0 0
\(502\) 2843.57 0.252818
\(503\) −8499.30 −0.753409 −0.376705 0.926333i \(-0.622943\pi\)
−0.376705 + 0.926333i \(0.622943\pi\)
\(504\) 0 0
\(505\) −11382.8 −1.00303
\(506\) −15276.2 −1.34212
\(507\) 0 0
\(508\) −10695.7 −0.934143
\(509\) 7683.10 0.669052 0.334526 0.942387i \(-0.391424\pi\)
0.334526 + 0.942387i \(0.391424\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −2931.64 −0.251574
\(515\) −25522.8 −2.18382
\(516\) 0 0
\(517\) 3522.57 0.299656
\(518\) 0 0
\(519\) 0 0
\(520\) −4920.55 −0.414962
\(521\) 21530.6 1.81051 0.905253 0.424874i \(-0.139681\pi\)
0.905253 + 0.424874i \(0.139681\pi\)
\(522\) 0 0
\(523\) −16847.1 −1.40855 −0.704274 0.709929i \(-0.748727\pi\)
−0.704274 + 0.709929i \(0.748727\pi\)
\(524\) 155.439 0.0129588
\(525\) 0 0
\(526\) 13982.8 1.15908
\(527\) 8113.59 0.670652
\(528\) 0 0
\(529\) 9544.58 0.784464
\(530\) −2105.98 −0.172600
\(531\) 0 0
\(532\) 0 0
\(533\) 3999.34 0.325011
\(534\) 0 0
\(535\) −14802.5 −1.19620
\(536\) −4361.67 −0.351484
\(537\) 0 0
\(538\) 1617.92 0.129653
\(539\) 0 0
\(540\) 0 0
\(541\) 17440.0 1.38596 0.692981 0.720955i \(-0.256297\pi\)
0.692981 + 0.720955i \(0.256297\pi\)
\(542\) −13323.5 −1.05589
\(543\) 0 0
\(544\) 875.151 0.0689739
\(545\) −18957.3 −1.48999
\(546\) 0 0
\(547\) 11520.7 0.900530 0.450265 0.892895i \(-0.351329\pi\)
0.450265 + 0.892895i \(0.351329\pi\)
\(548\) 3072.58 0.239514
\(549\) 0 0
\(550\) 13043.7 1.01125
\(551\) −18378.7 −1.42098
\(552\) 0 0
\(553\) 0 0
\(554\) 15062.9 1.15517
\(555\) 0 0
\(556\) 4210.20 0.321137
\(557\) −11493.0 −0.874282 −0.437141 0.899393i \(-0.644009\pi\)
−0.437141 + 0.899393i \(0.644009\pi\)
\(558\) 0 0
\(559\) −12760.2 −0.965472
\(560\) 0 0
\(561\) 0 0
\(562\) 3380.38 0.253724
\(563\) −18111.3 −1.35577 −0.677886 0.735167i \(-0.737104\pi\)
−0.677886 + 0.735167i \(0.737104\pi\)
\(564\) 0 0
\(565\) 37765.9 2.81208
\(566\) −6356.46 −0.472053
\(567\) 0 0
\(568\) −1045.94 −0.0772652
\(569\) −4417.61 −0.325476 −0.162738 0.986669i \(-0.552033\pi\)
−0.162738 + 0.986669i \(0.552033\pi\)
\(570\) 0 0
\(571\) 13219.7 0.968878 0.484439 0.874825i \(-0.339024\pi\)
0.484439 + 0.874825i \(0.339024\pi\)
\(572\) −8052.82 −0.588646
\(573\) 0 0
\(574\) 0 0
\(575\) −18538.6 −1.34454
\(576\) 0 0
\(577\) −17496.4 −1.26236 −0.631182 0.775634i \(-0.717430\pi\)
−0.631182 + 0.775634i \(0.717430\pi\)
\(578\) 8330.12 0.599459
\(579\) 0 0
\(580\) −15216.8 −1.08939
\(581\) 0 0
\(582\) 0 0
\(583\) −3446.58 −0.244842
\(584\) −1450.39 −0.102770
\(585\) 0 0
\(586\) −4353.07 −0.306866
\(587\) 4280.53 0.300982 0.150491 0.988611i \(-0.451915\pi\)
0.150491 + 0.988611i \(0.451915\pi\)
\(588\) 0 0
\(589\) −22699.0 −1.58794
\(590\) −14631.2 −1.02095
\(591\) 0 0
\(592\) −2584.55 −0.179433
\(593\) 1590.93 0.110172 0.0550858 0.998482i \(-0.482457\pi\)
