Defining parameters
Level: | \( N \) | \(=\) | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 882.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 35 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(882))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 536 | 51 | 485 |
Cusp forms | 472 | 51 | 421 |
Eisenstein series | 64 | 0 | 64 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(70\) | \(4\) | \(66\) | \(62\) | \(4\) | \(58\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(64\) | \(6\) | \(58\) | \(56\) | \(6\) | \(50\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(66\) | \(7\) | \(59\) | \(58\) | \(7\) | \(51\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(68\) | \(8\) | \(60\) | \(60\) | \(8\) | \(52\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(66\) | \(4\) | \(62\) | \(58\) | \(4\) | \(54\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(68\) | \(6\) | \(62\) | \(60\) | \(6\) | \(54\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(66\) | \(9\) | \(57\) | \(58\) | \(9\) | \(49\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(68\) | \(7\) | \(61\) | \(60\) | \(7\) | \(53\) | \(8\) | \(0\) | \(8\) | |||
Plus space | \(+\) | \(272\) | \(27\) | \(245\) | \(240\) | \(27\) | \(213\) | \(32\) | \(0\) | \(32\) | |||||
Minus space | \(-\) | \(264\) | \(24\) | \(240\) | \(232\) | \(24\) | \(208\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(882))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(882))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(882)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 2}\)