0.0550858 + 0.998482i \(0.482457\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1443.91 −0.0992363
\(597\) 0 0
\(598\) 11445.2 0.782656
\(599\) 13922.8 0.949703 0.474851 0.880066i \(-0.342502\pi\)
0.474851 + 0.880066i \(0.342502\pi\)
\(600\) 0 0
\(601\) 12559.7 0.852446 0.426223 0.904618i \(-0.359844\pi\)
0.426223 + 0.904618i \(0.359844\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6193.56 0.417239
\(605\) 21476.5 1.44321
\(606\) 0 0
\(607\) 7678.37 0.513436 0.256718 0.966486i \(-0.417359\pi\)
0.256718 + 0.966486i \(0.417359\pi\)
\(608\) −2448.36 −0.163313
\(609\) 0 0
\(610\) −5870.77 −0.389673
\(611\) −2639.16 −0.174745
\(612\) 0 0
\(613\) 6158.37 0.405766 0.202883 0.979203i \(-0.434969\pi\)
0.202883 + 0.979203i \(0.434969\pi\)
\(614\) −1247.01 −0.0819628
\(615\) 0 0
\(616\) 0 0
\(617\) −8813.12 −0.575045 −0.287523 0.957774i \(-0.592832\pi\)
−0.287523 + 0.957774i \(0.592832\pi\)
\(618\) 0 0
\(619\) 23189.9 1.50579 0.752894 0.658142i \(-0.228658\pi\)
0.752894 + 0.658142i \(0.228658\pi\)
\(620\) −18793.9 −1.21739
\(621\) 0 0
\(622\) 935.985 0.0603369
\(623\) 0 0
\(624\) 0 0
\(625\) −15522.5 −0.993442
\(626\) −7225.62 −0.461332
\(627\) 0 0
\(628\) −3868.27 −0.245798
\(629\) 4417.71 0.280041
\(630\) 0 0
\(631\) 7936.94 0.500736 0.250368 0.968151i \(-0.419448\pi\)
0.250368 + 0.968151i \(0.419448\pi\)
\(632\) 3277.58 0.206289
\(633\) 0 0
\(634\) 9063.48 0.567755
\(635\) −42347.3 −2.64646
\(636\) 0 0
\(637\) 0 0
\(638\) −24903.4 −1.54535
\(639\) 0 0
\(640\) −2027.15 −0.125203
\(641\) −32114.6 −1.97886 −0.989432 0.144996i \(-0.953683\pi\)
−0.989432 + 0.144996i \(0.953683\pi\)
\(642\) 0 0
\(643\) −24786.7 −1.52021 −0.760104 0.649802i \(-0.774852\pi\)
−0.760104 + 0.649802i \(0.774852\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4184.94 0.254883
\(647\) −7545.59 −0.458497 −0.229249 0.973368i \(-0.573627\pi\)
−0.229249 + 0.973368i \(0.573627\pi\)
\(648\) 0 0
\(649\) −23945.0 −1.44827
\(650\) −9772.54 −0.589708
\(651\) 0 0
\(652\) −5306.00 −0.318710
\(653\) 4888.99 0.292988 0.146494 0.989212i \(-0.453201\pi\)
0.146494 + 0.989212i \(0.453201\pi\)
\(654\) 0 0
\(655\) 615.428 0.0367126
\(656\) 1647.64 0.0980631
\(657\) 0 0
\(658\) 0 0
\(659\) −25895.9 −1.53075 −0.765374 0.643586i \(-0.777446\pi\)
−0.765374 + 0.643586i \(0.777446\pi\)
\(660\) 0 0
\(661\) 8183.37 0.481537 0.240769 0.970583i \(-0.422601\pi\)
0.240769 + 0.970583i \(0.422601\pi\)
\(662\) 2474.11 0.145256
\(663\) 0 0
\(664\) 2783.42 0.162677
\(665\) 0 0
\(666\) 0 0
\(667\) 35394.3 2.05468
\(668\) −5666.79 −0.328225
\(669\) 0 0
\(670\) −17269.1 −0.995764
\(671\) −9607.93 −0.552772
\(672\) 0 0
\(673\) −4635.02 −0.265478 −0.132739 0.991151i \(-0.542377\pi\)
−0.132739 + 0.991151i \(0.542377\pi\)
\(674\) 3735.67 0.213490
\(675\) 0 0
\(676\) −2754.71 −0.156731
\(677\) 24385.8 1.38437 0.692187 0.721718i \(-0.256647\pi\)
0.692187 + 0.721718i \(0.256647\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 3464.97 0.195405
\(681\) 0 0
\(682\) −30757.5 −1.72693
\(683\) 18393.4 1.03046 0.515230 0.857052i \(-0.327706\pi\)
0.515230 + 0.857052i \(0.327706\pi\)
\(684\) 0 0
\(685\) 12165.2 0.678552
\(686\) 0 0
\(687\) 0 0
\(688\) −5256.91 −0.291305
\(689\) 2582.23 0.142779
\(690\) 0 0
\(691\) −14898.9 −0.820231 −0.410116 0.912034i \(-0.634512\pi\)
−0.410116 + 0.912034i \(0.634512\pi\)
\(692\) 4146.39 0.227778
\(693\) 0 0
\(694\) −126.727 −0.00693157
\(695\) 16669.3 0.909791
\(696\) 0 0
\(697\) −2816.27 −0.153047
\(698\) −2447.58 −0.132725
\(699\) 0 0
\(700\) 0 0
\(701\) 5725.70 0.308497 0.154249 0.988032i \(-0.450704\pi\)
0.154249 + 0.988032i \(0.450704\pi\)
\(702\) 0 0
\(703\) −12359.2 −0.663067
\(704\) −3317.58 −0.177608
\(705\) 0 0
\(706\) −9031.23 −0.481437
\(707\) 0 0
\(708\) 0 0
\(709\) −23456.8 −1.24251 −0.621255 0.783609i \(-0.713377\pi\)
−0.621255 + 0.783609i \(0.713377\pi\)
\(710\) −4141.17 −0.218895
\(711\) 0 0
\(712\) 9257.27 0.487263
\(713\) 43714.5 2.29610
\(714\) 0 0
\(715\) −31883.4 −1.66765
\(716\) 3069.73 0.160225
\(717\) 0 0
\(718\) 4456.98 0.231662
\(719\) 8459.00 0.438759 0.219379 0.975640i \(-0.429597\pi\)
0.219379 + 0.975640i \(0.429597\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2010.02 0.103608
\(723\) 0 0
\(724\) −15830.8 −0.812636
\(725\) −30221.7 −1.54814
\(726\) 0 0
\(727\) −11822.2 −0.603111 −0.301555 0.953449i \(-0.597506\pi\)
−0.301555 + 0.953449i \(0.597506\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5742.52 −0.291151
\(731\) 8985.53 0.454640
\(732\) 0 0
\(733\) 5028.95 0.253409 0.126704 0.991941i \(-0.459560\pi\)
0.126704 + 0.991941i \(0.459560\pi\)
\(734\) 2874.68 0.144559
\(735\) 0 0
\(736\) 4715.15 0.236145
\(737\) −28262.0 −1.41254
\(738\) 0 0
\(739\) −17743.9 −0.883247 −0.441624 0.897200i \(-0.645597\pi\)
−0.441624 + 0.897200i \(0.645597\pi\)
\(740\) −10232.9 −0.508338
\(741\) 0 0
\(742\) 0 0
\(743\) 13202.3 0.651877 0.325938 0.945391i \(-0.394320\pi\)
0.325938 + 0.945391i \(0.394320\pi\)
\(744\) 0 0
\(745\) −5716.84 −0.281139
\(746\) 24474.9 1.20119
\(747\) 0 0
\(748\) 5670.67 0.277193
\(749\) 0 0
\(750\) 0 0
\(751\) 15601.0 0.758040 0.379020 0.925388i \(-0.376261\pi\)
0.379020 + 0.925388i \(0.376261\pi\)
\(752\) −1087.27 −0.0527244
\(753\) 0 0
\(754\) 18658.0 0.901173
\(755\) 24522.0 1.18205
\(756\) 0 0
\(757\) 2948.08 0.141545 0.0707725 0.997492i \(-0.477454\pi\)
0.0707725 + 0.997492i \(0.477454\pi\)
\(758\) 21294.0 1.02036
\(759\) 0 0
\(760\) −9693.76 −0.462670
\(761\) −1697.03 −0.0808375 −0.0404187 0.999183i \(-0.512869\pi\)
−0.0404187 + 0.999183i \(0.512869\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7221.18 0.341954
\(765\) 0 0
\(766\) −13429.6 −0.633462
\(767\) 17940.0 0.844556
\(768\) 0 0
\(769\) −96.7799 −0.00453833 −0.00226916 0.999997i \(-0.500722\pi\)
−0.00226916 + 0.999997i \(0.500722\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13483.4 0.628597
\(773\) −36326.8 −1.69028 −0.845138 0.534548i \(-0.820482\pi\)
−0.845138 + 0.534548i \(0.820482\pi\)
\(774\) 0 0
\(775\) −37325.9 −1.73005
\(776\) −12946.4 −0.598903
\(777\) 0 0
\(778\) −21306.2 −0.981828
\(779\) 7878.93 0.362377
\(780\) 0 0
\(781\) −6777.31 −0.310514
\(782\) −8059.52 −0.368552
\(783\) 0 0
\(784\) 0 0
\(785\) −15315.6 −0.696352
\(786\) 0 0
\(787\) 7096.46 0.321425 0.160713 0.987001i \(-0.448621\pi\)
0.160713 + 0.987001i \(0.448621\pi\)
\(788\) 18449.2 0.834044
\(789\) 0 0
\(790\) 12976.8 0.584424
\(791\) 0 0
\(792\) 0 0
\(793\) 7198.40 0.322349
\(794\) −6442.08 −0.287936
\(795\) 0 0
\(796\) −8919.45 −0.397163
\(797\) −40289.6 −1.79063 −0.895314 0.445436i \(-0.853049\pi\)
−0.895314 + 0.445436i \(0.853049\pi\)
\(798\) 0 0
\(799\) 1858.45 0.0822871
\(800\) −4026.06 −0.177928
\(801\) 0 0
\(802\) 24970.0 1.09940
\(803\) −9398.03 −0.413013
\(804\) 0 0
\(805\) 0 0
\(806\) 23043.9 1.00706
\(807\) 0 0
\(808\) 5749.94 0.250349
\(809\) 11566.0 0.502642 0.251321 0.967904i \(-0.419135\pi\)
0.251321 + 0.967904i \(0.419135\pi\)
\(810\) 0 0
\(811\) 18014.2 0.779981 0.389991 0.920819i \(-0.372478\pi\)
0.389991 + 0.920819i \(0.372478\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16746.9 −0.721105
\(815\) −21007.9 −0.902915
\(816\) 0 0
\(817\) −25138.3 −1.07647
\(818\) −14074.8 −0.601605
\(819\) 0 0
\(820\) 6523.45 0.277816
\(821\) 16792.4 0.713837 0.356918 0.934136i \(-0.383827\pi\)
0.356918 + 0.934136i \(0.383827\pi\)
\(822\) 0 0
\(823\) −8819.03 −0.373526 −0.186763 0.982405i \(-0.559800\pi\)
−0.186763 + 0.982405i \(0.559800\pi\)
\(824\) 12892.6 0.545068
\(825\) 0 0
\(826\) 0 0
\(827\) −8250.13 −0.346898 −0.173449 0.984843i \(-0.555491\pi\)
−0.173449 + 0.984843i \(0.555491\pi\)
\(828\) 0 0
\(829\) −21550.5 −0.902871 −0.451435 0.892304i \(-0.649088\pi\)
−0.451435 + 0.892304i \(0.649088\pi\)
\(830\) 11020.4 0.460870
\(831\) 0 0
\(832\) 2485.58 0.103572
\(833\) 0 0
\(834\) 0 0
\(835\) −22436.4 −0.929873
\(836\) −15864.5 −0.656323
\(837\) 0 0
\(838\) −3099.32 −0.127762
\(839\) −30130.4 −1.23983 −0.619916 0.784669i \(-0.712833\pi\)
−0.619916 + 0.784669i \(0.712833\pi\)
\(840\) 0 0
\(841\) 33311.0 1.36582
\(842\) −11063.3 −0.452809
\(843\) 0 0
\(844\) 3650.45 0.148879
\(845\) −10906.7 −0.444025
\(846\) 0 0
\(847\) 0 0
\(848\) 1063.82 0.0430798
\(849\) 0 0
\(850\) 6881.67 0.277693
\(851\) 23801.8 0.958772
\(852\) 0 0
\(853\) −40738.6 −1.63525 −0.817623 0.575754i \(-0.804709\pi\)
−0.817623 + 0.575754i \(0.804709\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7477.36 0.298564
\(857\) 36508.2 1.45519 0.727594 0.686008i \(-0.240638\pi\)
0.727594 + 0.686008i \(0.240638\pi\)
\(858\) 0 0
\(859\) −21980.8 −0.873081 −0.436541 0.899685i \(-0.643796\pi\)
−0.436541 + 0.899685i \(0.643796\pi\)
\(860\) −20813.6 −0.825276
\(861\) 0 0
\(862\) −4059.86 −0.160417
\(863\) 23426.1 0.924024 0.462012 0.886874i \(-0.347128\pi\)
0.462012 + 0.886874i \(0.347128\pi\)
\(864\) 0 0
\(865\) 16416.7 0.645301
\(866\) 655.477 0.0257206
\(867\) 0 0
\(868\) 0 0
\(869\) 21237.5 0.829037
\(870\) 0 0
\(871\) 21174.3 0.823725
\(872\) 9576.15 0.371892
\(873\) 0 0
\(874\) 22547.7 0.872639
\(875\) 0 0
\(876\) 0 0
\(877\) 307.401 0.0118360 0.00591802 0.999982i \(-0.498116\pi\)
0.00591802 + 0.999982i \(0.498116\pi\)
\(878\) −15817.4 −0.607984
\(879\) 0 0
\(880\) −13135.2 −0.503168
\(881\) 19941.7 0.762605 0.381302 0.924450i \(-0.375476\pi\)
0.381302 + 0.924450i \(0.375476\pi\)
\(882\) 0 0
\(883\) −37524.1 −1.43011 −0.715056 0.699068i \(-0.753599\pi\)
−0.715056 + 0.699068i \(0.753599\pi\)
\(884\) −4248.55 −0.161645
\(885\) 0 0
\(886\) −5841.64 −0.221505
\(887\) 2880.20 0.109028 0.0545140 0.998513i \(-0.482639\pi\)
0.0545140 + 0.998513i \(0.482639\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 36652.1 1.38043
\(891\) 0 0
\(892\) −17277.9 −0.648549
\(893\) −5199.30 −0.194835
\(894\) 0 0
\(895\) 12153.9 0.453922
\(896\) 0 0
\(897\) 0 0
\(898\) −20480.4 −0.761068
\(899\) 71263.6 2.64380
\(900\) 0 0
\(901\) −1818.36 −0.0672347
\(902\) 10676.1 0.394096
\(903\) 0 0
\(904\) −19077.2 −0.701877
\(905\) −62678.7 −2.30222
\(906\) 0 0
\(907\) 18319.2 0.670651 0.335326 0.942102i \(-0.391154\pi\)
0.335326 + 0.942102i \(0.391154\pi\)
\(908\) −8245.14 −0.301349
\(909\) 0 0
\(910\) 0 0
\(911\) −46150.7 −1.67842 −0.839210 0.543807i \(-0.816982\pi\)
−0.839210 + 0.543807i \(0.816982\pi\)
\(912\) 0 0
\(913\) 18035.6 0.653769
\(914\) −11785.3 −0.426501
\(915\) 0 0
\(916\) −13898.5 −0.501332
\(917\) 0 0
\(918\) 0 0
\(919\) 47264.3 1.69652 0.848261 0.529578i \(-0.177650\pi\)
0.848261 + 0.529578i \(0.177650\pi\)
\(920\) 18668.6 0.669006
\(921\) 0 0
\(922\) −25286.7 −0.903226
\(923\) 5077.66 0.181076
\(924\) 0 0
\(925\) −20323.3 −0.722407
\(926\) −30186.4 −1.07126
\(927\) 0 0
\(928\) 7686.67 0.271904
\(929\) 53271.5 1.88136 0.940678 0.339301i \(-0.110190\pi\)
0.940678 + 0.339301i \(0.110190\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3104.39 −0.109107
\(933\) 0 0
\(934\) −5640.47 −0.197604
\(935\) 22451.8 0.785295
\(936\) 0 0
\(937\) 17197.8 0.599602 0.299801 0.954002i \(-0.403080\pi\)
0.299801 + 0.954002i \(0.403080\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4304.82 −0.149370
\(941\) −28834.9 −0.998926 −0.499463 0.866335i \(-0.666469\pi\)
−0.499463 + 0.866335i \(0.666469\pi\)
\(942\) 0 0
\(943\) −15173.5 −0.523986
\(944\) 7390.85 0.254822
\(945\) 0 0
\(946\) −34062.9 −1.17070
\(947\) 51841.2 1.77890 0.889448 0.457037i \(-0.151089\pi\)
0.889448 + 0.457037i \(0.151089\pi\)
\(948\) 0 0
\(949\) 7041.14 0.240848
\(950\) −19252.5 −0.657508
\(951\) 0 0
\(952\) 0 0
\(953\) 5887.31 0.200114 0.100057 0.994982i \(-0.468097\pi\)
0.100057 + 0.994982i \(0.468097\pi\)
\(954\) 0 0
\(955\) 28590.7 0.968767
\(956\) −8027.18 −0.271567
\(957\) 0 0
\(958\) −32897.0 −1.10945
\(959\) 0 0
\(960\) 0 0
\(961\) 58224.6 1.95444
\(962\) 12547.0 0.420512
\(963\) 0 0
\(964\) 3222.59 0.107669
\(965\) 53384.4 1.78083
\(966\) 0 0
\(967\) −36620.0 −1.21781 −0.608904 0.793244i \(-0.708391\pi\)
−0.608904 + 0.793244i \(0.708391\pi\)
\(968\) −10848.7 −0.360217
\(969\) 0 0
\(970\) −51258.4 −1.69671
\(971\) 42364.9 1.40016 0.700079 0.714065i \(-0.253148\pi\)
0.700079 + 0.714065i \(0.253148\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −12662.1 −0.416551
\(975\) 0 0
\(976\) 2965.58 0.0972600
\(977\) −5022.32 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(978\) 0 0
\(979\) 59983.8 1.95821
\(980\) 0 0
\(981\) 0 0
\(982\) −18573.8 −0.603578
\(983\) −28292.8 −0.918005 −0.459003 0.888435i \(-0.651793\pi\)
−0.459003 + 0.888435i \(0.651793\pi\)
\(984\) 0 0
\(985\) 73045.7 2.36287
\(986\) −13138.7 −0.424361
\(987\) 0 0
\(988\) 11885.9 0.382734
\(989\) 48412.3 1.55655
\(990\) 0 0
\(991\) 36401.1 1.16682 0.583410 0.812178i \(-0.301718\pi\)
0.583410 + 0.812178i \(0.301718\pi\)
\(992\) 9493.58 0.303852
\(993\) 0 0
\(994\) 0 0
\(995\) −35314.6 −1.12517
\(996\) 0 0
\(997\) −2357.19 −0.0748777 −0.0374389 0.999299i \(-0.511920\pi\)
−0.0374389 + 0.999299i \(0.511920\pi\)
\(998\) 486.902 0.0154435
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.4.a.v.1.2 2
3.2 odd 2 294.4.a.n.1.1 2
7.2 even 3 126.4.g.g.109.1 4
7.3 odd 6 882.4.g.bf.667.2 4
7.4 even 3 126.4.g.g.37.1 4
7.5 odd 6 882.4.g.bf.361.2 4
7.6 odd 2 882.4.a.z.1.1 2
12.11 even 2 2352.4.a.bq.1.1 2
21.2 odd 6 42.4.e.c.25.2 4
21.5 even 6 294.4.e.l.67.1 4
21.11 odd 6 42.4.e.c.37.2 yes 4
21.17 even 6 294.4.e.l.79.1 4
21.20 even 2 294.4.a.m.1.2 2
84.11 even 6 336.4.q.j.289.2 4
84.23 even 6 336.4.q.j.193.2 4
84.83 odd 2 2352.4.a.ca.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.4.e.c.25.2 4 21.2 odd 6
42.4.e.c.37.2 yes 4 21.11 odd 6
126.4.g.g.37.1 4 7.4 even 3
126.4.g.g.109.1 4 7.2 even 3
294.4.a.m.1.2 2 21.20 even 2
294.4.a.n.1.1 2 3.2 odd 2
294.4.e.l.67.1 4 21.5 even 6
294.4.e.l.79.1 4 21.17 even 6
336.4.q.j.193.2 4 84.23 even 6
336.4.q.j.289.2 4 84.11 even 6
882.4.a.v.1.2 2 1.1 even 1 trivial
882.4.a.z.1.1 2 7.6 odd 2
882.4.g.bf.361.2 4 7.5 odd 6
882.4.g.bf.667.2 4 7.3 odd 6
2352.4.a.bq.1.1 2 12.11 even 2
2352.4.a.ca.1.2 2 84.83 odd 2